Lecture1 Stanford 235 Web Nomovie(1)

48
Heterogeneous Agent Models in Continuous Time, I ECO 235: Advanced Macroeconomics Benjamin Moll Princeton Stanford February 10, 2014 1/48

Transcript of Lecture1 Stanford 235 Web Nomovie(1)

Page 1: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 1/48

Heterogeneous Agent Models

in Continuous Time, I

ECO 235: Advanced Macroeconomics

Benjamin Moll

Princeton

StanfordFebruary 10, 2014

1 / 4 8

Page 2: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 2/48

What my lectures are about

•   Do  income and wealth distribution  matter for the

macroeconomy?•   Timely topic: in U.S.

•   high inequality

•  big recession, slow recovery

•  Not crazy to ask: is there a link?

•   is inequality holding back the recovery?

•  did inequality contribute to recession in first place?

•  these questions have received much attention, e.g. some

recent musings by Stiglitz, Krugman, Taylor:http://opinionator.blogs.nytimes.com/2013/01/19/inequality-is-holding-back-the-recovery/

http://krugman.blogs.nytimes.com/2013/01/20/inequality-and-recovery/

http://online.wsj.com/news/articles/SB10001424127887324094704579064712302845646

•  But important question much more generally...2 / 4 8

Page 3: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 3/48

What my lectures are about

•   Do  income and wealth distribution  matter for the

macroeconomy?•   One influential answer  by Krusell and Smith (1998):   No

•   Rationale:  “approximate aggregation”

•   in standard heterogeneous agent model with aggregate shocks,

“macroeconomic aggregates can be almost perfectly describedusing only the  mean of the wealth distribution.”

•   reason: savings policy functions approximately linear in wealth(see their Figure 2) ⇒ higher order moments don’t matter

•  more technical contribution: state variable = ∞-dimensional

distribution, solution: approximate with first  I   moments

•  But some  open questions:

•   Is this a general result? Or specific to this class of models?

•  How solve models where “approx. aggregation” doesn’t hold?

•   ...3 / 4 8

Page 4: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 4/48

What my lectures are about

•  Progress report on preliminary project, joint work with Yves

Achdou, Jean-Michel Lasry and Pierre-Louis Lions•   Our goal:   develop   continuous time  methods for analyzing

and computing heterogeneous agent models, so as to reaptheir technical advantages

•   Lecture 1  (today): “warm-up”, mainly pedagogical•  redo textbook heterogeneous agent model of 

Aiyagari (1994), Bewley (1986), Huggett (1993)

•   some new theoretical results

  how to do computations•   Lecture 2  (Wednesday):

•  “Wealth Distribution and the Business Cycle”

•   framework to think about questions on previous slides

 better way (IMHO) of doing Krusell and Smith (1998)4 / 4 8

Page 5: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 5/48

Generality of Apparatus

•  Both models can be characterized by a system of two PDEs

1   Hamilton-Jacobi-Bellman equation for individual choices

2   Kolmogorov Forward  equation for evolution of distribution

•  A “Mean Field Game” (Lions and Lasry, 2007)

•  Apparatus is extremely  general:   any   heterogeneous agentmodel with a continuum of atomistic agents can be written

like this

5 / 4 8

Page 6: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 6/48

Develop computational tools

•  Main difference to existing cont. time lit   (Luttmer (2007),...):handle models for which closed form solutions do not exist

•  Codes (for now only lecture 1) available fromhttp://www.princeton.edu/~ moll/HACTproject.htm

6 / 4 8

Page 7: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 7/48

Dynamics of Wealth Distribution (Lec. 2)

movie here

7 / 4 8

Page 8: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 8/48

Dynamics of Wealth Distribution (Lec. 2)

   P  r o d  u

 c  t  i  v

  i  t  y,

  z      D     e     n     s       i      t     y  ,

     g      (     a  ,     z  ,      t      )

Wealth,a

8 / 4 8

Page 9: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 9/48

Background: HJB Equations

9 / 4 8

Page 10: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 10/48

Hamilton-Jacobi-Bellman Equation: Some

“History”

(a) William Hamilton (b) Carl Jacobi (c) Richard Bellman•  Aside: why called “dynamic programming”?•   Bellman:  “Try thinking of some combination that will possibly 

give it a pejorative meaning. It’s impossible. Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as anumbrella for my activities.”http://en.wikipedia.org/wiki/Dynamic_programming#History   10/48

Page 11: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 11/48

Hamilton-Jacobi-Bellman Equations

•  Pretty much all deterministic optimal control problems in

continuous time can be written as

V  (x 0) = maxu (t )∞t =0

   ∞0

e −ρt h (x  (t ) , u  (t )) dt 

subject to the law of motion for the state

x  (t ) = g  (x  (t ) , u  (t )) and  u  (t ) ∈ U 

for t  ≥ 0,   x (0) = x 0  given.

•   ρ ≥ 0: discount rate

•   x  ∈ X  ⊆ Rm: state vector

•   u  ∈ U  ⊆ Rn: control vector

•   h : X  × U  →R

: instantaneous return function11/48

Page 12: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 12/48

Example: Neoclassical Growth Model

V  (k 0) = maxc (t )∞t =0

   ∞0

e −ρt U (c (t ))dt 

subject to˙k  (t ) = F (k (t ))− δ k (t ) − c (t )

for t  ≥ 0,   k (0) = k 0  given.

•  Here the state is  x  = k  and the control  u  = c 

•   h(x , u ) = U (u )•   g (x , u ) = F (x ) − δ x  − u 

12/48

Page 13: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 13/48

Generic HJB Equation

•   How to analyze these optimal control problems? Here:

“cookbook approach”

•  Result: the value function of the generic optimal control

problem satisfies the Hamilton-Jacobi-Bellman equation

ρV (x ) = maxu ∈U 

h(x , u ) + V ′(x ) · g (x , u )

•  In the case with more than one state variable  m > 1,V ′(x ) ∈ Rm is the gradient of the value function.

13/48

Page 14: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 14/48

Example: Neoclassical Growth Model

•   “cookbook” implies:

ρV (k ) = maxc 

U (c ) + V ′(k )[F (k ) − δ k  − c ]

•  Proceed by taking first-order conditions etc

U ′(c ) = V ′(k )

•   Derivation from discrete time Bellman equation

14/48

Page 15: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 15/48

Poisson Uncertainty

•  Easy to extend this to stochastic case. Simplest case:

two-state Poisson process

•   Example:  RBC Model. Production is  At F (k t ) where

At  ∈ {A1, A2}  Poisson with intensities  λ1, λ2

•   Result:  HJB equation is

ρV i (k ) = maxc 

U (c )+V ′i  (k )[Ai F (k )−δ k −c ]+λi [V  j (k ) − V i (k )]

for  i  = 1, 2, j  = i .

•  Derivation similar as before.

15/48

Page 16: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 16/48

Textbook Heterogeneous Agent Model

16/48

Page 17: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 17/48

Textbook Heterogeneous Agent Model

•  Aiyagari (1994), Bewley (1986), Huggett (1993)

•   Start with simplest of these: Huggett (1993)

 wealth = unproductive bonds•   idiosyncratic risk = exogenous endowment shocks

•  Later: very easily generalized to Aiyagari (1994)

•   wealth = capital

•  idiosyncratic risk = labor income

17/48

Page 18: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 18/48

Page 19: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 19/48

Huggett Model: Households

•  are heterogeneous in their wealth  a  and income  z , solve

maxc t 

E0

   ∞0

e −ρt u (c t )dt    s.t.

dat  = [z t  + r t at  − c t ]dt 

z t  ∈ {z 1, z 2}  Poisson with intensities  λ1, λ2

at  ≥ a

•   c t : consumption

•   u : utility function,  u ′ > 0, u ′′ < 0.

•   ρ: discount rate

•   r t  : interest rate

•   a > −∞: borrowing limit e.g. if  a = 0, can only save

•  later: carries over to  z t  = general diffusion process.

19/48

Page 20: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 20/48

EquilibriumInterest rate such that bonds in zero net supply:

0 =S (r (t )) =    ag 1(a, t )da +    ag 2(a, t )da   (EQ)

ρv i (a, t ) = maxc 

u (c ) + ∂ av i (a, t )[z i  + r (t )a − c ] (HJB)

+ λi [v  j (a, t )

−v i (a, t )] + ∂ t v i (a, t ),

∂ t g i (a, t ) = − ∂ a[s i (a, t )g i (a, t )] − λi g i (a, t ) + λ j g  j (a, t ) (KFE),

s i (a, t ) =z i  + r (t )a − c i (a, t ),   c i (a, t ) = (u ′)−1(∂ av i (a, t ))

•  Given initial condition  g i ,0(a), the two PDEs (HJB) and

(KFE) together with (EQ) fully characterize equilibrium.

•  Notation: for any function  f  ,  ∂ x f   means   ∂ f  

∂ x 

•   Derivation of (KFE)20/48

Page 21: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 21/48

Borrowing Constraints?•  Q: where is borrowing constraint  a ≥ a   in (HJB)?

•  A: “in” boundary condition

•   Result:   v i  must satisfy

∂ av i (a, t ) ≥ u ′(z i  + r (t )a),   i  = 1, 2 (BC)

•  Derivation:

•  the FOC still holds at the borrowing constraint

u ′(c i (a, t )) = ∂ av i (a, t ) (FOC)

•   for borrowing constraint not to be violated, need

s i (a, t ) = z i  + r (t )a − c i (a, t ) ≥ 0 (∗)•   (FOC) and (∗) ⇒ (BC).

•  Can derive (BC) more rigorously from concept of   constrained

viscosity solution  of (HJB). But complicated apparatus notreally needed (given smoothness of  v i ).

21/48

Page 22: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 22/48

Stationary Equilibrium

•   A scalar  r  and functions (v 1, v 2, g 1, g 2) satisfying

ρv i (a) = maxc 

u (c ) + v ′i (a)[z i  + ra − c ] + λi [v  j (a)− v i (a)]

0 =−   d 

da[s i (a)g i (a)]− λi g i (a) + λ j g  j (a)

0 =S (r ) ≡    ag 1(a)da +    ag 2(a)da

where  s i (a) = z i  + ra − c i (a)

22/48

Page 23: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 23/48

Stationary Eq.: Theoretical Results

1   tight characterization of speed at which households  hit

borrowing constraint–  note: similarity to stopping time problems

2   intuitive formula linking equilibrium  interest rate and numberof  borrowing constrained  households

•  characterize interest rate effects of  permanent credit  crunch(Guerrieri and Lorenzoni, 2012)

3   analytic Taylor approximation  of equilibrium   interest rate

if shocks are “small”

4   unfortunately not yet: conditions for  uniqueness  of stationaryequilibrium

23/48

Page 24: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 24/48

Savings Behavior at Borrowing Constraint

Proposition

Assume r   < ρ  and a > −z 1/r , z 1  < z 2. The solution to (HJB) has following properties:

1   Type z 1  with wealth a is constrained and hence s 1(a) = 0.

2   Taylor expansion of  (s 1(a))2 around borrowing constraint is 

s 1(a) ∼ −ν √ 

a − a,   ν  =

 2

(ρ−r )u ′(c 1)+λ1[u ′(c 1)−u ′(c 2)]−u ′′(c 1)   > 0.

 2c 1γ 

Therefore wealth of worker who keeps z 1  converges to 

borrowing constraint   in finite time  at speed governed by  ν :

a(t ) − a ∼ (√ 

a0 − a − ν t )2

Note: similarity to  stopping time problems 

3   Dirac  point mass  of type z 1   individuals at constraint.   Proof 24/48

Page 25: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 25/48

Savings Behavior at Borrowing Constraint

Wealth,   a

      S    a    v     i    n    g    s ,     s

       i      (     a      )

  a

s1

(a)

s2(a)

25/48

Page 26: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 26/48

Savings Behavior at Borrowing Constraint

Wealth,   a

     D    e    n    s     i     t     i    e

    s ,     g       i

      (     a      )

  a

g1(a)

g2(a)

Note: in numerical solution, Dirac mass = finite spike in density 26/48

Page 27: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 27/48

vs. Discrete Time: Kinked Savings

Wealth,  at

      S    a    v     i

    n    g    s ,     a       t     +

     1

a

•  constraint binds also on interior of state space

• distribution typically has spikes away from constraint

27/48

Page 28: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 28/48

Savings and Wealth Distribution given   r 

Wealth,   a

      S    a    v     i    n    g    s ,

     s       i

      (     a

      )

  a

s1(a)

s2(a)

Wealth,   a

     D    e    n    s     i     t     i    e    s

 ,     g       i

      (     a

      )

  a

g1(a)

g2(a)

28/48

Page 29: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 29/48

Increase in   r   from   r L  to   r H  >   r L

Wealth,   a

      S    a    v     i    n    g    s ,

     s       i

      (     a

      )

  a

s1(a;r

L)

s2(a;r

L)

s1(a;r

H)

s2(a;r

H)

Wealth,   a

     D    e    n    s     i     t     i    e    s

 ,     g       i

      (     a

      )

  a

g1(a;r

L)

g2(a;r

L)

g1(a;r

H)

g2(a;r

H)

29/48

Page 30: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 30/48

Stationary Equilibrium

−0.15 −0.1 −0.05 0 0.05−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

r   =  ρ

S (r )

a  =  a     r

S (r )

Recall  S (r ) =

  ag 1(a)da +

  ag 2(a)da

30/48

Page 31: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 31/48

Existence and Uniqueness?

•   Existence: can show

limr ↑ρ

S (r ) = ∞,   limr ↓−∞

S (r ) = a

⇒ existence guaranteed.

•   Uniqueness?  More tricky

•  need to show  S ′(r ) ≥ 0.

•  satisfied in all numerical examples.

•   sufficient condition:   ∂ s i (a)/∂ r  ≥ 0

31/48

Page 32: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 32/48

Interest Rate & Borrowing Constraints

•   Well-known feature of Aiyagari-Bewley-Huggett models:   r  < ρ

•   In Aiyagari extension  F ′

(K ) = r  + δ  ⇒  “overaccumulation,”K   > K full insurance

•   But by how much?

•   e.g. is  r  < 0 so that ZLB may bind (in extension with nominal

rigidities as in Guerrieri and Lorenzoni, 2012)

Proposition

Assume a > −z 1/r. The stationary interest rate r satisfies 

(ρ − r )U ′ = u ′(c 1)λ1M 1 > 0,

where U ′ = ∞a

  [u ′(c 1(a))g 1(a) + u ′(c 2(a))g 2(a)]da and M 1  > 0   is 

Dirac mass of type z 1  at borrowing constraint.

Proof 

32/48

I i i

Page 33: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 33/48

Intuition•  At individual level

u ′(c i (a))   MC of self-insurance

= (1 + (r  −

ρ)dt )u ′(c i (a)) + Et [du ′(c i (a))]   MB of self-insurance

•  At aggregate level (cross-sectional average in stationary dist.)

U ′

  MC of self-insurance

= (1 + (r  − ρ)dt )U ′ + u ′(c 1)λ1M 1dt 

   MB of self-insurance

,

(ρ− r )U ′ = u ′(c 1)λ1M 1,

•   ρ − r   measures extra benefit from self-insurance due to

presence of borrowing constraint

•  Formula links interest rate and number of borrowingconstrained households. Uses:

1   decompose effects of parameter changes (comp. statics)

2   Taylor approximation for small  λ

3   Any ideas for other uses??? Data??? 33/48

C i S i

Page 34: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 34/48

Comparative Statics

1   Credit crunch, −a ↓  (Guerrieri and Lorenzoni, 2012)

2   Increase in uncertainty,  λ1  = λ2 ↑

3   Increase in likelihood of “unemployment”,  λ2 ↑

•  All exercises: comparison of steady states, ignore transition

dynamics

34/48

C di C h ↓

Page 35: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 35/48

Credit Crunch, −a ↓

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Borrowing Limit, -a

   S   t  a   t   i  o  n  a  r  y   I  n   t  e  r

  e  s   t   R  a   t  e ,  r

35/48

C dit C h ↓ D iti

Page 36: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 36/48

Credit Crunch, −a ↓: Decomposition•   Recall  r  = ρ − λ1

u ′(c 1)U ′

  M 1,   c 1  = z 1 + r a

• Credit crunch has two countervailing effects:

1   more people constrained  M 1 ↑⇒ r  ↓2   lower indebtedness = less “starvation” u ′(c 1)/U ′ ↓⇒ r  ↑

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

No. of Borrowing Constrained,  M 1

u ′(c1)/U ′

Borrowing Limit, -a

36/48

U t i t λ ↑

Page 37: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 37/48

Uncertainty  λ ↑

0 0.5 1 1.5 2−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

   S   t  a   t   i  o  n  a  r  y   I  n   t  e  r  e  s   t   R  a   t  e ,  r

Uncertainty,   λ

37/48

Uncertainty λ ↑: Decomposition

Page 38: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 38/48

Uncertainty  λ ↑: Decomposition•   Recall  r  = ρ − λ

u ′(c 1)U ′

  M 1,   c 1  = z 1 + r a

•  Increase in uncertainty has three effects:

1   more likely to hit constraint λ ↑⇒ r  ↓2   less people constrained  M 1 ↓⇒ r  ↑3   less inequality U ′ ↓⇒ r  ↓  (u ′(c 1) ambiguous)

0 0.5 1 1.5 20

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

No. of Borrowing Constrained,  M 1

Uncertainty,   λ

u′

(c1)/U ′

Uncertainty,   λ   38/48

Higher likelihood of “unemployment” λ ↑

Page 39: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 39/48

Higher likelihood of unemployment  λ2 ↑

0 0.5 1 1.5 2−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

   S   t  a   t   i  o  n  a  r  y   I  n   t  e  r  e  s   t   R  a   t  e ,  r

Likelihood of Unemployment,   λ2

39/48

Small λ Equilibrium

Page 40: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 40/48

Small  λ  Equilibrium•   Consider limit:   λ1, λ2 → 0 while holding constant  λ1/λ2

Formally:   λ1 = λλ1, λ2  = λλ2, λ

→0

• ⇒  population shares also constant:   θ1 =  λ2

λ1+λ2, θ2  =

  λ1

λ1+λ2

Corollary

The Taylor series approximation of r (λ)  around  λ = 0   is 

r (λ) ∼ ρ −   θ1u ′(z 1 + ρa)θ1u ′(z 1 + ρa) + θ2u ′(z 2 + ρa)

λ

where  a satisfies  θ1a + θ2a = 0, and we used r  → ρ, M 1 → θ1.

Implications: interest rate  low  if 

1   high uncertainty (λ)2   large gap between income shocks (z 1/z 2   low)3   low income shocks relatively more likely (high  θ1)4   high risk aversion (high  γ   in  u ′(c ) = c −γ )5   loose  borrowing constraint (low  a)

40/48

Page 41: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 41/48

Derivation from Discrete-time Bellman

Page 42: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 42/48

Derivation from Discrete-time BellmanBack

•  Time periods of length ∆

•   discount factor

β (∆) = e −ρ∆

•  Note that lim∆→0 β (∆) = 1 and lim∆→∞ β (∆) = 0.

•  Discrete-time Bellman equation:

V (k t ) = maxc t  ∆U (c t ) + e −ρ

∆V (k t +∆) s.t.

k t +∆ = ∆[F (k t ) − δ k t  − c t ] + k t 

42/48

Derivation from Discrete-time Bellman

Page 43: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 43/48

Derivation from Discrete time Bellman

•  For small ∆ (will take ∆ → 0),  e −ρ∆ = 1 − ρ∆

V (k t ) = maxc t 

∆U (c t ) + (1 − ρ∆)V (k t +∆)

•   Subtract (1 − ρ∆)V (k t ) from both sides

ρ∆V (k t ) = maxc t  ∆U (c t ) + (1 − ∆ρ)[V (k t +∆)− V (k t )]

•  Divide by ∆ and manipulate last term

ρV (k t ) = maxc t 

U (c t ) + (1

−∆ρ)

V (k t +∆)− V (k t )

k t +∆ − k t 

k t +∆ − k t 

∆Take ∆ → 0

ρV (k t ) = maxc t 

U (c t ) + V ′(k t )k t 

43/48

Derivation of Poisson KFE Back

Page 44: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 44/48

Derivation of Poisson KFE   Back

•  Work with CDF (in wealth dimension)

G i (a, t ) = Pr(at  ≤ a, z t  = z i )

•  Over time period of length ∆, wealth evolves as

at +∆ = at  + ∆s i (at )

•   income switches from  z i   to  z  j  with probability ∆λi 

•  Fraction of people with wealth below  a  evolves as

Pr(at +∆

 ≤a, z t +∆ = z i ) = (1

−∆λi )Pr(at 

 ≤a−

∆s i (a), z t  = z i )

+∆λ j  Pr(at  ≤ a − ∆s  j (a), z t  = z  j )

•   Intuition: if have wealth  < a −∆s i (a) at  t , have wealth  < aat  t  + ∆

44/48

Derivation of Poisson KFE

Page 45: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 45/48

Derivation of Poisson KFE

•   Subtracting G i (a, t ) from both sides and dividing by ∆

G i (a, t  + ∆) − G i (a, t )∆

  =  G i (a − ∆s i (a), t ) − G i (a, t )∆

− λi G i (a − ∆s i (a), t ) + λ j G  j (a − ∆s  j (a), t )

• Taking the limit as ∆

→0

∂ t G i (a, t ) = −s i (a)∂ aG i (a, t )− λi G i (a, t ) + λ j G  j (a, t )

where we have used that

lim∆→0

G i (a − ∆s i (a), t ) − G (a, t )∆

  = limx →0

G (a − x , t ) − G (a, t )x 

  s i (a)

= −s i (a)∂ aG i (a, t )

•  Differentiate w.r.t.   a  and use  g i (a, t ) = ∂ aG i (a, t ) ⇒ (KFE).

45/48

Proof of Proposition   Back

Page 46: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 46/48

Proof of Proposition

•   FOC:  u ′(c 1(a)) = v ′1(a) and so  u ′′(c 1(a))c ′1(a) = v ′′1 (a)

• Envelope condition:

(ρ − r )v ′1(a) = v ′′1 (a)s 1(a) + λ1(v ′2(a)− v ′1(a))

•  Combining, using  s ′1(a) = r  − c ′1(a), and rearranging:

(s ′

1(a) − r )s 1(a) =  (r −ρ)u ′(c 1(a))+λ1[u ′(c 2(a))−u ′(c 2(a))]

u ′′(c 1(a))

•   If  s 1(a) → 0, c 1(a) → c 1, c 2(a) → c 2  as  a → a, then

s 1(a)s ′1(a) →   (r −ρ)u ′(c 1)+λ1[u ′(c 2)−u ′(c 1)]u ′′(c 1)   (∗)

•  The Taylor series approximation of (s 1(a))2 around  a   is

(s 1(a))2 ∼ 2s 1(a)s ′1(a)(a − a)

•  Substitute in from (

∗) and take the square root.

46/48

Proof of Proposition   Back

Page 47: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 47/48

oo o opos t o

•  Envelope condition

(ρ − r )v ′i (a) = s i (a)v 

′′i   (a) + λi (v 

′ j (a)− v 

′i (a))

•  Multiplying the two equations by  g 1  and  g 2  and integrating:

(ρ  − r )

   ∞

a

(v ′1(a)g 1(a) + v ′

2(a)g 2(a))da

=   ∞a

[v ′′1 (a)s 1(a)g 1(a) + v ′′

2 (a)s 2(a)g 2(a)]da

+

   ∞

a

[v ′2(a)(−λ2g 2(a) + λ1g 1(a)) + v ′

1(a)(−λ1g 1(a) + λ2g 2(a))]da

•  Integration by parts:   ∞

a

v ′′

1 (a)s 1(a)g 1(a)da =  v ′

1(a)s 1(a)g 1(a)

a

   ∞

a

v ′

1(a) d 

da[s 1(a)g 1(a)]da

=  −v ′

1(a) lima→a

s 1(a)g 1(a)  −

   ∞

a

v ′

1(a) d 

da[s 1(a)g 1(a)]da

47/48

Proof of Proposition   Back

Page 48: Lecture1 Stanford 235 Web Nomovie(1)

8/17/2019 Lecture1 Stanford 235 Web Nomovie(1)

http://slidepdf.com/reader/full/lecture1-stanford-235-web-nomovie1 48/48

p•   Hence

(ρ−

r )    ∞

a

(v ′

1

(a)g 1(a) + v ′

2

(a)g 2(a))da

=− v ′1(a) lima→a

s 1(a)g 1(a)

+

   ∞

a

v ′1(a)

−  d 

da(s 1(a)g 1(a)) − λ1g 1(a) + λ2g 2(a)

da

+   ∞a

v ′2(a)−  d 

da(s 2(a)g 2(a)) − λ2g 2(a) + λ1g 1(a)

da

•  Second and third lines ≡ 0 from (KFE). First line? (KFE) ⇒0 =

−lima→a

s 1(a)g 1(a)

−λ1M 1

•   Hence

(ρ − r )

   ∞a

(v ′1(a)g 1(a) + v ′2(a)g 2(a))da = v ′1(a)λ1M 1

•   Finally, use FOC  u ′

(c i (a)) = v ′

i (a). 48/48