Lecture 6 MOS Logic Styles

21
EE241 1 UC Berkeley EE241 J. Rabaey, B. Nikoli EE241 - Spring 2003 Advanced Digital Integrated Circuits Lecture 6 MOS Logic Styles UC Berkeley EE241 J. Rabaey, B. Nikoli Reading Chapter 7 in the text by K. Bernstein Background material from Rabaey References » [Rabaey 03] J.M. Rabaey “Digital Integrated Circuits: A Design Perspective,” Prentice Hall 2003. » [Bernstein 98] K. Bernstein et al, “High-Speed CMOS Design Styles,” Kluwer 1998. » [Oklobdzija99] V.G. Oklobdzija, “High- Performance Systems: Circuits and Logic,” IEEE Press 1999.

Transcript of Lecture 6 MOS Logic Styles

EE241

1

UC Berkeley EE241 J. Rabaey, B. Nikolić

EE241 - Spring 2003Advanced Digital Integrated Circuits

Lecture 6MOS Logic Styles

UC Berkeley EE241 J. Rabaey, B. Nikolić

Reading� Chapter 7 in the text by K. Bernstein

� Background material from Rabaey

� References» [Rabaey 03] J.M. Rabaey “Digital Integrated

Circuits: A Design Perspective,” Prentice Hall2003.

» [Bernstein 98] K. Bernstein et al, “High-SpeedCMOS Design Styles,” Kluwer 1998.

» [Oklobdzija99] V.G. Oklobdzija, “High-Performance Systems: Circuits and Logic,” IEEEPress 1999.

EE241

2

UC Berkeley EE241 J. Rabaey, B. Nikolić

CMOS Logic Styles

� CMOS tradeoffs:» Speed» Power (energy)» Area

� Design tradeoffs» Robustness, scalability

» Design time

� Many styles: don’t try to remember thenames – remember the principles

UC Berkeley EE241 J. Rabaey, B. Nikolić

CMOS Logic Styles

PUN

PDN

ABC

OUT

VDD

GND

ABC

Complementary

robustscales

large and slow

LOGICNETWORK

ABC

OUT

Pass Transistor Logic

simple and fastnot always very efficientversatile

EE241

3

UC Berkeley EE241 J. Rabaey, B. Nikolić

CMOS Logic Styles

LOAD

ABC PDN

OUT

GND

GND

VDD

Ratioed Logic

small & faststatic power

RPDN <<RLOAD

VDD

PDN

φ

In1In2In3

Out

φ

CL

Dynamic Logic

Small & fastest!Noise issuesScales?

UC Berkeley EE241 J. Rabaey, B. Nikolić

Static CMOS

VDD

VSS

PUN

PDN

In1

In2

In3

F = G

In1

In2

In3

PMOS Only

NMOS Only

Complementary CMOS

EE241

4

UC Berkeley EE241 J. Rabaey, B. Nikolić

Complementary CMOS� Very robust, full swing, high noise margins

» But … high noise generation

� Fast to design, can synthesize� Implements all logic functions� No static power� Among other properties:

» Different pull-up and pull-down delays» Delay dependence on history» Crowbar current» Input capacitance consists of both P and N» Fast NAND, NOR, slow MUX, XOR

UC Berkeley EE241 J. Rabaey, B. Nikolić

Complementary CMOS

Courtesy of IEEE Press, New York. 2000

EE241

5

UC Berkeley EE241 J. Rabaey, B. Nikolić

Transfer Function and NoiseMargin

Courtesy of IEEE Press, New York. 2000

UC Berkeley EE241 J. Rabaey, B. Nikolić

VTC of Complementary CMOS Gates

0.0 1.0

Vin, V

V

o ut

, V

2.0 3.00.0

1.0

2.0

3.0

A � 1, B �

A � B � 0→1

B � 1, A �

int

B

VDD

A

M3 M4A

B

F

M2

M1

0→1

0→1

EE241

6

UC Berkeley EE241 J. Rabaey, B. Nikolić

Body Effect

UC Berkeley EE241 J. Rabaey, B. Nikolić

Delay Dependence on Input Patterns

-0.5

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400

A=B=1→0

A=1, B=1→0

A=1 →0, B=1

time [ps]

Vol

tage

[V]

81A= 1→0, B=1

80A=1, B=1→0

45A=B=1→0

61A= 0→1, B=1

64A=1, B=0→1

67A=B=0→1

Delay(psec)

Input DataPattern

NMOS = 0.5µm/0.25 µmPMOS = 0.75µm/0.25 µmCL = 100 fF

EE241

7

UC Berkeley EE241 J. Rabaey, B. Nikolić

Propagation Delays

tpHL

tpLH

tp

UC Berkeley EE241 J. Rabaey, B. Nikolić

Pulsed Static CMOSRH – Reset highRL – Reset low

Fast pull-up Fast pull-down

Chen, Ditlow, US Pat. 5,495,188 Feb. 1996.

Bring circuit in known state before transition

EE241

8

UC Berkeley EE241 J. Rabaey, B. Nikolić

PS-CMOS� Advantages:

» No dynamic nodes – good noise immunity» High static performance (monotonic)» No data dependent delay (worst case gets better)» No false transitions (monotonic)» Smaller clock load than dynamic

� Disadvantages» Width of reset wave limits logic depth and clock

speed» Restricted connectivity» Complex clocking

UC Berkeley EE241 J. Rabaey, B. Nikolić

PS-CMOS

Evaluation and reset waves: reset is 1.5x slower

EE241

9

UC Berkeley EE241 J. Rabaey, B. Nikolić

Skewing Gates� Different rising and falling delays

2W

2W

4W

W

Good for H-to-L transition Good for L-to-H transition

UC Berkeley EE241 J. Rabaey, B. Nikolić

Ratioed Logic

VDD

VSS

PDNIn1In2In3

F

RLLoad

VDD

VSS

In1In2In3

F

VDD

VSS

PDNIn1In2In3

F

VSS

PDN

Resistive DepletionLoad

PMOSLoad

(a) resistive load (b) depletion load NMOS (c) pseudo-NMOS

VT < 0

Goal: to reduce the number of devices over complementary CMOS

EE241

10

UC Berkeley EE241 J. Rabaey, B. Nikolić

Pseudo-NMOS

0.0 0.5 1.0 1.5 2.0 2.50.0

0.5

1.0

1.5

2.0

2.5

3.0

Vin, V

Vo

ut,

V

W/Lp = 4

W/Lp = 2

W/Lp = 1

W/Lp = .25

W/Lp = 0.5

VDD

In1In2In3

F

PMOSload

PDN

Trade-off between performance and power + noise margins

UC Berkeley EE241 J. Rabaey, B. Nikolić

Differential Logic

EE241

11

UC Berkeley EE241 J. Rabaey, B. Nikolić

Differential Logic� Differential Cascode Voltage Switch (DCVS)

� Differential Split-Level (DSL)

� Cascode Non-Threshold Logic (CNTL)

� Regenerative Push-Pull Cascode Logic(PPCL)

� Pass transistor logic families

� Dynamic logic families

UC Berkeley EE241 J. Rabaey, B. Nikolić

Differential Logic+ implicit invert, higher logic density

EE241

12

UC Berkeley EE241 J. Rabaey, B. Nikolić

Cascode Voltage Switch LogicVDD

VSS

PDN1

Out

VDD

VSS

PDN2

Out

AABB

M1 M2

Cascode Voltage Switch Logic (CVSL)

Sometimes called Differential Cascode Voltage Switch Logic (DCVSL)

UC Berkeley EE241 J. Rabaey, B. Nikolić

CVSL

A

B

M1

M2

A B

0 0.2 0.4 0.6 0.8 1.0-0.5

0.5

1.5

2.5

Time, ns

Vol

tage

,V

Out

Out

A,BA,BM3 M4

OutOut

VDD - Vth

Fast (but hysteresis due to latch function)No static power dissipationBUT: large cross-over current!

EE241

13

UC Berkeley EE241 J. Rabaey, B. Nikolić

CVSL

Full adder design

How to design for reduced transistor count?

UC Berkeley EE241 J. Rabaey, B. Nikolić

Karnaugh Map Technique

EE241

14

UC Berkeley EE241 J. Rabaey, B. Nikolić

Karnaugh Map Technique

0

1

00 01 11 10x1

x2x3

0

0

0 01

1 1 1

Build sharedcubes first!

Add othercubes next

LOAD

x1

x3

x1

x3

x2 x2

Q Q

LOAD

x1

x3

x1

x3

x2 x2

Q Q

x1x2

UC Berkeley EE241 J. Rabaey, B. Nikolić

Example

Q = x1x2x3x4 + x1(x2+x3+x4)

EE241

15

UC Berkeley EE241 J. Rabaey, B. Nikolić

Using Ordered BDDs

BDD = Binary Decision Diagrams

UC Berkeley EE241 J. Rabaey, B. Nikolić

Push-Pull Cascode Logic

Gieseke et al, U.S. Patent 5,023,480 June 1991.

EE241

16

UC Berkeley EE241 J. Rabaey, B. Nikolić

DSL Differential Split-Level Logic

UC Berkeley EE241 J. Rabaey, B. Nikolić

But … Consumes Static Power

EE241

17

UC Berkeley EE241 J. Rabaey, B. Nikolić

Simulation Results for Different Adders

UC Berkeley EE241 J. Rabaey, B. Nikolić

Cascode Non-Threshold Logic

Use negative feedbackto limit LOHCapacitors used fordecoupling

EE241

18

UC Berkeley EE241 J. Rabaey, B. Nikolić

Optimizing the Intrinsic RC-Delay

UC Berkeley EE241 J. Rabaey, B. Nikolić

Progressive Sizing

EE241

19

UC Berkeley EE241 J. Rabaey, B. Nikolić

Uniform versus Progressive Sizing

Uniform

kn-1

kn-1

N

Non-uniform

1

k

k2

kn-1

UC Berkeley EE241 J. Rabaey, B. Nikolić

Sizing Models

EE241

20

UC Berkeley EE241 J. Rabaey, B. Nikolić

Case Study

UC Berkeley EE241 J. Rabaey, B. Nikolić

Example: Progressive Scaling ofNMOS Devices in DOMINO CMOS

EE241

21

UC Berkeley EE241 J. Rabaey, B. Nikolić

What if External Capacitance isDominant?

Divide and Conquer!