Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated...

19
6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007 Contents: 1. Second-order and non-ideal effects Reading assignment: del Alamo, Ch. 9, §9.7 Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Transcript of Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated...

Page 1: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1

Lecture 28 - The ”Long”Metal-Oxide-Semiconductor Field-Effect

Transistor (cont.)

April 18, 2007

Contents:

1. Second-order and non-ideal effects

Reading assignment:

del Alamo, Ch. 9, §9.7

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Page 2: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-2

Key questions

• The potential of the inversion layer increases along the channel.

This should change the local threshold voltage. Does this affect

the I-V characteristics of the MOSFET?

• What happens to MOSFET I-V characteristics if we apply a bias

to the body with respect to the source?

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Page 3: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-3

1. Second-order and non-ideal effects in MOSFETs

Introduce four significant refinements to model:

• Body effect (impact of y-dependence of VT )

• Back bias (impact of VBS)

• Channel length modulation (impact of VDS > VDSsat)

• Subthreshold regime (channel conduction for VGS < VT )

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Page 4: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-4

� Body effect

In a MOSFET biased in linear or saturation regimes, channel voltage

V (y) depends on position:

voltage difference between channel and body V (y)⇒V ⇒ VT (y) (increases along y)

VDS

VDS<VDSsat

0

VBS=0 VGS-V(y)

VGS

no body effect VT

VGS-V(y)

VGS

with body effect VTo

Dependence of VT (y) further debiases transistor:

ID lower than ideal⇒

VDSsat lower than ideal ⇒

n+

n+

n+

p

S

G

D

B

VGS>VT

ID

y 0 L

inversion�

layer depletion�

region

0 L y

VDS

0 L y

local gate�

overdrive

VDS

0 L y

Vth(y)

local gate�

overdrive

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Page 5: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

� �

� �

� �

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-5

Voltage dependence of VT :

VT (V ) = VTo + γ( φsth + V − φsth)

VTo is VT for VSB = 0.

Charge control relation becomes:

Qi = −Cox(VGS−V −VT ) = −Cox[VGS−V −VTo−γ( φsth + V − φsth)]

Insert into current equation:

dV dV Ie = WµeQi

dy = −WµeCox[VGS−V −VTo−γ( φsth + V − φsth)]

dy

Integrate from y = 0 to y = L MOSFET current in linear regime: ⇒

W 1 2 ID = µeCox{(VGS−VTo+γ φsth− VDS)VDS− γ[(φsth+VDS)3/2 −(φsth)

3/2]}L 2 3

Note new terms multiplied by γ if γ 0, body effect 0. ⇒ → →

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Page 6: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

� �

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-6

To get VDSsat, look at Qi at y = L:

Qi(y = L) = −Cox[VGS−VDSsat−VTo−γ( φsth + VDSsat− φsth)] = 0

Solve for VDSsat:

� γ2 � 4

VDSsat = VGS − VTo + γ φsth − [�1 + (VGS − VFB) − 1] 2 γ2

MOSFET saturated current: plug VDssat into current equation in

linear regime:

W 1 IDsat = µeCox{(VGS − VTo + γ φsth − VDSsat)VDSsat

L 2

2−3 γ[(φsth + VDSsat)

3/2 − (φsth)3/2]}

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Page 7: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-7

Three noticeable features:

• for all values of VGS and VDS , body effect reduces ID

• for given VGS, body effect reduces VDSsat

• body effect goes away as transistor is turned off

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Page 8: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-8

Key observations for model simplification:

• VDSssat dependence on VGS remains roughly linear:

• IDsat dependence on VGS remains roughly quadratic:

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Page 9: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-9

Linearize dependence of VT on V (V � φsth):

� � γ VT (V ) = VTo + γ( φsth + V − φsth) � VTo +

2√

φsth V

Solve again differential equation to get MOSFET current in linear

regime:

W m ID � µeCox(VGS − VTo − VDS)VDS

L 2

with:

γ m = 1 + > 1

2√

φsth

VDSsat becomes:

1 VDSsat � (VGS − VTo)

m

Current in saturation regime:

W IDsat � µeCox(VGS − VTo)

2

2mL

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Page 10: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-10

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Page 11: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-11

m is body-effect coefficient (m > 1):

γ m = 1 +

2√

φsth

m has same dependences as γ:

xox γ m (less severe body effect) • ↓⇒ ↓⇒ ↓NA γ m (more severe body effect) • ↑⇒ ↑⇒ ↑

m and γ represent relative electrostatic influence of gate and body

on inversion layer; if γ = 0 m = 1 (negligible impact of body). →

In circuit CAD, m used as fitting parameter. Typically m ∼ 1.1−1.4.

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Page 12: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

� �

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-12

� Back bias

If bias applied to body with respect to source (VSB > 0):

VT shifts positive ⇒

for constant VGS and VDS, ID reduced ⇒

Model in absence of body effect just replace VT in first order model ⇒by:

VT (VSB) = VTo + γ( φsth + VSB − φsth)

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Page 13: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-13

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Page 14: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-14

I-V characteristics of n-channel MOSFET (L = 1.5 µm)

� Output characteristics (VGS = 0 − 3 V , ΔVGS = 0.5 V ):

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Page 15: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-15

� Transfer characteristics (VDS = 4 V ):

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Page 16: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-16

� Output characteristics vs. back bias (VSB = 0, 2 V ):

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Page 17: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-17

� Transfer characteristics vs. back bias (VDS = 4 V , VSB = 0−2 V ,

ΔVSB = 0.5 V ):

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Page 18: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-18

� Backgate output characteristics (VSB = 0 − 3 V in 0.5 V incre­

ments, VGS = 1.5 V ):

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Page 19: Lecture 28 - The ”Long” Metal-Oxide-Semiconductor Field ... · 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The ”Long” Metal-Oxide-Semiconductor

6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-19

Key conclusions

• ”Body effect” arises from spatial dependence of VT : local gate

overdrive reduced.

• Main consequences of body effect:

– ID lower than ideal,

– VDSsat lower than ideal.

• Simple formulation of body effect is fairly accurate:

W IDsat � µeCox(VGS − VTo)

2

2mL

with m ≥ 1.

• m captures relative electrostatic influence of gate and body (want

m 1). →• Application of back bias shifts VT positive and reduces ID.

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].