Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods ›...

34

Transcript of Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods ›...

Page 1: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

Lecture 7: Generalised Method of MomentsEconometric Methods Warsaw School of Economics

Andrzej Torój

Andrzej Torój

(7) GMM 1/ 19

Page 2: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

Outline

1 Introduction

2 GMM estimator

3 Application: Gali&Gertler's hybrid Phillips curve (1999)

Andrzej Torój

(7) GMM 2/ 19

Page 3: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

Outline

1 Introduction

2 GMM estimator

3 Application: Gali&Gertler's hybrid Phillips curve (1999)

Andrzej Torój

(7) GMM 3/ 19

Page 4: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

Introduction

Instrumental variables: general idea

OLS estimaton based on the general underlying assumptionthat E

(XT

T×kεT×1

)= 0k×1 (by Gauss-Markov).

It may be broken i.a. for the following reasons:

just by construction of the economic model;two-way causality between y t and a subset of x t ;non-random sample selection.

Solution: nd variables that are truly orthogonal to εT×1

(instrumental variables).

Andrzej Torój

(7) GMM 4/ 19

Page 5: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

Introduction

Instrumental variables: general idea

OLS estimaton based on the general underlying assumptionthat E

(XT

T×kεT×1

)= 0k×1 (by Gauss-Markov).

It may be broken i.a. for the following reasons:

just by construction of the economic model;two-way causality between y t and a subset of x t ;non-random sample selection.

Solution: nd variables that are truly orthogonal to εT×1

(instrumental variables).

Andrzej Torój

(7) GMM 4/ 19

Page 6: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

Introduction

Instrumental variables: general idea

OLS estimaton based on the general underlying assumptionthat E

(XT

T×kεT×1

)= 0k×1 (by Gauss-Markov).

It may be broken i.a. for the following reasons:

just by construction of the economic model;two-way causality between y t and a subset of x t ;non-random sample selection.

Solution: nd variables that are truly orthogonal to εT×1

(instrumental variables).

Andrzej Torój

(7) GMM 4/ 19

Page 7: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

Introduction

OLS and IV: alternative approach

OLS: residuals uncorrelated with regressors, E(XT

T×kεT×1

)= 0k×1

these are k moment conditions from which we infer the estimatesXT y = XTXβ + X

Tε︸︷︷︸0

⇒ βOLS

=(XTX

)−1XT y

IV: residuals uncorrelated with instruments, E(ZTT×kεT×1

)= 0k×1

these are k moment conditions from which we infer the estimatesZT y = ZTXβ + Z

Tε︸︷︷︸0

⇒ βOLS

=(ZTX

)−1ZT y

what if we get more than l (> k) moment conditions, i.e. more than we

actually need? ZTT×lεT×1 = 0l×1

there are l (> k) moment conditions, so not all of them can befullled by modifying β (only k parameters)ZT y = ZTXβ + Z

Tε︸︷︷︸0

⇒ but we won't invert ZTX (not a square

matrix this time!)

Andrzej Torój

(7) GMM 5/ 19

Page 8: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

Introduction

OLS and IV: alternative approach

OLS: residuals uncorrelated with regressors, E(XT

T×kεT×1

)= 0k×1

these are k moment conditions from which we infer the estimatesXT y = XTXβ + X

Tε︸︷︷︸0

⇒ βOLS

=(XTX

)−1XT y

IV: residuals uncorrelated with instruments, E(ZTT×kεT×1

)= 0k×1

these are k moment conditions from which we infer the estimatesZT y = ZTXβ + Z

Tε︸︷︷︸0

⇒ βOLS

=(ZTX

)−1ZT y

what if we get more than l (> k) moment conditions, i.e. more than we

actually need? ZTT×lεT×1 = 0l×1

there are l (> k) moment conditions, so not all of them can befullled by modifying β (only k parameters)ZT y = ZTXβ + Z

Tε︸︷︷︸0

⇒ but we won't invert ZTX (not a square

matrix this time!)

Andrzej Torój

(7) GMM 5/ 19

Page 9: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

Introduction

OLS and IV: alternative approach

OLS: residuals uncorrelated with regressors, E(XT

T×kεT×1

)= 0k×1

these are k moment conditions from which we infer the estimatesXT y = XTXβ + X

Tε︸︷︷︸0

⇒ βOLS

=(XTX

)−1XT y

IV: residuals uncorrelated with instruments, E(ZTT×kεT×1

)= 0k×1

these are k moment conditions from which we infer the estimatesZT y = ZTXβ + Z

Tε︸︷︷︸0

⇒ βOLS

=(ZTX

)−1ZT y

what if we get more than l (> k) moment conditions, i.e. more than we

actually need? ZTT×lεT×1 = 0l×1

there are l (> k) moment conditions, so not all of them can befullled by modifying β (only k parameters)ZT y = ZTXβ + Z

Tε︸︷︷︸0

⇒ but we won't invert ZTX (not a square

matrix this time!)

Andrzej Torój

(7) GMM 5/ 19

Page 10: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

Introduction

Limitations of IV estimation

βIV =(ZTX

)−1ZTy

Z must have the same number of columns as X for thisoperation to be feasible

in IV, there must be as many instrumental variables as

regressors (some of which can instrumentalise themselves)

what are Z?

uncorrelated with ε, correlated with Xno reason to assume that there is a limited number of suchvariables

Andrzej Torój

(7) GMM 6/ 19

Page 11: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

Introduction

Limitations of IV estimation

βIV =(ZTX

)−1ZTy

Z must have the same number of columns as X for thisoperation to be feasible

in IV, there must be as many instrumental variables as

regressors (some of which can instrumentalise themselves)

what are Z?

uncorrelated with ε, correlated with Xno reason to assume that there is a limited number of suchvariables

Andrzej Torój

(7) GMM 6/ 19

Page 12: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

Introduction

Limitations of IV estimation

βIV =(ZTX

)−1ZTy

Z must have the same number of columns as X for thisoperation to be feasible

in IV, there must be as many instrumental variables as

regressors (some of which can instrumentalise themselves)

what are Z?

uncorrelated with ε, correlated with Xno reason to assume that there is a limited number of suchvariables

Andrzej Torój

(7) GMM 6/ 19

Page 13: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

Outline

1 Introduction

2 GMM estimator

3 Application: Gali&Gertler's hybrid Phillips curve (1999)

Andrzej Torój

(7) GMM 7/ 19

Page 14: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

GMM

Generalized Method of Moments

So let's take yet another perspective...

OLS minimises the quadratic form[XTε (β)

]T [XTε (β)

]wrt. βk×1

(down to zero!)

IV minimises the quadratic form[ZTε (β)

]T [ZTε (β)

]wrt. βk×1

with Zk×T (down to zero!)

IV cannot minimise the quadratic form(ZTε

)T (ZTε

)wrt. βk×1

with Zl×T down to zero, i.e. it is impossible toperfectly full all the moment conditionscannot solve l equations (moment conditions) for k < lunknowns

...so take quadratic form(ZTε

)TW

(ZTε

)instead!: Wl×l

weigh the squared dierences between left-hand and right-handside and minimise the sum!

Andrzej Torój

(7) GMM 8/ 19

Page 15: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

GMM

Generalized Method of Moments

So let's take yet another perspective...

OLS minimises the quadratic form[XTε (β)

]T [XTε (β)

]wrt. βk×1

(down to zero!)

IV minimises the quadratic form[ZTε (β)

]T [ZTε (β)

]wrt. βk×1

with Zk×T (down to zero!)

IV cannot minimise the quadratic form(ZTε

)T (ZTε

)wrt. βk×1

with Zl×T down to zero, i.e. it is impossible toperfectly full all the moment conditionscannot solve l equations (moment conditions) for k < lunknowns

...so take quadratic form(ZTε

)TW

(ZTε

)instead!: Wl×l

weigh the squared dierences between left-hand and right-handside and minimise the sum!

Andrzej Torój

(7) GMM 8/ 19

Page 16: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

GMM

Generalized Method of Moments

So let's take yet another perspective...

OLS minimises the quadratic form[XTε (β)

]T [XTε (β)

]wrt. βk×1

(down to zero!)

IV minimises the quadratic form[ZTε (β)

]T [ZTε (β)

]wrt. βk×1

with Zk×T (down to zero!)

IV cannot minimise the quadratic form(ZTε

)T (ZTε

)wrt. βk×1

with Zl×T down to zero, i.e. it is impossible toperfectly full all the moment conditionscannot solve l equations (moment conditions) for k < lunknowns

...so take quadratic form(ZTε

)TW

(ZTε

)instead!: Wl×l

weigh the squared dierences between left-hand and right-handside and minimise the sum!

Andrzej Torój

(7) GMM 8/ 19

Page 17: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

GMM

Generalized Method of Moments

So let's take yet another perspective...

OLS minimises the quadratic form[XTε (β)

]T [XTε (β)

]wrt. βk×1

(down to zero!)

IV minimises the quadratic form[ZTε (β)

]T [ZTε (β)

]wrt. βk×1

with Zk×T (down to zero!)

IV cannot minimise the quadratic form(ZTε

)T (ZTε

)wrt. βk×1

with Zl×T down to zero, i.e. it is impossible toperfectly full all the moment conditionscannot solve l equations (moment conditions) for k < lunknowns

...so take quadratic form(ZTε

)TW

(ZTε

)instead!: Wl×l

weigh the squared dierences between left-hand and right-handside and minimise the sum!

Andrzej Torój

(7) GMM 8/ 19

Page 18: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

GMM

How to obtainW?

in general: any symmetric, positive-denite matrix sized l × l

according to Hansen (1982), you should assign the lowest

weights to the moment conditions with lowest precision of

estimation, which implies

V = 1

T ZTΩZ

with Ω variance-covariance matrix of the estimator

under white noise: Ω = σ2Iunder non-spherical disturbances White or Newey-Westversions (see: serial correlation / heteroskedasticity lectures)

Andrzej Torój

(7) GMM 9/ 19

Page 19: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

GMM

GMM as iterative procedure

ε unknown in advance!

1 estimate under the assumption of white noise2 calculate the residuals3 update W

various implementations of this algorithm in the software (i.a.

as a two-step or iterative estimator cf. GLS)

Andrzej Torój

(7) GMM 10 / 19

Page 20: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

GMM

Derivation of GMM estimator (1)

Let us minimise the quadratic form with respect to β:

εTZWZTε = (y − βX)T ZWZT (y − βX) == yTZWZTy − yTZWZTXβ

−βTX

TZWZTy + βTXTZWZTXβ→ min

From matrix calculus:

∂xTAx∂x = xT

(AT + A

)∂xTa∂x = aT

Compute the derivative and set it equal to 0.

Andrzej Torój

(7) GMM 11 / 19

Page 21: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

GMM

Derivation of GMM estimator (2)

−yTZWZTX− yTZWZTX+βT

(XTZWZTX+ XTZWZTX

)= 0

βT(XTZWZTX

)= yTZWZTX(

XTZWZTX)β = XTZWZTy

βGMM

=(XTZWZTX

)−1XTZWZTy

Nonlinear GMM:

you can also (numerically) minimise the quadratic form for a

nonlinear model;

it is advisable to write the moment conditions as close to linear

as possible.

Andrzej Torój

(7) GMM 12 / 19

Page 22: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

GMM

Derivation of GMM estimator (2)

−yTZWZTX− yTZWZTX+βT

(XTZWZTX+ XTZWZTX

)= 0

βT(XTZWZTX

)= yTZWZTX(

XTZWZTX)β = XTZWZTy

βGMM

=(XTZWZTX

)−1XTZWZTy

Nonlinear GMM:

you can also (numerically) minimise the quadratic form for a

nonlinear model;

it is advisable to write the moment conditions as close to linear

as possible.

Andrzej Torój

(7) GMM 12 / 19

Page 23: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

GMM

Derivation of GMM estimator (2)

−yTZWZTX− yTZWZTX+βT

(XTZWZTX+ XTZWZTX

)= 0

βT(XTZWZTX

)= yTZWZTX(

XTZWZTX)β = XTZWZTy

βGMM

=(XTZWZTX

)−1XTZWZTy

Nonlinear GMM:

you can also (numerically) minimise the quadratic form for a

nonlinear model;

it is advisable to write the moment conditions as close to linear

as possible.

Andrzej Torój

(7) GMM 12 / 19

Page 24: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

GMM

Derivation of GMM estimator (2)

−yTZWZTX− yTZWZTX+βT

(XTZWZTX+ XTZWZTX

)= 0

βT(XTZWZTX

)= yTZWZTX(

XTZWZTX)β = XTZWZTy

βGMM

=(XTZWZTX

)−1XTZWZTy

Nonlinear GMM:

you can also (numerically) minimise the quadratic form for a

nonlinear model;

it is advisable to write the moment conditions as close to linear

as possible.

Andrzej Torój

(7) GMM 12 / 19

Page 25: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

GMM

Derivation of GMM estimator (2)

−yTZWZTX− yTZWZTX+βT

(XTZWZTX+ XTZWZTX

)= 0

βT(XTZWZTX

)= yTZWZTX(

XTZWZTX)β = XTZWZTy

βGMM

=(XTZWZTX

)−1XTZWZTy

Nonlinear GMM:

you can also (numerically) minimise the quadratic form for a

nonlinear model;

it is advisable to write the moment conditions as close to linear

as possible.

Andrzej Torój

(7) GMM 12 / 19

Page 26: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

GMM

GMM: special cases

1 ZT×k , XT×k

βGMM

=(XTZWZTX

)−1XTZWZTy =(

ZTX)−1

W−1(XTZ

)−1XTZWZTy =

(ZTX

)−1ZTy = β

IV

2 Z = XβGMM

=(XTXWXTX

)−1XTXWXTy =(

XTX)−1

W−1(XTX

)−1XTXWXTy =

(XTX

)−1XTy =

βOLS

Andrzej Torój

(7) GMM 13 / 19

Page 27: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

GMM

GMM: special cases

1 ZT×k , XT×k

βGMM

=(XTZWZTX

)−1XTZWZTy =(

ZTX)−1

W−1(XTZ

)−1XTZWZTy =

(ZTX

)−1ZTy = β

IV

2 Z = XβGMM

=(XTXWXTX

)−1XTXWXTy =(

XTX)−1

W−1(XTX

)−1XTXWXTy =

(XTX

)−1XTy =

βOLS

Andrzej Torój

(7) GMM 13 / 19

Page 28: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

GMM

Variance-covariance of GMM estimator

GMM estimator: consistent, asymptotically normally

distributed

asymptotic variance-covariance estimator in a linear model:

Var(βGMM

)= 1

T

[1

T

(XTZ

)W−1 1

T

(ZTX

)]−1

Andrzej Torój

(7) GMM 14 / 19

Page 29: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

GMM

J statistic

the non-zero value of the minimised quadratic form is

interpretable

how far are we from fullling the (excessive) orthogonalityconditions?the lower the value, the lower the distance to perfectfullment of excessive conditions

divided by T , it is χ2-distributed with degrees of freedom

equal to l − k (instruments in excess of parameters)

J-test of orthogonality

J(β, Ω

−1)= 1

T ε(β)T

ZΩ−1ZTε

(β)

H0 : all orthogonality conditions fullled

H1 : some orthogonality conditions not fullled

Andrzej Torój

(7) GMM 15 / 19

Page 30: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

Outline

1 Introduction

2 GMM estimator

3 Application: Gali&Gertler's hybrid Phillips curve (1999)

Andrzej Torój

(7) GMM 16 / 19

Page 31: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

Gali&Gertler (1999)

Hybrid Phillips curve

Gali, Gertler (1999):πt = γbπt−1 + γf Etπt+1 + λmct + εtwhere πt ination rate, mct real marginal cost, εt error

term.

Why GMM?

there is an unobservable variable on the right-hand side, Etπt+1

we can just replace it with observable πt+1 = Etπt+1 + vt+1,where vt expectations errorπt = γbπt−1 + γf πt+1 (vt+1) + λmct + εt

but vt+1 clearly not independent from εt inconsistency!

Andrzej Torój

(7) GMM 17 / 19

Page 32: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

Gali&Gertler (1999)

Hybrid Phillips curve

Gali, Gertler (1999):πt = γbπt−1 + γf Etπt+1 + λmct + εtwhere πt ination rate, mct real marginal cost, εt error

term.

Why GMM?

there is an unobservable variable on the right-hand side, Etπt+1

we can just replace it with observable πt+1 = Etπt+1 + vt+1,where vt expectations errorπt = γbπt−1 + γf πt+1 (vt+1) + λmct + εt

but vt+1 clearly not independent from εt inconsistency!

Andrzej Torój

(7) GMM 17 / 19

Page 33: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

Gali&Gertler (1999)

Orthogonality conditions

Et [εtzt ] = Et [(πt − γbπt−1 − γf Etπt+1 − λmct) zt ] =Et [(πt − γbπt−1 − γf πt+1 − λmct) zt ] = 0

the expected value on the orthogonality condition allows todrop the expected value on πt+1

in this context, we interpret the instrument set Z as variablesthat allow to forecast ination one period ahead withoutsystematic errors

there should be more than 3 instruments to use GMM here

Andrzej Torój

(7) GMM 18 / 19

Page 34: Lecture 7: Generalised Method of Momentsweb.sgh.waw.pl › ~atoroj › econometric_methods › lecture_7_gmm.pdf · Generalized Method of Moments So let's take yet another perspective...

Introduction GMM estimator Example: Gali&Gertler (1999)

Gali&Gertler (1999)

Example

(Imperfect) replication of Gali-Gertler results:

Read the paper by Gali and Gertler.

Consider the following set of variables as linearone-period-ahead predictors:

ination (4 lags), log real ULC (1 lag), output gap (1 lag),short- vs long-term interest rate spread (1 lag),log-dierences of wage index (1 lag), log-dierences ofcommodity price index (1 lag)

Dene the instruments and the initial weight matrix W.

Estimate the model. Discuss the results. Do they conrm

Your intuition? If not, look for the (economic) solution in

the article.

Andrzej Torój

(7) GMM 19 / 19