Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time...

38
Lecture 3 : ultracold Fermi Gases The ideal Fermi gas: a reminder Interacting Fermions BCS theory in a nutshell The BCS-BEC crossover and quantum simulation

Transcript of Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time...

Page 1: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Lecture 3 : ultracold Fermi GasesLecture 3 : ultracold Fermi Gases

The ideal Fermi gas: a reminder

Interacting Fermions

BCS theory in a nutshell

The BCS-BEC crossover and quantum simulation

Page 2: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

k/kF1

n(k)

1

k/kF1

n(k)

1

Many-Body Physics with Cold GasesMany-Body Physics with Cold GasesDiluteness: atom-atom interactions described by 2-body (and 3 body) physics. At low energy: a single parameter,the scattering length a

Control of the sign and magnitude of interactionControl of trapping parameters: access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3DSimplicity of detectionComparison with quantum Many-Body theories:Gross-Pitaevskii, Bose and Fermi Hubbard models,search for exotic phases, dipolar gasesdisorder effects, Anderson localization, …

Link with condensed matter (high Tc superconductors), astrophysics (neutron stars), Nuclear physics, high energy physics (quark-gluon plasma),

Quantum simulation with cold atoms « a la Feynman »

Sherson et al., MPQ 2010

Page 3: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

p

E(p)

EF

Zero temperature Fermi sea:

2 2F

F B F2kE k Tm

2 1/3 1(6 ) ~ (particle distance)Fk n

Approximation valid as long as T<<TF

Fermi pressure: 3/ 2

5/ 22 2

1 215 F

m E

The ideal Fermi gas: a reminderThe ideal Fermi gas: a reminder

Page 4: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Electrons in metal Ultra cold atoms

Density 1030 /m3 1020 /m3

Mass 10-30 kg 10-26 kg

Fermi temperature 104 K 1µK

T/TF <10-5 ~ 10-2

Lifetime Infinite ~10s

Size 1cm 10 µm

Particle number 1024 105

Electrons vs cold atomsElectrons vs cold atoms

Page 5: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Collision between two atoms. Effective potential in the l-wave:

At low temperature, atoms cannot cross the centrifugalbarrier: only s-wave collisions.Symmetrization for identical particles: even l-wave collisions forbidden for polarized fermions.

2

eff 2

( 1)( ) ( )2

V r V rmr

Interatomic potential(long range~-1/r6)

centrifugal potential

l=0

l >0

Pauli Exclusion Principle and evaporative cooling of ultra-cold Fermi gases

Pauli Exclusion Principle and evaporative cooling of ultra-cold Fermi gases

Page 6: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Spin mixture (s-wave)

Spin po

larize

d (p-wav

e)

Use spin mixtures or several atomic species (eg 6Li-7Li, K-Rb, different spin states…)

B. DeMarco, J. L. Bohn, J.P. Burke, Jr., M. Holland, and D.S. Jin, Phys. Rev. Lett. 82, 4208 (1999).

Suppression of elastic collisions in a spin polarized Fermi gas

Suppression of elastic collisions in a spin polarized Fermi gas

Page 7: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Bose-Einstein statistics (1924)

Bose-Einstein condensate

Bose enhancement

(0.83 N)1/3= T C kB

h

Quantum gases in harmonic trapsQuantum gases in harmonic traps

Dilute gases: 1995, JILA, MIT

Fermi-Dirac statistics (1926)

EF

Fermi sea

Pauli Exclusion

T << T = (6 N)F 1/3

kB

h

Dilute gases: 1999, JILA

Page 8: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

in situ: cloud size

Absorption imagingAbsorption imaging

Page 9: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Bose-Einstein condensate and Fermi seaBoseBose--Einstein Einstein condensatecondensate and Fermi and Fermi seasea

104 Li 7 atoms, in thermal equilibrium with104 Li 6 atoms in a Fermi sea.

Quantum degeneracy: T= 0.28 K = 0.2(1) TC = 0.2 TFNow: T=0.03 TF

Lithium 7

Lithium 6

2001ENS

Page 10: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

T/TF <0.05Atom number~105

Fermi-Dirac

Gaussian Fit

The non-interacting Fermi gasThe non-interacting Fermi gas

Page 11: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Quantum simulation of strongly interacting Fermions

Quantum simulation of strongly interacting Fermions

Page 12: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Bose Einstein condensates Superconductivity and helium 3

Quantum fluidsQuantum fluids

4He

Dilute gas BEC

High Tc and 3He

Page 13: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

BEC of strongly bound fermionsBEC of strongly bound fermions

Connecting the two regimes ?Theory since 80’: Leggett, Randéria, Nozières,Schmidt-Rink, Holland, Kokkelmans, Levin, Ohashi, Griffin, Strinati, Falco, Stoof, Bruun, Pethick, Combescot, Giorgini….

Page 14: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

intermediate regimeintermediate regime

Near Feshbach resonance, interactions in cold Fermi gas can be enhanced

Tc ~TF /5

Page 15: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Fermions with two spin states with attractive interaction

Fermions with two spin states with attractive interaction

BEC of molecules BCS fermionic superfluid

Dilute gases: Feshbach resonance

Interaction strengthBound state No bound state

akFc

FeTT 2/

Page 16: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Cooper PairingCooper Pairing

Bardeen, Cooper, Schrieffer, 1957

100 years of supraconductivity.

Naive interpretation: Take a homogeneous T=0 Fermi gas, kF , EF

Add two fermions, 1 et 2, which display attractive interaction < 0

avec V < 0Then these particles will always form at state with an energy lower than EF , a bound state.

Pairs at Fermi surface:

These pairs form a superfluid phase

1 2 1 2( ) ( )V r r V r r

,k k

| | Fk k

2 | |0.3 Fk aBCS FT T e

1Fk a

a

Page 17: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

3 3 30

3 30 b

ˆ ˆ ˆ ˆ ˆ ˆ ˆd ( ) ( ) d d ' ( ) ( ') ( ') ( ') ( )

ˆ ˆ ˆ ˆ ˆ ˆd ( ) ( ) d ( ) ( ) ( ) ( )

H h V

h g

r r r r r r r r r r r

r r r r r r r r

In momentum space:

2

0 2h

m

Many-body hamiltonian:

.

,3ˆ ˆ( )

i

k

er aL

k r

k

b' '3

, ',

ˆ ˆ ˆ ˆ ˆ ˆ ˆk

gH a a a a a aL

k k k k q k q k k

k k q

2 2

2kkm

Mean-field Theory (BCS) at T=0Mean-field Theory (BCS) at T=0Bardeen, Cooper, Schrieffer, 1957

Page 18: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Assumption: zero momentum for BCS pairs:ˆ ˆa a k k k

~ order parameter for a gas of bosonic molecules with zero center of mass momentum.

BCS order parameter

*ˆ ˆ ˆ ˆ ˆ ˆ ˆcte ...k

H a a a a a a

k k k k k k k

k k

b b3 3 ˆ ˆg g a a

L L k k k

k k

Mean-field Theory (2)Mean-field Theory (2)

Search for a solution in the form:/ 2

† † |N

N k k kk

N c a a vac

k kc c Fourier components of spatial function ( )i jr r

Page 19: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Gap equationsGap equations

In the ground state, no excitation of the Bogoliubov modes

Ek

xk

|D|

Excitation GapExcitation GapExcitation Gap

2 2| |E k k

2 2

2kkm

BCS wavefunction: † †| (| | | | ) |iBCS k k k k

k

u v e a a vac 2 2| | | | 1k ku v

Page 20: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

BCS phasecondensate of molecules

BEC-BCSCrossover

0,0 0,5 1,0 1,5 2,0

-200

-100

0

100

200sc

atte

ring

leng

th [n

m]

Magnetic field [kG]

No bound stateBound state

2

2

maEB

Tuning interactions in Fermi gases Lithium 6

TuningTuning interactions in Fermi interactions in Fermi gasesgases Lithium 6Lithium 6

a>0

a<0

Page 21: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

The Equation of State of a Fermi Gas with Tunable Interactions

The Equation of State of a Fermi Gas with Tunable Interactions

Cold atoms, Spin ½Dilute gas : 1014 at/cm3, T=100nK

BEC-BCS crossoverSpin imbalance, exotic phases

Neutron star, Spin ½a = -18.6 fm, n~2 1036cm-3

•Tc =1010 K , T=TF /100 • kF a ~ -4,-10,…• kF re <<1

Page 22: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Experimental sequenceExperimental sequence

- Loading of 6Li in the optical trap

- Tune magnetic field to Feshbach resonance- Evaporation of 6Li

- Image of 6Li in-situ

Page 23: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Suppression of vibrational relaxation for fermionsSuppression of Suppression of vibrationalvibrational relaxation for fermionsrelaxation for fermions

W(r)W(r)

rr

66 /C r

a

eR

aRe

Pauli exclusion principleInhibition by factor (a/Re )2 >>1

Binding energy: EB = h2/ma2

Momentum of each atom: h/a

G~ 1/as

with s = 2.55 for dimer-dimer coll.3.33 for dimer-atom coll.

D. Petrov, C. Salomon, G. Shlyapnikov, ‘04

EB

Page 24: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Unitary Fermi Gas : Unitary Fermi Gas :

Pixels

Optical Density

(a.u)

a

Page 25: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Rotating classical gasvelocity field of a rigid body

Rotating a quantum macroscopic object

macroscopic wave function:

In a place where

, irrotational

velocity field:

The only possibility to generate a non-trivial rotating motion is to nucleate quantized vortices (points in 2D or lines in 3D) with quantized circulation around vortex core. Feynman, Onsager

Direct proof of superfluidity: classical vs. quantum rotation Direct proof of superfluidity:

classical vs. quantum rotation

Vortices now all have the same sign, imposed by the external rotation

to keep single-valued

Page 26: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

-1

0

1

834.15650

MIT 2005: Vortex lattices in the BEC-BCS Crossover

[G]Magnetic Field

Energy [MHz]

M. ZwierleinA. . SchirotzekC. StanC. SchunkP. ZarthW. KetterleScience 05

Direct proof of superfluidity

BEC side BCS side

Page 27: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Direct proof of superfluidityDirect proof of superfluidity

MIT 2006Critical SF temperature = 0.19 TF

Page 28: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Theory: Combescot, Kagan and Stringari.Experiment: MIT, 2008.

Landau criterion: dissipation for V>wk /k

Superflow in fermionic superfluidsSuperflow in fermionic superfluids

Page 29: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

strongly interacting Fermions thermodynamic properties

strongly interacting Fermions thermodynamic properties

Page 30: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

k/kF1

n(k)

1

k/kF1

n(k)

1

ThermodynamicsThermodynamics

Is a useful but incomplete equation of state !

Complete information is given by thermodynamic potentials:

TNkPV B

NTSEPV Grand potential

EntropyPressure Temperature

Atom numberChemical potential

Volume

Internal energyWe have measured the grand potential of a tunable Fermi gas

S. Nascimbène et al., Nature, 463, 1057, (2010), arxiv 0911.0747N. Navon et al., Science 328, 729 (2010)S. Nascimbène et al., NJP (2010)S. Nascimbène et al., arXiv 1012.4664: normal phase, to appear PRL 2011M. Horikoshi et al., Science, 327, 442 (2010)

Page 31: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

The ENS Fermi Gas TeamThe ENS Fermi Gas Team

S. Nascimbène, N. Navon, F. Chevy,K. Gunther, B. Rem, A. Grier, I Ferrier-barbut,

U. Eismann, K. Magalhães, K. Jiang

A. Ridinger, T. Salez, S. Chaudhuri, D. Wilkowski, F. Chevy, F. Werner,Y. Castin, M. Antezza, D. Fernandes

Theory collaborators: D. Petrov, G. Shlyapnikov , D. Papoular, J. Dalibard, R. Combescot, C. MoraC. Lobo, S. Stringari, I. Carusotto,L. Dao, O. Parcollet, C. Kollath, J.S. Bernier, L. De Leo, M. Köhl, A. Georges

Page 32: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

• Gibbs –Duhem relation:

• Density:

• Entropy density:

• Free energy in canonical ensemble:

• Isothermal Compressibility:

• Specific heat:

• Legendre transform between grand canonical and canonical variables

Pn

Useful thermodynamic quantitiesUseful thermodynamic quantities

/ PS VT

2

2,

1/ TT N

FVV

VdP SdT Nd

( , , )F T VPV

2

2,

VN V

FC TT

Page 33: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Thermodynamics of a Fermi gasThermodynamics of a Fermi gas

Variables : scattering length atemperature Tchemical potential µ

We build the dimensionless parameters :

The Equation of State of a uniform Fermi gas can be written as:

Interaction parameter

Fugacity (inverse)

Canonical analogs

Pressure contains all the thermodynamic information

VaTPNTSEaT );,();,(

Page 34: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Local density approximation:gas locally homogeneous at

Measuring the EoS of the Homogeneous GasMeasuring the EoS of the Homogeneous Gas

Page 35: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Extraction of the pressure from in situ images

•doubly-integrated density profilesequation of state measured for all values of

Ho, T.L. & Zhou, Q.,Nature Physics, 09S. K Yip, 07

Measuring the EoS of the Homogeneous GasMeasuring the EoS of the Homogeneous Gas

Page 36: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

LDA: 0 2 2 2 2 21 1( , , ) ( )2 2r zx y z m x y m z

DerivationDerivation

dP SdT nd nd Integrating over x and y between 0 and +

2 2

0

( , ) ( , , ) ( )2 2

r rz

m mP T n x y z dxdy n z

Cylindrical symmetry

at constant temperatureGibbs-Duhem:

2

0

1( ) ( , , )22z rP m n x y z rdr

Directly relates the pressure at abscissa z to the doubly integrated absorption signal at z

Page 37: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Unitary Fermi GasUnitary Fermi Gas

Position /

Doubly integrated Density

a

S. Nascimbène et al., Nature, 463, 1057, (2010)

Pressure of thelocallyhomogeneous gas

Chemical potential z

Page 38: Lecture 3 : ultracold Fermi Gasesindico.ictp.it/event/a10186/material/2/10.pdf · access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D. Simplicity of detection.

Next lecture: measurement of the

Equation of State

Next lecture: measurement of the

Equation of State ( , )P T