Lecture 2 Thermodynamics from lattice dynamics

65
Thermodynamics from lattice dynamics Thermodynamics from lattice dynamics Lecture 2 Lecture 2

Transcript of Lecture 2 Thermodynamics from lattice dynamics

Page 1: Lecture 2 Thermodynamics from lattice dynamics

Thermodynamics from lattice dynamicsThermodynamics from lattice dynamics

Lecture 2Lecture 2

Page 2: Lecture 2 Thermodynamics from lattice dynamics

• Why do we need computer simulations?• Empirical pair potentials and SLEC• The effect of pressure• The effect of temperature• P-T phase diagrams

Outline of Lecture 2Outline of Lecture 2

Page 3: Lecture 2 Thermodynamics from lattice dynamics

Ca -Mg

Ca -FeCa -Mn

Fe -MgFe -Mn

Mg -Mn

The need for thermodynamic data

Experimental data:Newton et al (1977)for the Ca-Mg series

0,0 0,2 0,4 0,6 0,8 1,0

-1

0

1

2

3

4

5

6

Enth

alpy

, kJ/

mol

Mole fraction of pyrope

(Ca,Mg,Fe,Mn)3(Al,Fe)2Si3O12

No good data for:

garnet solid solution

Metamorphic petrology

Page 4: Lecture 2 Thermodynamics from lattice dynamics

The need for thermodynamic data

0,0 0,2 0,4 0,6 0,8 1,0500

600

700

800

900

1000

1100

1200

Tem

pera

ture

, °C

Mole fraction MgCO3

Dol

Cal Mag

Goldsmith & Heard, 1961

CaCO3-MgCO3

(Ca,Mg,Fe,Mn)CO3

No good data forother binary systems

carbonates

Metamorphic petrology

Page 5: Lecture 2 Thermodynamics from lattice dynamics

Mg+2 Ca+2

Mg+2 + Si+4 Al+3 + Al+3

Fe3+ + Fe+3Fe+2 + Si+4

Na+ + Al+3Mg+2 + Ca+3

Na+ + Al+3Mg+2 + Mg+3

Mantle mineralogy

Mg2SiO4 MgSiO3 Mg4Si4O12

No good data forsolid solutions

Page 6: Lecture 2 Thermodynamics from lattice dynamics

Radioactive waste

No good data forsolid solutions

Zr+4Th+4

Am+3 , Cm+3 ????

, U+4 , Pu+4 , Mo+4 ????

Page 7: Lecture 2 Thermodynamics from lattice dynamics

Thermodynamics of melts

Almost no data

Page 8: Lecture 2 Thermodynamics from lattice dynamics

Simulation methodsSimulation methods

Static latticeenergy

minimisation

Empiricalinteratomicpotentials

Monte CarloMoleculardynamics

Quantummechanics

Latticedynamics

Page 9: Lecture 2 Thermodynamics from lattice dynamics

StructureStructure ElasticityElasticity

ThermodynamicsThermo

dynamics

Page 10: Lecture 2 Thermodynamics from lattice dynamics

Transferableinteratomicpotentials

Transferableinteratomicpotentials

StructureStructure ElasticityElasticity

ThermodynamicsThermo

dynamics

Page 11: Lecture 2 Thermodynamics from lattice dynamics

− −

−−

+

Static Lattice Energy Calculations

∑=ji

ijstaticE,

2/1 ν

Empirical pair potentials

r

ν

rMO rOO

M-OO-O

)(rrqq

ijij

jiij φν +=

0=∂∂

ixE

for all parameters xi

Page 12: Lecture 2 Thermodynamics from lattice dynamics

THB potentials set for silicates

Electrostatic potential

Buckingham potential

Core – shell interaction

Bond-bending interaction

A exp(− r/Β ) − Cr-6

1/2 K r2

1/2 k (γ − γ0)2

+

qi qjr

+−

γ− −

+ −

Sanders et al., 1984

qs= − 2.848

qc= + 0.848

Page 13: Lecture 2 Thermodynamics from lattice dynamics

THB model for Mg-Si-O Price et al., 1987

O-2

Si+4Si+4 , Mg+2

Page 14: Lecture 2 Thermodynamics from lattice dynamics

THB transferable set for aluminosilicates Winkler et al., 1991

O-2

Si+4Si+4 , Mg+2

Ca+2 , Al+3, Na+, K+

Page 15: Lecture 2 Thermodynamics from lattice dynamics

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

-0.05

0.00

0.05

0.10

0.15

Erro

r, %

Cation-cation distance, Å2,6 2,8 3,0 3,2 3,4 3,6 3,8 4,0

-0,05

0,00

0,05

0,10

0,15

Erro

r, %

Cation-cation distance, Å

Pyrope, diopside, albite, α-quartz

Stishovite, MgSiO3 (perovskite, ilmenite),corundum, MgAl2O4 spinel, Al2SiO5 (Ky, And, Sill)

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

-0.05

0.00

0.05

0.10

0.15

Erro

r, %

Cation-cation distance, Å2,6 2,8 3,0 3,2 3,4 3,6 3,8 4,0

-0,05

0,00

0,05

0,10

0,15

Erro

r, %

Cation-cation distance, Å2,6 2,8 3,0 3,2 3,4 3,6 3,8 4,0

-0,05

0,00

0,05

0,10

0,15

Erro

r, %

Cation-cation distance, Å

Pyrope, diopside, albite, α-quartz

Stishovite, MgSiO3 (perovskite, ilmenite),corundum, MgAl2O4 spinel, Al2SiO5 (Ky, And, Sill)

Formal-charge set Scaled-charge set

Scaling the charges permits to decrease the error

Page 16: Lecture 2 Thermodynamics from lattice dynamics

Note: O core charge 0.7465; shell charge –2.4465,the charges on cations are 0.85Z.

Type atom atom A(eV) B(Å) C(eV*Å6)Buckingham Ca O-shell 2895.68 0.2811 0Buckingham Mg O-shell 1077.55 0.2899 0Buckingham Na O-shell 30267.4 0.1997 0Buckingham K O-shell 65164.8 0.2122 0Buckingham Al O-shell 1226.70 0.2893 0Buckingham Si O-shell 1096.42 0.2999 0Buckingham O-shell O-shell 614.71 0.3016 27.07

Type atom atom K(eV*Å-2)String O-core O-shell 54.70Type atom atom atom k(eV*grad-2) g(grad)Three-body Si(4) O-shell O-shell 3.79 109.47Three-body Si(6) O-shell O-shell 3.77 90 Three-body Al(4) O-shell O-shell 0.67 109.47Three-body Al(6) O-shell O-shell 1.89 90

New scaled-charge potentials for oxides

Available also for Fe2+, Fe3+, Mn2+, Ge, Zr, Ti, Y, P, F−, C, OH−

Page 17: Lecture 2 Thermodynamics from lattice dynamics

http://nanochemistry.curtin.edu.au/t2_julian.html

Julian Gale

General Utility Lattice Program

GULP

Page 18: Lecture 2 Thermodynamics from lattice dynamics

http://nanochemistry.curtin.edu.au/t2_julian.html

Julian Gale

General Utility Lattice Program

GULPinput output

Page 19: Lecture 2 Thermodynamics from lattice dynamics

An example of GULP input-file# Keywords: conp prop opti phon title Calculation of standard entropy of pyrope end name pyrope Temperature 298.15 K cell 11.492000 11.492000 11.492000 90.000000 90.000000 90.000000 fractional Mg core 0.0000000 0.2500000 0.1250000 2.00000000 1.00000 0.00000 Al2 core 0.0000000 0.0000000 0.0000000 3.00000000 1.00000 0.00000 Si1 core 0.0000000 0.2500000 0.3750000 4.00000000 1.00000 0.00000 O core 0.0327999 0.0502000 0.6533999 0.84820000 1.00000 0.00000 O shel 0.0327999 0.0502000 0.6533999 -2.8482000 1.00000 0.00000 space I A 3 D observables elastic 1 1 29.6200 elastic 1 2 11.1100 elastic 4 4 9.1600 bulk_modulus 17.2800 shear_modulus 9.2000 sdlc 1 1 12.0000 end buck Mg core O shel 1092.7076 0.327890 47.615886 0.0 12.00 1 1 1 Al core O shel 1110.9213 0.323853 0.00000000 0.0 12.00 0 0 0 O shel O shel 11540.311 0.089509 26.330266 0.0 12.00 0 0 0 Si core O shel 1425.4929 0.319796 19.669306 0.0 12.00 0 0 0 spring O 73.642708 0 three Si1 core O shel O shel 1.8860 109.470000 & 0.000 1.840 0.000 1.840 0.000 3.200 0 0 three Al2 core O shel O shel 2.7146 90.000000 & 0.000 2.200 0.000 2.200 0.000 3.200 1 0 shrink 4 dump every 1 pyrope.dump

KEYWORDS

STRUCTURE

OBSERVABLES

POTENTIALS

Page 20: Lecture 2 Thermodynamics from lattice dynamics

GULP can be used in two main ways:

Observedstructure

Predictedpotentials

Observedproperties

Predictedstructure

Fixedpotentials

Predictedproperties

Page 21: Lecture 2 Thermodynamics from lattice dynamics

Cell-parameter Experimental Predicted Difference (in percent)

Low albite a 7.715 7.746 0.43 b 7.437 7.499 0.83 c 7.158 7.142 -0.22 αααα 79.58 79.183 -0.5 ββββ 107.32 106.97 -0.33 γγγγ 64.92 65.26 0.53 Volume 331.93 336.75 1.45

Microcline a 7.913 7.930 0.21 b 7.626 7.640 0.19 c 7.222 7.205 -0.24 αααα 76.32 76.44 0.16 ββββ 104.19 104.19 0 γγγγ 66.92 67.04 0.17 Volume 360.65 362.05 0.39

Anorthite a 8.180 8.223 0.53 b 12.875 12.954 0.62 c 14.172 14.137 -0.25 αααα 93.13 92.97 -0.18 ββββ 115.89 116.08 0.17 γγγγ 91.24 90.53 -0.78 Volume 1338.993 1349.918 0.82

Accuracy in the prediction of structure

Page 22: Lecture 2 Thermodynamics from lattice dynamics

Simulation of the effect of pressure

− −

−−

++ +

H=E+PV

− −

− −

+P

0=∂∂

ixH

Enthalpy

Page 23: Lecture 2 Thermodynamics from lattice dynamics

0 20 40 60 80 100 120 140 160110

120

130

140

150

160

170

Vol

ume,

A3

Pressure, GPa0 20 40 60 80 100 120 140 160

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

a b c

Latti

ce p

aram

eter

, APressure, GPa

MgSiO3 perovskite at high pressures

Large symbols: ab initio resultsof Oganov & Ono (2004)

Page 24: Lecture 2 Thermodynamics from lattice dynamics

Elastic stiffness and lattice constants of perovskite at 120 GPa

O&O GULP

a 4.318 4.348

b 4.595 4.574

c 6.305 6.281200 400 600 800 1000 1200

200

400

600

800

1000

1200

P=120

GU

LP, G

Pa

O&O (2004), GPa

Bulkmodulus

Oganov & Ono, 2004ab initio

2

2

VEVK

∂∂=

GULP vs. DFT

Page 25: Lecture 2 Thermodynamics from lattice dynamics

Perovskite at 0 GPa

Page 26: Lecture 2 Thermodynamics from lattice dynamics

Perovskite at 120 GPa

Page 27: Lecture 2 Thermodynamics from lattice dynamics

Post-perovskite at 120 GPa

Oganov & Ono 2004

Page 28: Lecture 2 Thermodynamics from lattice dynamics

200 400 600 800 1000 1200 1400

200

400

600

800

1000

1200

1400G

ULP

, GPa

Oganov & Ono (2004), GPa

O&O GULP

a 2.474 2.492

b 8.121 8.159

c 6.138 6.058

Elastic stiffness and lattice constants of post-perovskite at 120 GPa

Bulkmodulus

P=120

Oganov & Ono, 2004ab initio

Page 29: Lecture 2 Thermodynamics from lattice dynamics

40 60 80 100 120 140 160-120

-115

-110

-105

-100

-95

-90

-85

post-perovskite perovskite

Ener

gy, e

V

Pressure, GPa

Page 30: Lecture 2 Thermodynamics from lattice dynamics

140 142 144 146 148 150 152 154 156 158 160-95.0

-94.5

-94.0

-93.5

-93.0

-92.5

-92.0

-91.5

-91.0

-90.5

-90.0

post-perovskite perovskite

Ener

gy, e

V

Pressure, GPa

Page 31: Lecture 2 Thermodynamics from lattice dynamics

20 40 60 80 100 120 140 160110

120

130

140

150

160

Perovskite Post-perovskite

Vol

ume,

A3

Pressure, GPa20 40 60 80 100 120 140 160

720

740

760

780

800

820

840

T=1273 K

Perovskite Post-perovskite

Entro

py, J

/mol

/K

Pressure, GPa

60 80 100 120 140 160-100

-80

-60

-40

-20

0

20

40

Pressure, GPa

2273

1273

0 K

∆F

20 40 60 80 100 120 140 160 180 2000

500

1000

1500

2000

2500

3000

Tem

pera

ture

, K

Pressure, GPa

Perovskite

Post-perovskite

Core/mantle

Page 32: Lecture 2 Thermodynamics from lattice dynamics

MgSiO3

Perovskite/post-perovskite transition

Perovskite

Post-perovskite

Core/mantle

20 40 60 80 100 120 140 160 180 2000

500

1000

1500

2000

2500

3000

Tem

pera

ture

, K

Pressure, GPa

It is important to determinethe right slope!

Page 33: Lecture 2 Thermodynamics from lattice dynamics

Simulation of the effect of temperature

− −

−−

++

− −

−−

++

T

vibvibstatic TSEEF −+=

0=∂∂

ixF

Page 34: Lecture 2 Thermodynamics from lattice dynamics

The system at T,V: The Boltzmann distribution

T E E1 E2 E3 E4 E1 E4 E3 E3 E5 E6 E1

timeV

The energy of a thermally equilibrated system will fluctuate around the average energy

A typical succession of microstates has certain specific properties,namely each configuration occurs with the Boltzmann probability

E

∑ −

=

i

kTE

kTE

i i

i

eep /

/

All sufficiently long successions will be statistically the same

01234567

Page 35: Lecture 2 Thermodynamics from lattice dynamics

E1 E2 E3 E4

E1 E4 E3 E3

E5 E6 E1 E7

The energy of the ensemble is a sum of Ei

We collect the systems and make an isolated ensemble

The equilibrium of the ensemble corresponds to the maximum number of microstates

There will be many microstates with the same total energy

The main postulate of Statistical Mechanics:

all microstates in an isolated system have the same probability

The state with the maximum of microstates has the highest probability

Page 36: Lecture 2 Thermodynamics from lattice dynamics

The entropy of an isolated ensemble of M systems can be defined

Boltzmann distribution

∏=

iiM

MMW!

!)(

ii

i

ii

ppkMM

MkMS ln!

!ln)( ∑∏−==

The number of distinguishable microstates in the ensemble is

ii

i ppkMMSS ln/)( ∑−==Entropy per1 system:

Page 37: Lecture 2 Thermodynamics from lattice dynamics

or maximize the entropy

∏=

iiM

MMW!

!)(

ii

i ppkMMSS ln/)( ∑−==

The set of pi, which brings the maximum to the entropyof the thermally equilibrated system, is the Boltzmanndistribution

with respect to Mi

with respect to pi

We can either maximize W(M)

Page 38: Lecture 2 Thermodynamics from lattice dynamics

The constancy of the average energy gives a constraint to the maximization procedure

The maximization of the entropy with the above constraints is equivalent to the maximization of the function

ii

i pEMEMME ∑==)(

1=∑i

ip

The normalization of the probabilities gives another constraint

without constraints

ii

ii

iii

i EppppS ∑∑∑ −−−= βαln*

the undetermined Lagrange multipliers

Page 39: Lecture 2 Thermodynamics from lattice dynamics

iEi eep βα −+−= )1(

−−−∂∂= ∑∑∑ i

ii

iii

ii

i

Eppppp

βαln0

++−∂∂= ∑

iiiiii

i

pEpppp

)ln(0 βα

iii

i Epp

p βα +++= ln10

The condition of the maximum is that all partial derivatives are zero:

Page 40: Lecture 2 Thermodynamics from lattice dynamics

The physical meaning of the α parameter can be found out from the normalization condition

1)1( == ∑∑ −+−

i

E

ii

ieep βα

Zee

i

Ei

11)1( ==∑ −

+−β

α

∑ −

=

i

E

E

i i

i

eep β

β

1=∑i

ip

The partition function(Zustandssumme)

Page 41: Lecture 2 Thermodynamics from lattice dynamics

The physical meaning of the β parameter can be found by substituting the Boltzmann probabilities back into the entropyequation

ZkEkS ln+= β

βkES =

∂∂

Thus .1kT

ZkET

S ln1 +=

∑ −

=

i

E

E

i i

i

eep β

β

ii

i ppkS ln∑−=

TSEZkT −=− ln

TSEF −=which compares with the classical result:

In classical thermodynamics it is proved that .1TE

S =∂∂

One can also see that

Page 42: Lecture 2 Thermodynamics from lattice dynamics

∑ −

=

i

kTE

kTE

i i

i

eep /

/

The Boltzmann distribution law takes the final form

The following two statements are equivalent:

TSEFZkT −==− ln

1) The free energy function achieves the minimum

when Ei decreases,pi increases

high T tends,to equalize pi

2) Energy states are distributed according to the Boltzmann law

Page 43: Lecture 2 Thermodynamics from lattice dynamics

,),(,

modesall∑=

ν

εk

vib vkE

Lattice dynamics

+

+

+ +

+

+

+

+

+ +

The motions of atoms can be describedas a superposition of 3mN independentlattice vibrations (modes)

There are 3m branches for each k-vectorand there are N k-vectors possible

mNk 31,1 ≤≤≤≤ ν

Each mode behaves as an independent oscillator and its energy is quantized

Page 44: Lecture 2 Thermodynamics from lattice dynamics

Vibrational energy at T>0

− −

−−

++

Displacement, x

Pote

ntia

l ene

rgy

kxF −=

Linear harmonic oscillator

If we know force constants,we can calculate

frequenciesof lattice vibrations

Energy is a quadraticfunction of displacement

Motion is harmonic

Page 45: Lecture 2 Thermodynamics from lattice dynamics

Einstein model

)2/1( nn += ωε h

./

/

∑ −

=

i

kT

kT

n n

n

eep ε

ε

The average energy is ∑=n

nn pεε

where

The energy of an oscillator depends on thefrequency and excitation level

Displacement, x

Ener

gy

ωhn=1

n=2n=3

n=4

Zero pointenergy

( )ne kTn +=

−+= 2/1

112/1 / ωωε ω hh

h

nmNE ε3=

Born quantisation + Boltzmanndistribution=

Therefore the energy of each oscillator is

Since there are 3mN linear harmonic oscillators

Page 46: Lecture 2 Thermodynamics from lattice dynamics

0 200 400 600 800 1000

0.00

0.01

0.02

0.03

0.04

0.05

0.06

G(w

)

cm-1

The phonon density of states in forsterite

Frequency,

ωωωωω

dGTnEvib )()),(2/1(max

0∫ += h( )nNmE += 2/13 ωh

Einstein Born

Page 47: Lecture 2 Thermodynamics from lattice dynamics

ωωωωω

dGTnEvib )()),(2/1(max

0∫ += h

The thermodynamic outputin GULP

Heat capacity

VV T

EC∂∂=

ωωωωωωω ω

dGTkTkdGEF stat )())/exp(1ln()(2/1 B0 0

B

max max

hh∫ ∫ −−++=

mNdG 3)(max

0

=∫ω

ωω

VTFS

∂∂−=

Vibrational entropy

)(ωG

ωωω dG )( is the number

of modes in the intervalω, ω+dω

Page 48: Lecture 2 Thermodynamics from lattice dynamics

An example of a GULP run $ gulp < pyrope.dat > pyrope.out# Keywords: conp prop opti phon title Calculation of standard entropy of pyrope end name pyrope Temperature 298.15 K cell 11.492000 11.492000 11.492000 90.000000 90.000000 90.000000 fractional Mg core 0.0000000 0.2500000 0.1250000 2.00000000 1.00000 0.00000 Al2 core 0.0000000 0.0000000 0.0000000 3.00000000 1.00000 0.00000 Si1 core 0.0000000 0.2500000 0.3750000 4.00000000 1.00000 0.00000 O core 0.0327999 0.0502000 0.6533999 0.84820000 1.00000 0.00000 O shel 0.0327999 0.0502000 0.6533999 -2.8482000 1.00000 0.00000 space I A 3 D observables elastic 1 1 29.6200 elastic 1 2 11.1100 elastic 4 4 9.1600 bulk_modulus 17.2800 shear_modulus 9.2000 sdlc 1 1 12.0000 end buck Mg core O shel 1092.7076 0.327890 47.615886 0.0 12.00 1 1 1 Al core O shel 1110.9213 0.323853 0.00000000 0.0 12.00 0 0 0 O shel O shel 11540.311 0.089509 26.330266 0.0 12.00 0 0 0 Si core O shel 1425.4929 0.319796 19.669306 0.0 12.00 0 0 0 spring O 73.642708 0 three Si1 core O shel O shel 1.8860 109.470000 & 0.000 1.840 0.000 1.840 0.000 3.200 0 0 three Al2 core O shel O shel 2.7146 90.000000 & 0.000 2.200 0.000 2.200 0.000 3.200 1 0 shrink 4 dump every 1 pyrope.dump

Mg3Al2Si3O12

Calculation of the standard entropy of pyrope

Page 49: Lecture 2 Thermodynamics from lattice dynamics

The heat capacity derived from the GULP output

0 200 400 600 800 1000

0

500

1000

1500

2000H

eat c

apac

ity (J

/mol

K)

Temperature, K

Pyrope

∫≈15.298

0

0298

)( dTT

TCS V

0298S

Page 50: Lecture 2 Thermodynamics from lattice dynamics

− −

−−

+

Calculation of thermal expansion

0=∂∂

ixF

vibvibstatic TSEEF −+=

An increase in volume leads to a decreaseof vibrational frequencies. This, in turn, leads to an increase in the vibrational entropy

−−

Thermal expansion is favoured

Keyword: zsisa

Page 51: Lecture 2 Thermodynamics from lattice dynamics

Corundum in quasi-harmonic approximation

0 200 400 600 800 100012001400160018002000

258

260

262

264

266

268

Vol

ume,

A3

Temperature, K0 200 400 600 800 100012001400160018002000

0

50

100

150

200

250

CP CV

Hea

t cap

acity

, J/m

ol/K

Temperature, K

Page 52: Lecture 2 Thermodynamics from lattice dynamics

Entropy of corundum in quasi-harmonic approximation

0 200 400 600 800 100012001400160018002000

0

100

200

300

400

500

600

S(P,T) S(V,T)

Entro

py, J

/mol

/K

Temperature, K

Page 53: Lecture 2 Thermodynamics from lattice dynamics

0 50 100 150 200 250 3000

50

100

150

200

250

300

S298Garnets

Feldspars

Pyroxenes

Simple oxides

GU

LP

Holland & Powell (1998)

Correlation between predicted and experimental entropies

Page 54: Lecture 2 Thermodynamics from lattice dynamics

400 600 800 1000 12000

2

4

6

8

10

12

14

Andalusite

Sillimanite

Kyanite

Pres

sure

, kba

r

Temperature, K

VS

dTdP

∆∆=

r

ν

req

Page 55: Lecture 2 Thermodynamics from lattice dynamics

400 600 800 1000 12000

2

4

6

8

10

12

14

Andalusite

Sillimanite

Kyanite

Pres

sure

, kba

r

Temperature, K

Kyanite

Andalusite

Sillimanite

Page 56: Lecture 2 Thermodynamics from lattice dynamics

0 200 400 600 800 1000 1200 14000

5

10

15

20

25

Pres

sure

, GPa

Temperature, K

Forsterite

Wadsleyite

Ringwoodite

Forsterite

Wadsleyite

Ringwoodite

Mg2SiO4

Page 57: Lecture 2 Thermodynamics from lattice dynamics

Seminars(Mondays 14-16)

(1) Energy minimisation

(2) Cv, Cp, T-exp, …

(3) Fitting potentials(4) Calculation of phase diagrams

(5) Calculation of enthalpies of mixing

(6) Calculation of disorder

(7-8) Your own projects

(9-10) Mol. dynamics

Page 58: Lecture 2 Thermodynamics from lattice dynamics

What we need• GULP manual (available over the net)• Am. Min. crystal structure data base• Elastic constants of minerals (Bass, 1995)• Holland & Powell (1998)• DL-POLY2 manual • USB stick

What to read• M.T. Dove. Introduction to Lattice Dynamics. 1993

Cambridge University Press• J.D. Gale. Simulating the Crystal Structures and

Properties of Ionic Materials from Interatomic Potentialsin Reviews in Mineralogy, vol 42, 2001.

Page 59: Lecture 2 Thermodynamics from lattice dynamics

− −

−−

+

Static Lattice Energy Calculations

∑=ji

ijstaticE,

2/1 ν

Empirical pair potentials

r

ν

rMO rOO

M-OO-O

)(rrqq

ijij

jiij φν +=

0=∂∂

ixE

for all parameters xi

Page 60: Lecture 2 Thermodynamics from lattice dynamics

Calculation of thermal expansion

300 400 500 600 700 800 900 10001.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

jadeite

K-jadeite

diopsideH

eat c

apac

ity, 1

0-5 K

-1

Temperature, K

Page 61: Lecture 2 Thermodynamics from lattice dynamics

2.67 Å

Stishovite

Si Si Si

Page 62: Lecture 2 Thermodynamics from lattice dynamics

0 100 200 300 400 5000

100

200

300

400

500 Al2SiO5 and Al2O3

Pred

ictio

n, G

Pa

Experiment, GPa

We have good potentials. How can we use them?

Page 63: Lecture 2 Thermodynamics from lattice dynamics

Thermal equilibrium

Let us consider two systems brought in thermal contact

so that the total energy is fixed:

The systems will exchange the energy until the equilibrium is achieved. We consider the change in the entropy of the combined system and require:

022

21

1

10 =

∂∂+

∂∂= dE

ESdE

ESdS

E2

V1, N1E1

V2, N2E2

V1, N1 V2, N2

210 EEE +=

fixed fixed

21 dEdE −=0210 =+= dEdEdE

0112

21

1

=+ dET

dET

0111

21

=

− dE

TT 21 TT =

δE

Page 64: Lecture 2 Thermodynamics from lattice dynamics

Thermodynamics

Two systems in thermal equilibrium with the third are in thermal equilibrium with each other

The temperature is defined as the quantity which becomes the same for thermally equilibrated systems.

There is a function of state S,

1 2

3

Heat flows from a system with a higher T to a system with a lower T

0th law

2nd law

The total energy is conserved1st law

TQdS revδ=

Page 65: Lecture 2 Thermodynamics from lattice dynamics

The temperature

( ) KPV

PVTP

16.273limtriple

0→=

Volume, V

Pres

sure

, P“hot”

“cold”

RTPV =

Only with this choice of the temperature scale the thermodynamics holds true