ATC lecture1

58
 MIT IC T MIT IC T 16.72 Air Traffic Control Overview Prof. R. John Hansman MIT Department of Aeronautics and Astronautics

description

ATC lecture1

Transcript of ATC lecture1

  • MIT ICATMIT ICAT

    16.72 Air Traffic Control Overview

    Prof. R. John Hansman

    MIT Department of Aeronautics and Astronautics

  • US Capacity Issue

    Prior to 9/11 the US Air Transportation system is approaching a criticalsaturation threshold where nominal interruptions (e.g. weather) resulted in anonlinear amplification of delay

    US and Regional Economies highly dependant on Air Transportation Business travel (stimulated by info technology)

    Air Freight

    Personal travel

    System is highly complex and interdependent Need better understanding of system dynamics and real constraints to guide

    and justify efforts to upgrade NAS Current efforts will not provide capacity to meet demand which will re-emerge

    when the economy cycles up

    Impact of upcoming capacity crisis is not well understood Operational Impact

    Economic Impact

    Similar Issues in Europe Different Issues in Emerging Regions (eg China, India)

    MIT ICAT

    MIT ICAT

  • MIT ICATMIT ICAT

  • Passenger Traffic by Region

    Scheduled Revenue Passenger-Kilometers by Region

    1400

    1200

    1000

    800

    600

    400

    200

    0

    1970 1975 1980 1985 1990 1995 2000 2005

    RP

    K (b

    illio

    n)

    North America

    Europe

    Asia and Pacific

    Latin America & Caribbean

    Middle East

    Africa

    Source: ICAO, scheduled services of commercial air carriers

    MIT ICAT

    MIT ICAT

  • Trends in Aircraft Size A

    vera

    ge

    seat

    s p

    er d

    epar

    ture

    150

    140

    130

    120

    110

    100

    90

    80

    1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

    Source: DOT Form 41 data (including Regional Jets and Turboprops)

    MIT ICAT

    MIT ICAT

  • US FlightUS DelaysFlight Delaysfrom 1995 tofrom 20061995 to 2006

    Data source: FAA Operational Network (OPSNET)

    MIT ICAT

    MIT ICAT

  • Flight Cancellations

    Cancellations

    Thousands 250

    200

    150

    100

    50

    1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

    Source: BTS, Airline On Time Performance data

    0

    MIT ICAT

    MIT ICAT

  • US FlightUS DelaysFlight Delaysfrom 2000 tofrom 20062000 to 2006

    Source: FAA OPSNET data

    MIT ICAT

    MIT ICAT

  • Delays at Chicago OHarePressure for Demand Managment

    ORD: Total Delays

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    To

    tal D

    elay

    s 2004

    2003

    2002

    2001

    2000

    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

    Month

    Source: FAA OPSNET data

    MIT ICAT

    MIT ICAT

  • 1980 198

    2 198

    4 198

    6 198

    8 199

    0 199

    2 199

    4 199

    6 199

    8 200

    0

    2000

    2002

    20

    04

    Consumer complaints

    0

    5

    10

    15

    20

    25

    Com

    plai

    nts

    to t

    he D

    OT

    (00

    0) Southwest

    USAirways United TWA Northwest America West Delta Continental Alaska American

    Note: Year 2005 consumer complaints is an extrapolation using data from Jan-Mar 2005

    Data source: DOT Aviation Consumer Protection Division, available at: http://airconsumer.ost.dot.gov/

    MIT ICAT

    MIT ICAT

  • Air Traffic Control Functions

    Aircraft Separation Assurance

    Traffic Congestion Management

    Flight Information

    Search and Rescue

    Example of a Command, Control and Information System

    MIT ICAT

    MIT ICAT

  • COMPONENTS OF AIR TRANSPORTATION INFRASTRUCTURE

    Airports Runways Terminals Ground transport interface Servicing Maintenance

    Air traffic management Communications

    Navigation

    Surveillance

    Control

    Weather Observation

    Forecasting

    Dissemination

    Skilled personnel

    Cost recovery mechanism

    MIT ICAT

    MIT ICAT

  • Current Control Structure

    Surface Control Ground

    Local Control Tower

    Terminal Area Control (TRACON) Approach and Departure

    Enroute Control (ARTCC) Center

    Oceanic Control (FIR) Oceanic

    Flow Control (ATCSCC) Central Flow

    MIT ICAT

    MIT ICAT

  • US Air Route Traffic Control Center (ATRCC) Airspace - 20 Centers

    ZSE ZMP

    ZLC ZAU ZBW

    ZOB ZDV ZNY

    ZOA ZKC ZID ZDC

    ZLA ZME ZAB ZFW

    ZTL

    ZJX

    ZHU ZMA

    MIT ICAT

    MIT ICAT

  • High Level Sectors257

    MIT ICAT

    MIT ICAT

  • Low Level Sectors 378

    MIT ICAT

    MIT ICAT

  • TRACONSMIT ICAT MIT

    ICAT

  • Overall StructureMIT ICAT MIT

    ICAT

  • ATM System CurrentFunctional Structure

    Planning - Strategic Level

    Sector Traffic

    Planning

    Aircraft StateAircraft Guidance and

    Navigation

    Sector Traffic Control

    Traffic Sensor

    Vectors

    ClearancesPlanning

    Approved Handoffs

    Desired Sector Loads

    Clearance Requests

    Flight Planning

    Weather

    Filed

    Negotiate < 5 min

    Execution - Tactical Level

    Pilot

    Planned Flow Rates

    Clearance Requests

    AOC Schedule of Capacities

    Approved Flight

    National PlansFlow

    Facility Flow

    Planning

    Flight

    Plans

    Flight

    Schedule

    Airline

    hrs - day hrs 5-20 min 5 min Handoffs

    CFMU TMU D-side R-side

    Measurement

    Real State Plan/Intent

    Requests

    AC State Sensor Other Aircraft

    States

    Efficiency Throughput Safety

    Increasing Criticality Level

    Source: A. Haraldsdottir Boeing

    MIT ICAT

    MIT ICAT

  • ATC Control LooRadar Surveillance Limits

    Vectors

    Aircraft F light

    M anagementC omp ute r

    S tate

    Flight PlanAmendments

    Autop ilo tAuto thrust

    MCP Controls

    ATCF lightS trip s

    Surveillance: Enroute: 12.0 s Terminal: 4.2 s

    S tate C ommands

    Tra jecto rC ommands

    Initial Clearances

    CDU

    ADS : 1 sDisplays

    AOC: Airline Operations Center

    Pilot

    DisplaysManual Control

    Voice

    ACARS (Datalink)

    Decision Aids

    N av igation

    Emerging Approaches: ADS-B and Multi-Lateration

    MIT ICAT

    MIT ICAT

  • Radar Display Example

    CO 123 350C B757 310

    MIT ICAT

    MIT ICAT

  • ATM is a Human Centered Process

    Contract process Negotiation Execution Monitoring Re-negotiation/amendment

    Agents Controllers

    Strategic Tactical

    Pilots

    Airlines

    Dispatchers ATC coordinators

    Airports

    Resources Airspace

    Runway

    Airport surfaces

    MIT ICAT

    MIT ICAT

  • Flight Progress StripMIT ICAT MIT

    ICAT

  • Human Factors and

    Adaptation

    ATM is a human centered contract process for the allocation ofairspace and airport surface resources.

    Current NAS has evolved over 60 years

    The system has significant local adaptations resulting innonhomogeneity Airspace design

    Local procedures

    Letters of agreement

    Noise restrictions

    Site specific training (FPL = 3-5 years)

    Major operational changes were event driven, enabled btechnical capability Positive radar control - Grand Canyon 1956

    TCAS - Los Cerritos 1982

    MIT ICAT

    MIT ICAT

  • New York Arrival and Departure Tracks

    MIT ICAT

    MIT ICAT

  • ATC Workload as a System Constraint

    MIT ICAT

    MIT ICAT

  • Blocking

    Air traffic controller

    Blocking action

    Controlled resource

    Block the flow to maintain number of aircraft within the acceptable level (ex. Set by AAR or OALT)

    Finite capacity buffer

    AAR is Airport Acceptance Rate OALT is sector Operationally Acceptable Level of Traffic

    Saturated resource

    Number of aircraft threshold corresponding For example,

    to, for example, AAR or rate set by

    OALT, (varies depending AAR or OALT

    on current conditions)

    MIT ICAT

    MIT ICAT

  • MIT ICATMIT ICAT

  • Downstream Flow Constraints

    Flow Management Capacity Constraint ex. Airport

    Capacity Acceptance Constraint Rate (AAR)

    Departure flow

    Gates Ramp Taxiways Runways Terminal area and exit fixes

    En route sector airspace

    Destination airports

    Gate Restrictions

    ex. Sector Operationally Acceptable Level of Traffic (OALT)

    Ramp Restrictions

    Runway Restrictions

    Taxi Restrictions Capacity

    Constraint ex. Miles In Trail through exit fix

    MIT ICAT

    MIT ICAT

  • 12:19 p.m. 153 Aircraft In-bound

    Dallas Fort-Worth

    Aircraft are condensed into distinct flows feeding 4 arrival fixes.

    June 20, 2001

    MIT ICAT

    MIT ICAT

  • 116 Aircraft In-bound

    Atlanta

    Condensation and merges have reduced 116 trajectories at airport to 4

    ARTCC

    Boundaries

    Route

    Flown

    11:15 a.m. June 14, 2001

    MIT ICAT

    MIT ICAT

  • 78 Aircraft In-bound

    San Francisco

    Special use airspace provides additional constraints

    Special Use

    Airspace

    Route

    Flown

    Flight Plan

    June 11, 2001 4:13 p.m.

    MIT ICAT

    MIT ICAT

  • Projected % DevelopmentalControllers

    From: ATCS Workforce Plan Briefing

    MIT ICAT

    MIT ICAT

  • Capacity Limit Factors

    Demand Peak Demand

    Hub & Spoke Networks

    Airspace Capacity Airspace Design

    Controller Workload

    Balkanization

    Airport Capacity Runways Gates Landside Limits (including Security) Weather

    Environmental Limits Noise (relates to Airport) Emissions (local, Ozone, NOX, CO2)

    MIT ICAT

    MIT ICAT

  • Airport SysteCapacity Limit Factors

    Runways

    Weather Capacity Variability

    Convective Weather

    Landside Limits Gates

    Terminals & Security

    Road Access

    Downstream Constraints

    Controller Workload Environmental

    Community Noise

    Emissions

    Safety

    MIT ICAT

    MIT ICAT

  • Arr

    ival

    s p

    er H

    ou

    rA

    rriv

    als

    per

    Ho

    ur

    MITMIT Airport Capacity EnvelopeICATICAT Boston (BOS)

    100

    80

    90

    68,50VFR ASPM - Apr 2000 - Visual Approaches ASPM - Jul/Aug 2000 - Visual

    ApproachesCalculated VMC Capacity

    70 Optimum Rate (BOS)

    60

    50

    40

    30

    20

    10

    0

    0 10 20 30 40 50 60 70 80 90 100

    Departures per Hour

    100

    IFR ASPM - Apr 2000 - Instrument Approaches 90 ASPM - Jul/Aug 2000 - Instrument Approaches Calculated IMC Capacity 80 Reduced Rate (BOS)

    70

    60

    50 44,44

    40

    30

    20

    10

    0

    0 10 20 30 40 50 60 70 80 90 100

    Departures per Hour Source: FAA Benchmark Data

  • Separation Requirements for

    Arrival (Same Runway)

    MIT ICAT

    MIT ICAT

    Wake Turbulence Requirement Radar Separation requirements

    Trailing Aircraft

    Leading

    Aircraft

    Heavy Large Small Heavy 4 5 5 B757 4 4 5 Large 3(2.5) 3(2.5) 4 Small 3(2.5) 3(2.5) 3(2.5)

    Visual Separation requirements Pilots Discretion

    Preceding arrival must be clear of runway at touchdown Runway Occupancy time

  • MIT ICAT

    MIT ICAT

    Variable Capacity Effects1995 Delays vs Operations

    Data from FAA Capacity Office, CY95

    0 200000 400000 600000 800000 1000000

    Total Operations (CY95)

    0

    10

    20

    30

    40

    50

    60

    Dela

    yed

    Flig

    hts

    (per

    100

    0)

    SFO

    LGA EWR STL

    LAX

    ORD

    DFW

    ATL BOS

    JFK

    PHX

    LAS

    SJU

    HNL PIT DEN

    CLT

    IAH

    MEM

    From John Andrews, MIT Lincoln Lab

  • MIT ICAT

    MIT ICAT

  • Safety vs CapacityMIT ICAT MIT ICAT

    The current airborne system is extremely safe but conservative

    Increased capacity with current infrastructure implies Reduced OperationalSeparation Airborne Separation Standards

    Runway Occupancy Times

    Wake Vortex

    Controller Personal Buffers

    ...

    How do you dependably predict the safety impact of changes in a complexinterdependent system? Statistics of small numbers

    Differential analysis limited to small or isolated changes

    Models??

    Safety Veto Effect

    Runway Incursions are an area of concern

  • MIT ICAT

    MIT ICAT

    EN ROUTE MINIMA HAVE NOT

    CHANGED DESPITE 5 x IMRPOVEMENT

    IN RADAR PERFORMANCE

    ARSR-1 ARSR-4 ASR-6 ASR-9 Mode A Mode S 0

    20

    40

    60

    80

    100

    120

    Azim

    uth

    reso

    lutio

    n at

    max

    imum

    rang

    e as

    % o

    f en

    rout

    e m

    inim

    a 5 nm en route separation minima

    1950

    2000 1960

    2000 1960

    2000

    1950 2000

    Long range Medium range Medium range

    primary radars primary radars secondary radars

  • MIT ICAT

    MIT ICAT

    SEPARATION ASSURANCE CONSIDERATIONS

    PERSONAL SURVEILLANCE SAFETY BUFFER UNCERTAINTY

    MINIMUM

    SEPARATION

    STANDARD

    PROCEDURAL HAZARD ZONESAFETY

    BUFFER

  • MIT ICAT

    MIT ICAT

    IMPROVED SURVEILLANCE HAS NOT LED TO REDUCED EN ROUTE MINIMA

    WHEN STANDARDS IMPROVED SURVEILLANCE WERE DEVELOPED ENVIRONMENT

    (e.g. 1950s for en route radar) (e.g. today for en route radar) Minimum

    Separation

    Standard

    Surveillance has improved, but separation minima have not changed:procedural safety buffer has implicitly increased

  • Schedule FactorsMIT ICAT MIT ICAT

    Peak Demand/Capacity issue driven (in part) by airline Hub and Spokescheduling behavior Peak demand often exceeds airport IFR capacity (VFR/IFR Limits) Depend on bank spreading and lulls to recover Hub and Spoke amplifies delay

    Hub and spoke is an efficient network Supports weak demand markets

    Schedules driven by competitive/market factors Operations respond to marketing

    Trend to more frequent services, smaller aircraft

    Ratchet behavior

    Impact of regional jets

    Ultimately, airlines will schedule rationally To delay tolerance of the market (delay homeostasis)

    Limited federal or local mechanisms to regulate schedule

  • MIT ICAT

    MIT ICAT Hub and Spoke Network

    Completely Connected Network = 2(N-1) Flights

    (eg., 50 Airports, 98 Flights)

  • MIT ICAT

    MIT ICAT Fully Connected Network

    Completely Connected Network = N(N-1)

    (eg., 50 Airports, 2450 Flights)

  • MIT ICAT

    MIT ICAT

    Capacity Exampl(50 Flights/hr)

    70

    60

    50

    40

    30

    20

    10

    0

    Time

    0

    50

    100

    150

    200

    250

    T ime

  • MIT ICAT

    MIT ICAT

    Capacity Exampl(40 Flights/hr)

    0

    10

    20

    30

    40

    50

    60

    70

    Time

    250

    200

    150

    100

    50

    0

    T ime

  • MIT ICAT

    MIT ICAT

    Capacity Exampl(30 Flights/hr)

    0

    50

    100

    150

    200

    250

    T ime

    0

    10

    20

    30

    40

    50

    60

    70

    Time

  • Classic Delay vs Demand

    Curve

    MIT ICAT

    MIT ICAT

    DELAY

    CapacityLimit

    Linear Region

    Non-Linear Region

    DEMAND

  • MIT ICAT

    MIT ICAT LGA Air 21 Impact

    LaGuardia Airport

    0

    20 40

    60

    80

    100 120

    140

    160 180

    200

    06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

    Time of Day

    Historic Movements AIR-21 Induced Svc.

    Maximum Hourly Operations Based on Current Airspace & ATC Design

    Source: William DeCota, Port Authority of New York

  • DELA

    Y

    MIT ICAT

    MIT ICAT LGA

    DEMAND

    Capa

    city

    Lim

    it

    Source: William DeCota, Port Authority of New York

  • MIT ICAT

    MIT ICAT

    Flight Delays at LGAFlight Delays at LGAfrom 2000 to 2006from 2000 to 2006

    Source: FAA OPSNET data

  • Suggested Political

    Solutions to Capacity Shortfall

    MIT ICAT

    MIT ICAT

    Full or Partial Privatization (eg AIR-21) May improve modernization,costs and strategic management

    Limited impact on capacity

    Re-regulation Increased Costs to Consumer

    Demand Management (eg Peak Demand Pricing) Reduced service to weak markets

    Need to insure that revenues go to improved capacity

    Run System Tighter Requires improved CNS

    Safety vs Capacity Trade

    Build more capacity Local community resistance

    Multi-modal transportation networks

  • ConclusionMIT ICAT MIT ICAT

    Technology in Pipeline will have limited impact on peak Capacity atCurrently Stressed Airports 20% to 40% Optimistically

    System will become (is) Capacity Restricted Airlines will Schedule in Response to Market Demand

    Delay Homeostasis (at Hubs)

    Increased Traffic at Secondary Airports

    High Frequency Service

    Changing Value for Reliability

    Overall system response is not clear

    Need Protection of Airport and Spectrum Resources

    More runways in critical locations

    New ATM paradigms

    Need for leadership

  • MIT ICAT

    MIT ICAT

    Multi-Stakeholder Considerations & Role of System Transition Plans

    Demand Performance

    Stakeholder Decisions

    Transformative Actions

    Change Process

    Implementation

    SystemCapability

    Selected Actions

    AggregateInefficiencyMetrics

    Corrective Actions

    Monitoring & Forecasting

    Stakeholder Awareness or Perception Ai

    Research and Development

    Capabilities

    Research Needs System Concepts

    Road Map

    Stakeholder Values Vi

    Stakeholder Objectives Oi Stakeholder

    Decisions Stakeholder Decisions

    Stakeholder i Optimization

    FAA>OEP JPDO > NGATS EU > CESARE

  • Focus is the OEP 35 airportsMIT ICAT MIT ICAT

    More? Oakland Burbank Long Beach John Wayne-Orange County Tucson Albuquerque San Antonio Houston Hobby Palm Beach

  • MIT ICAT

    MIT ICAT