Lecture 8 MOS (Metal Oxide Semiconductor) Structures

19
1 Lecture 8 MOS (Metal Oxide Semiconductor) Structures In this lecture you will learn: • The fundamental set of equations governing the behavior of PMOS capacitors • Accumulation, Flatband, Depletion, and Inversion Regimes • Small signal models of the PMOS capacitor MOS (Metal Oxide Semiconductor Field Effect Transistors (FETs) 100 nm A 173 nm gate length MOS transistor (INTEL) GaAs (Substrate) Source AlGaAs Drain Gate InGaAs (Quantum Well) MOS FET High Electron Mobility FET 22 nm gate length MOS transistors (INTEL)

Transcript of Lecture 8 MOS (Metal Oxide Semiconductor) Structures

Page 1: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

1

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

Lecture 8

MOS (Metal Oxide Semiconductor) Structures

In this lecture you will learn:

• The fundamental set of equations governing the behavior of PMOS capacitors

• Accumulation, Flatband, Depletion, and Inversion Regimes

• Small signal models of the PMOS capacitor

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

MOS (Metal Oxide Semiconductor Field Effect Transistors (FETs)

100 nm

A 173 nm gate length MOS transistor (INTEL)

GaAs (Substrate)

Source

AlGaAs

DrainGate

InGaAs (Quantum Well)

MOS FET

High Electron Mobility FET

22 nm gate length MOS transistors (INTEL)

Page 2: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

2

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A P-MOS (or PMOS) Capacitor

SiO2

N-Si Substrate (or Bulk)

P+ Si Gate or Metal Gate

Gate metal contact

Metal contact

GBV

+

_

x

0x

Doping: Nd

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A PMOS Capacitor

x0oxt

SiO2 N-SiP+ Sior

MetalGate

Assumptions:

1) The potential in the metal gate isIf the gate is P+ Si then

2) The potential deep in the p-Si substrate is

3) The oxide (SiO2) is insulating (near zero conductivity; no free electrons and holes) and is completely free of any charges

4) There cannot be any volume charge density inside the metal gate (it is very conductive). But there can be a surface charge density on the surface of the metal gate

5) Dielectric constants:

MpM

p

oox 9.3 os 7.11

oxs

Doping: Nd

Page 3: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

3

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A PMOS Capacitor in Equilibrium

x0oxt

SiO2 N-SiGate

x0oxt

Potential Plot: x

n

M

Potential?

0GBV+ -

We need to find the potential in equilibrium everywhere

Doping: Nd

B

nMB

0BAssume:

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A PMOS Capacitor in Equilibrium: Depletion Region

x0oxt

SiO2 N-SiGate

0GBV+ -

Step 2: Depletion region is created in the substrate and a surface or sheet charge density on the metal gate

Step 1: Charges Flow

x0oxt

SiO2 N-SiGate

0GBV+ -

+ + + ++ + + ++ + + +

+++

+ + + ++ + + +

++

Negative surface charge density (C/cm2) Positive depletion charge density (C/cm3)

dox

dqNdodG xqNQ

Doping: Nd

Doping: Nd

Tunnel

Page 4: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

4

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A PMOS Capacitor in Equilibrium: Charge Densities

x0

oxt

Charge density plot:

dqN

dodG xqNQ

Depletion region charge density (C/cm3)

x0oxt

SiO2 N-SiGate

0GBV+ -

dox

dox

dodB xqNQ

Total charge per unit area in the semiconductor (C/cm2)

+ + + ++ + + ++ + + +

+++

+ + + ++ + + +

++

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

Electric field in the semiconductor:

A PMOS Capacitor in Equilibrium: Electric Field

dos

dx

doxs

d

s

x

xxqN

xE

xxEqN

dxdE

0

Linearly varying

x

0oxt dox

xE

x0oxt

SiO2 N-SiGate

0GBV+ -

dox

+ + + ++ + + ++ + + +

+++

+ + + ++ + + +

++

dos

dx x

qNxE

0

Page 5: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

5

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

Some ElectrostaticsConsider an interface between media of different dielectric constants:

1 2

1E

2E

Suppose you know , can you find ??? 1E

2E

Use the principle: The product of the dielectric constant and the normalcomponent of the electric field on both sides of an interface are related as follows:

IQEE 1122

• Note that is the electric field JUST to the left of the interface and is the electric field JUST to right of the interface

1E

2E

Interface sheet charge density

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

Electric field in the oxide:

A PMOS Capacitor in Equilibrium: Electric Field

ox

dodx

x

ox

x

xqNxE

xE

dxdE

constant

0

x

0oxt dox

xE

oxox

dod

s

dod

ox

ExqN

xE

xqNxE

xExEs

0

0

00

x0oxt

SiO2 N-SiGate

0GBV+ -

dox

+ + + ++ + + ++ + + +

+++

+ + + ++ + + +

++

Page 6: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

6

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A PMOS Capacitor in Equilibrium: Potential

22 do

s

dn

ndodos

dx

xxqN

x

xxxxqN

xEdx

xd

Potential in the semiconductor:

x0oxt

n

dox

x0oxt

SiO2 N-SiGate

0GBV+ -

dox

+ + + ++ + + ++ + + +

+++

+ + + ++ + + +

++

Start integrating the field – beginning from the substrate (bulk) – to find the potential

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A PMOS Capacitor in Equilibrium: Potential

xxqNxqN

x

xqNx

xqNxE

dxxd

ox

dod

s

dodn

s

dodn

ox

dodx

2

20

2

2Potential in the oxide:

x0oxt

n

dox

x0oxt

SiO2 N-SiGate

0GBV+ -

dox

+ + + ++ + + ++ + + +

+++

+ + + ++ + + +

++

Page 7: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

7

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A PMOS Capacitor in Equilibrium: Potential

Moxox

dod

s

dodnox t

xqNxqNtx

2

2Must have:

Therefore:

Bd

s

ox

s

ox

sdo qNCC

x

22

ox

oxox t

C

Oxide capacitance (per unit area)

nMB

x0oxt

SiO2 N-SiGate

0GBV+ -

dox

+ + + ++ + + ++ + + +

+++

+ + + ++ + + +

++

x0oxt

n

M

doxB

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A PMOS Capacitor in Equilibrium: Potential

s

dod

ox

dodB

SoxoxSoxB

xqN

C

xqN

VtEVV

2

2

ox

oxox t

C

Oxide capacitance (per unit area)

Potential drop in the oxide

Potential drop in the semiconductor

x0oxt

SiO2 N-SiGate

0GBV+ -

dox

+ + + ++ + + ++ + + +

+++

+ + + ++ + + +

++

x0oxt

n

M

doxB

nMB

ox

dodox

xqNE

Page 8: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

8

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased PMOS Capacitor: VGB > 0

x0oxt n

dx

All of the applied bias falls across the depletion region and the oxide

GBB V dox

s

dd

ox

ddGBB

xqNC

xqNV

2

2

B

Potential drop in the oxide

Potential drop in the semiconductor

x0oxt

SiO2 N-SiGate

0GBV+ -

dx

+ + + ++ + + ++ + + +

+++

+ + + ++ + + +

++

dox

oxs

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased PMOS Capacitor: VGB > 0

All of the applied bias falls across the depletion region and the oxide

GBBd

s

ox

s

ox

sd V

qNCCx

2

2

ox

daox

xqNE

The depletion region shrinks and the oxide field also decreases for VGB > 0

x0oxt

SiO2 N-SiGate

0GBV+ -

dx

+ + + ++ + + ++ + + +

+++

+ + + ++ + + +

++

dox

oxs

x0oxt n

dxGBB V dox

Page 9: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

9

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

x0oxt

SiO2 N-SiGate

0GBV+ -

A Biased PMOS Capacitor: Flatband Condition

oxs

x0oxtn

When VGB is sufficiently positive, the depletion region thickness shrinks to zeroThis value of VGB is called the flatband voltage VFB

nMBFB

FBBd

s

ox

s

ox

sd

V

VqNCC

x

0

22

Flatband voltage:

Potential in flatbandcondition:

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

x0oxt

SiO2

N-SiGate

FBGB VV + -

A Biased PMOS Capacitor: Accumulation (VGB > VFB)

oxs

x0oxt

n

Potential:

GBB V

x

0

oxt

FBGBoxN VVCQ

Total charge per unit area in the electron accumulation layer

FBGBoxG VVCQ

Charge accumulation (due to electrons) on the semiconductor surface

The entire potential drop for VGB > VFB falls across the oxide

Charge Density:

Page 10: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

10

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased PMOS Capacitor: Depletion (VGB < VFB)

s

dd

ox

ddFBGB

SoxGBB

xqN

C

xqNVV

VVV

2

2

Potential drop in the oxide

Potential drop in the semiconductor

The depletion region widens and the oxide field also increases for VGB < VFB

x0oxt

SiO2 N-SiGate

FBGB VV + -

dx

+ + + ++ + + ++ + + +

+++

+ + + ++ + + +

++

oxs

x0oxt n

dx

GBB V

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

ox

nsdsnsFBGB

s

dd

ox

ddFBGB

C

qNVV

xqN

C

xqNVV

2

2

2

A Biased PMOS Capacitor: Depletion (VGB < VFB)

s

ddnS

xqNx

20

2

x0oxt

SiO2 N-SiGate

FBGB VV + -

dx

+ + + ++ + + ++ + + +

+++

+ + + ++ + + +

++

oxs

x0oxt n

dx

GBB V

Page 11: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

11

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased PMOS Capacitor: Hole Density

• As VGB is decreased, S also decreases

• The hole density in the semiconductor depends on the potential as:

ox

nsdsnsFBGB C

qNVV

2

KTxq

dKTxq

KTq

iKT

xq

i

nnn

eNeenenxp

Hole density is the largest right at the surface of the semiconductor where the potential is the lowest

KTq

d

ns

eNxp

0

Sx 0

x0oxt n

dx

GBB V

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased PMOS Capacitor: Threshold Condition

GBB V

x

0oxt n

dx

nSx 0

• When VGB is decreased and the surface potential S reaches -n the positive hole charge density at the surface becomes comparable to the positive charge density in the depletion region and cannot be ignored

• The gate voltage at which S equals -n is called the threshold voltage VTP:

ox

ndsnFBTP C

qNVV

222

dKT

q

d NeNxpns

0

Page 12: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

12

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased PMOS Capacitor: Inversion (VGB < VTP)

Inversion layer charge (due to holes) on the semiconductor surface

x0

oxt dqN

PddG QxqNQ dx

PQ

• When the gate voltage VGB is decreased below VTP the hole density right at the surface increases (exponentially with the decrease in the surface potential S )

• This surface hole density is called the inversion layer (assumed to be of zero thickness in this course)

Inversion layer charge density (C/cm2)

x0oxt

SiO2 N-SiGate

TPGB VV + -

dx

+ + + ++ + + ++ + + +

+++

+ + + ++ + + +

++

oxs

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

GBB V

x0oxt n

maxdx

nSx 0

TPB V

• When the gate voltage VGB is decreased below VTP the inversion layer charge increases so rapidly that the extra applied potential drops entirely across the oxide, and the surface potential S remains close to -n• Consequently, the depletion region thickness (and the depletion region charge) does not increase when the gate voltage VGB is decreased below VTP

A Biased PMOS Capacitor: Inversion (VGB < VTP)

s

ddn

s

ddnS

xqNxqN

2

22

2max

2

s

dd

ox

ddFBTP

xqNCxqN

VV2

2maxmax

ox

ndsnFBTP C

qNVV

222

Page 13: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

13

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased NMOS Capacitor: Inversion (VGB < VTP)

How to calculate the inversion layer charge QP when VGB < VTP?Start from:

s

daoxox

SoxGBFB

xqNtE

VVVV

2

2max

s

ddS

xqNV

2

2max

By Gauss’ law: maxddPoxox xqNQE

TPGBoxP

TPox

PGB

s

dd

ox

dd

ox

PGBFB

VVCQ

VCQ

V

xqN

C

xqN

CQ

VV

2

2maxmax

Therefore:

x0oxt

SiO2 N-SiGate

TPGB VV + -

dx

+ + + ++ + + ++ + + +

+++

+ + + ++ + + +

++

oxs

QP

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased PMOS Capacitor: Summary of Different Regimes

Flatband (VGB = VFB):

No depletion region in the semiconductor and no accumulation charge

Accumulation (VGB > VFB):

No depletion region in the semiconductor but majority carrier accumulation charge on the surface of the semiconductor

Depletion (VTP < VGB < VFB):

Depletion region in the semiconductor but no majority carrier accumulation charge or minority carrier inversion charge on the surface of the semiconductor

Inversion (VGB < VTP):

Depletion region in the semiconductor and minority carrier inversion charge on the surface of the semiconductor

Page 14: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

14

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased PMOS Capacitor: Charges

GBV

BQDepletion Region Charge (C/cm2)

FBVTPV

Inversion Layer Charge (C/cm2)

GBV

PQ

FBVTPV

FBGB

d

s

ox

s

ox

sdddB VV

qNCCqNxqNQ

22

ndsddB qNxqNQ 22max

0BQ

TPGBoxP VVCQ 0NQ0NQ

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased PMOS Capacitor: Charges

GBV

GQGate Charge (C/cm2)

FBVTPV

GBV

NQ

FBVTPV

Accumulation Layer Charge (C/cm2)

FBGBoxN VVCQ

0NQ 0NQ

BNPG QQQQ

Page 15: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

15

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

The Small Signal Capacitance of a PMOS Capacitor

(1) Accumulation (VGB > VFB):

• The small signal capacitance (per unit area) of the MOS capacitor is defined as:

where QG is the charge density (units: C/cm2) on the gateGB

G

dVdQ

C

ox

FBGBoxG

CC

VVCQ

oxCgbv

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

(2) Depletion (VTP <VGB < VFB):

GB

dd

GB

G

ddG

dVdx

qNdVdQ

C

xqNQ

FBGBox

dd

s

dd VVC

xqNxqN

2

2

Differentiate the equation (derived earlier):

The Small Signal Capacitance of a PMOS Capacitor

GBddoxs

d dVdxqNC

x

1

To get:

d

sb x

C

Define:

box CCC111

Finally:

oxCgbv

bC

Page 16: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

16

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

The Small Signal Capacitance of a PMOS Capacitor

(3) Inversion (VGB < VTP):

ox

GB

P

GB

G

PddG

C

dVdQ

dV

dQC

QxqNQ

max TPGBoxP VVCQ

xdmax does not change with VGB in inversion

oxCgbv

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

The Small Signal Capacitance of a PMOS Capacitor

C

VGBVTP VFB

oxCoxC

Accumulation

Depletion

Inversion

Gate Charge (C/cm2)

GBV

GQ

FBVTPV

GB

G

dVdQ

C

Page 17: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

17

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A PMOS Capacitor with a Channel Contact

N-Si Substrate (or Bulk)

Gate

Gate metal contact

Metal contact

GBV

+

_CBV

+

_ Inversion layer

P-Si

• In the presence of an inversion layer, the additional contacts allow one to directly change the potential of the inversion layer channel w.r.t. to the bulk (substrate)

SiO2

P-Si

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

GBB V

x0

oxt nmaxdx

nSx 0

• We had said that the surface potential S remains fixed at –n when VGB is decreased below VTP

• But with a non-zero VCB, the surface potential S in inversion can be changed to (–n+ VCB)• The new value of the depletion region width is:

Question: How do we now find the inversion layer charge QP when VCB is not zero?

CBnS Vx 0

)0(max CBd Vx

s

ddCBn

s

ddns

xqNV

xqN

2

22

2max

2

A Biased PMOS Capacitor: Inversion with VCB ≠0

Page 18: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

18

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased NMOS Capacitor: Inversion with VCB ≠0

CBV+ -

How to calculate the inversion layer charge QP? Same way as before……..Start from:

s

ddoxox

SoxGBFB

xqNtE

VVVV

2

2max

s

daS

xqNV

2

2max

By Gauss’ law: maxddPoxox xqNQE

s

dd

ox

ddFB

ox

PGB

s

dd

ox

dd

ox

PGBFB

xqNCxqN

VCQ

V

xqNCxqN

CQ

VV

2

22

maxmax

2maxmax

Therefore:

x0oxt

SiO2 N-SiGate

TPGB VV + -

maxdx

+ + + ++ + + ++ + + +

+++

+ + + ++ + + +

++

oxs

QP

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A Biased NMOS Capacitor: Inversion with VCB ≠0

s

da

ox

daFB

ox

PGB

xqNCxqN

VCQ

V2

2maxmax

s

dd

ox

ddFBTP

xqNCxqN

VV2

2maxmax

ox

CBndsCBnFB C

VqNVV

222

TPGBoxP VVCQ Same as before but now VTP depends on VCB

CBV+ -

x0oxt

SiO2 N-SiGate

TPGB VV + -

maxdx

+ + + ++ + + ++ + + +

+++

+ + + ++ + + +

++

oxs

QP

Page 19: Lecture 8 MOS (Metal Oxide Semiconductor) Structures

19

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

gate

gate

GBV+

-

GBV+

-CBV+

-

gate

GBV+

-CBV+

-

VCB <0• Inversion charge decreases• Depletion region expands

VCB >0• Inversion charge increases• Depletion region shrinks

source drain

source drain

source drain

PMOS Capacitor: Effect of VCB (VGB < VTP)