Lecture 19: Quasi-Equal Clocks - uni-freiburg.de...2018/01/25  · Lecture 19: Quasi-Equal Clocks...

11
– 19 – 2018-01-25 – main – Real-Time Systems Lecture 19: Quasi-Equal Clocks 2018-01-25 Dr. Bernd Westphal Albert-Ludwigs-Universität Freiburg, Germany Motivation – 19 – 2018-01-25 – main – 2/45 WFAS Self-Monitoring – 19 – 2018-01-25 – Sdiamond – 3/45 (Arenis et al., 2016) Periodically, each sensor sends a“hi master, I’m still heremessage to its master. If a master misses that message from one of its sensors: report incidence. To avoid message collision, employ a TDMA (time division multiple access) scheme. 0 ··· slot (aka. window) frame (aka. cycle) Sensor 1 says “I’m here” to its master WFAS Self-Monitoring – 19 – 2018-01-25 – Sdiamond – 3/45 (Arenis et al., 2016) 0 ··· slot (aka. window) frame (aka. cycle) Sensor 1 says “I’m here” to its master Experiments (A[] not deadlock) – 19 – 2018-01-25 – Sdiamond – 4/45 10 6 states 5 · 10 6 states 8 · 10 6 states 1 GiB 1000 seconds 2 GiB 2000 seconds n : 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 13 states 0.000 s 24,156 KiB 8,217 states 0.320 s 24,900 KiB 262,179 states 28.540 s 75,188 KiB 8,388,653 states 1472.63 s 2,341,188 KiB out of memory A Closer Look – 19 – 2018-01-25 – Sdiamond – 5/45 Option 1: well, that’s exponential space complexity, we need to accept that. Option 2: take a closer look. x 0 =0 x 1 =0 x 2 =0 x 0 = C x 1 = C x 2 = C x 0 =0 x 1 = C x 2 = C x 0 =0 x 1 =0 x 2 = C x 0 =0 x 1 =0 x 2 =0

Transcript of Lecture 19: Quasi-Equal Clocks - uni-freiburg.de...2018/01/25  · Lecture 19: Quasi-Equal Clocks...

Page 1: Lecture 19: Quasi-Equal Clocks - uni-freiburg.de...2018/01/25  · Lecture 19: Quasi-Equal Clocks 2018-01-25 Dr.Bernd Westphal Albert-Ludwigs-UniversitätFreiburg, Germany Motivation

– 19 – 2018-01-25 – main –

Rea

l-Tim

eSystem

s

Lectu

re19:

Quasi-E

qual

Clo

cks

2018-0

1-2

5

Dr.B

erndW

estphal

Albert-Ludw

igs-UniversitätFreiburg,G

ermany

Mo

tivatio

n

– 19 – 2018-01-25 – main –

2/45

WFA

SS

elf-Mo

nito

ring

– 19 – 2018-01-25 – Sdiamond –

3/45

(Arenis

etal.,2016)

•Periodically,e

achse

nso

rsendsa

“him

aster,I’m

stillhe

re”m

essageto

itsm

aster.

•Ifa

masterm

issesthatm

essagefrom

oneofits

sensors:reportincidence.

•To

avoidm

essage

collisio

n,employ

aTD

MA

(time

divisionm

ultipleaccess)schem

e.

0

···

slot(aka.w

indow)

frame

(aka.cycle)

Sen

sor

1sa

ys“I’m

here”

toits

ma

ster

WFA

SS

elf-Mo

nito

ring

– 19 – 2018-01-25 – Sdiamond –

3/45

(Arenis

etal.,2016)

0

···

slot(aka.w

indow)

frame

(aka.cycle)

Sen

sor

1sa

ys“I’m

here”

toits

ma

ster

Exp

erimen

ts(A[]

not

deadlock)

– 19 – 2018-01-25 – Sdiamond –

4/45

106

states

5·106

states

8·106

states

1G

iB

1000

seco

nd

s

2G

iB

2000

seco

nd

s

n:

3 •• •4 •• •

5 •• •6 •• •

7 •• •8 •• •

9 •• •10 •• •

11 •• •

12 •• •

13 •• •

14 •• •

15 •• •

16 •• •

17 •• •

18 •• •

19 •• •

20 •• •

21 •• •

22 •• •

23 •• •

24

13sta

tes0

.00

0s

24,15

6K

iB

8,217

states

0.3

20s

24,9

00

KiB

262,179

states

28.5

40

s75

,188

KiB

8,3

88

,65

3sta

tes14

72.63

s2,3

41,18

8K

iBout of memory

AC

loser

Lo

ok

– 19 – 2018-01-25 – Sdiamond –

5/45

•O

ption1:w

ell,that’sexponentialspace

complexity,w

eneed

toacceptthat.

•O

ption2:take

acloserlook.

x0=

0x1=

0x2=

0

x0=

Cx1=

Cx2=

C

x0=

0x1=

Cx2=

C

x0=

0x1=

0x2=

C

x0=

0x1=

0x2=

0

Page 2: Lecture 19: Quasi-Equal Clocks - uni-freiburg.de...2018/01/25  · Lecture 19: Quasi-Equal Clocks 2018-01-25 Dr.Bernd Westphal Albert-Ludwigs-UniversitätFreiburg, Germany Motivation

Co

nten

t

– 19 – 2018-01-25 – Scontent –

6/45

•Q

uasi-E

qu

alC

locks

•D

efin

ition,P

rop

ertie

s

•Q

EC

lock

Re

du

ction

•T

he

simp

le,an

dw

ron

gap

pro

ach

•Tran

sform

ation

exam

ple

•E

xpe

rime

nts

•S

imp

leand

Co

mp

lex

Ed

ges

•Tran

sform

ation

sche

me

s

•C

orre

ctne

sso

fth

eTran

sform

ation

•E

xcursio

n:

Bisim

ulatio

nP

roo

fs

•P

roo

fo

fQ

E-C

orre

ctne

ss

•a

particularw

eak

bisim

ulatio

nre

lation

•M

ore

Exp

erim

en

ts

Qu

asi-E

qu

al

Clo

cks

– 19 – 2018-01-25 – main –

7/45

Qu

asi-E

qu

al

Clo

cks

– 19 – 2018-01-25 – Sqe –

8/45

De

finitio

n.

LetN

bea

network

oftim

edautom

ataw

ithclocks

X.

Two

clocksx,y

∈X

arecalled

quasiequal,denotedby

x≃y,if

andonly

if,forallreachable

configurationsof

N,x

andy

areequaloratleastone

hasvalue

0,i.e.∀〈 ~ℓ

0 ,ν0 〉,t

0λ1

−→〈 ~ℓ

1 ,ν1 〉,t

1...

∈P

ath

s(N)∀i∈N

0 •

νi|=

(x=y∨x=

0∨y=

0).

Exa

mp

le

– 19 – 2018-01-25 – Sqe –

9/45

∀〈 ~ℓ

0 ,ν0 〉,t

0...

∈P

ath

s(N)∀i∈N

0•νi|=

(x=y∨x=

0∨y=

0).

⟨i,0i,0⟩

,0→

∗⟨w

,0.1

i,0.1

,0.1→

∗⟨d

,w−

1i,w

−1

,w

−1→

∗⟨d

,w

+1

w,w

+1

,w

+1→

∗⟨d

,c

d,c

,c→

i,0d,c

,c

⟨d,c

i,0⟩

,c

→⟨i,0

i,0⟩

,c→

win

do

wlen

gthcycle

length

Pro

perties

of

Qu

asi-E

qu

ality

– 19 – 2018-01-25 – Sqe –

10/45

∀〈 ~ℓ

0 ,ν0 〉,t

0...

∈P

ath

s(N)∀i∈N

0•νi|=

(x=y∨x=

0∨y=

0).

Lem

ma.Q

uasi-Equalityis

anequivalence

relation.

Pro

of:

•re

flexive:obvious.

•sy

mm

etric:obvious.

•tran

sitive:abittricky

(inductionovera

strongerproperty).

Qu

asi-E

qu

al

Clo

ckR

edu

ction

– 19 – 2018-01-25 – main –

11/45

Page 3: Lecture 19: Quasi-Equal Clocks - uni-freiburg.de...2018/01/25  · Lecture 19: Quasi-Equal Clocks 2018-01-25 Dr.Bernd Westphal Albert-Ludwigs-UniversitätFreiburg, Germany Motivation

Idea

:U

seJu

stO

ne

Clo

ck

– 19 – 2018-01-25 – Statrafo –

12/45

X

X

XX

XX

z

z

zz

zz

X

X

XX

XX

z

z

zz

zz

•B

eh

aviou

r:

⟨i,0i,⟩

,0→

∗⟨w

,0.1

i,⟩

,0.1→

∗⟨d

,c

d,

,c

րց

i,0d,

,c

⟨d,0

i,⟩

,c

AM

ore

Ela

bo

rate

Tra

nsfo

rma

tion

– 19 – 2018-01-25 – Statrafo –

13/45

Ho

wD

oes

ItW

ork?

– 19 – 2018-01-25 – Statrafo –

14/45

⟨i,0i,0⟩

,0→

∗⟨w

,0.1

i,0.1

,0.1→

∗⟨d

,w−

1i,w

−1

,w

−1→

∗⟨d

,w

+1

w,w

+1

,w+

1→

∗⟨d

,c

d,c

,c→

i,0d,c

,c

⟨d,c

i,0⟩

,c

→⟨i,0

i,0⟩

,c→

i,1i,1i,0

,0→

∗⟨

w,1

i,1

i,0.1

,0.1→

∗⟨

d,1

d,1

i,c

,c→⟨

i,0i,0n,c

,c→⟨

i,1i,1i,0

,c→

Exp

erimen

ts(A[]

true)

– 19 – 2018-01-25 – Statrafo –

15/45

106

states

5·106

states

8·106

states

1G

iB

1000

seco

nd

s

2G

iB

2000

seco

nd

s

n:

3 •• •4 •• •

5 •• •6 •• •

7 • • •8 •• •

9 •• •10 •• •

11 •• •

12 •• •

13 • • •

14 • • •

15 • • •

16 • • •

17 •• •

18 •• •

19 •• •

20 •• •

21 •• •

22 •• •

23 •• •

24 •• •

8sta

tes0

.00

0s

24,5

72K

iB

28sta

tes0

.00

1s

24,70

8K

iB

38

states

0.0

00

s24

,80

4K

iB

48

states

0.0

00

s24

,876

KiB

Sim

ple

Ed

ges

– 19 – 2018-01-25 – Statrafo –

16/45

De

finitio

n.A

nedge

e=

(ℓ,α,ϕ,~r,ℓ

′)resetting

atleast

onequasi-equal

clockis

calledsim

pleedge

ifandonly

ifthefollow

ingconditions

aresat-

isfied:

(i)α=τ,

ϕ≡x≥c,

~r=

〈x:=

0〉,

forsome

constantc

andlo

calclockx,

(ii)I(ℓ)

=x≤c,

(iii)e

isp

re-

andp

ost-d

elay

ed,and

(iv)e

isthe

onlyedge

with

sourceℓ.

Otherw

isee

iscalled

complex

edge.

Tra

nsfo

rma

tion

Sch

eme:

Va

riab

lesa

nd

Ch

an

nels

– 19 – 2018-01-25 – Statrafo –

17/45

Given

anetw

orkN

oftimed

automata,the

variable

san

dch

ann

els

ofQ

E-tran

sform

ation

ofN

′areobtained

bythe

following

procedure:

•re

mo

veallquasi-equalclocks

fromN

,

•foreach

eq

uivale

nce

classofquasi-equalclocks

Y,

add

afresh

clockxY

toN

•ad

da

freshboolean

variabletx

toN

foreachquasi-equalclock

xinN

,initialvalue:t

x:=

1,

•ad

da

freshchannel

resetY

toN

′.

Page 4: Lecture 19: Quasi-Equal Clocks - uni-freiburg.de...2018/01/25  · Lecture 19: Quasi-Equal Clocks 2018-01-25 Dr.Bernd Westphal Albert-Ludwigs-UniversitätFreiburg, Germany Motivation

Tra

nsfo

rma

tion

Sch

eme

(for

Sim

ple

Ed

ges)

– 19 – 2018-01-25 – Statrafo –

18/45

ℓℓ′

I(ℓ)

ϕ

x:=

0

ℓℓ′

Γ(I(ℓ))

Γ(ϕ

)tx:=

0 resetY!

Γ(ϕ

)tx:=

0

resetY?

Co

nstra

int

Tra

nsfo

rma

tionΓ

– 19 – 2018-01-25 – Statrafo –

19/45

De

finitio

n.

LetN

bea

network.

LetY,W

∈ECN

besets

ofquasi-equal

clocksof

N,x

∈Y

andy∈W

clocks.

Given

aclock

constraintϕclk ,w

edefine:

Γ0 (ϕ

clk )

:=

((xY∼c∧

tx)∨(0

∼c∧

¬tx))

,ifϕclk=x∼c,

((xY−xW

∼c∧

tx∧

ty )

,ifϕclk=x−y∼c,

∨(0

−xW

∼c∧

¬tx∧

ty )

∨(x

Y−0∼c∧

tx∧

¬ty )

∨(0

∼c∧

¬tx∧

¬ty ))

Γ0 (ϕ

1 )∧Γ0 (ϕ

2 ),ifϕclk=ϕ1∧ϕ2 .

ThenΓ(ϕ

clk∧ψin

t ):=

Γ0 (ϕ

clk)∧ψin

t .

Here,E

CN

isthe

setofe

qu

ivalen

ceclasse

sof

qu

asi-eq

ualclo

cksinN

.

Resetter

Co

nstru

ction

(for

Sim

ple

Ed

ges)

– 19 – 2018-01-25 – Statrafo –

20/45

•Foreach

equivalenceclass

Y=

x1 ,...,x

n∈ECN

add

are

sette

rR

Yto

N′:

Unst

resetY?

xY:=

0,tx1:=

1,...,txn:=

1

Tra

nsfo

rma

tion

Exa

mp

le(fo

rC

om

plex

Ed

ges)

– 19 – 2018-01-25 – Scomplex –

21/45

Co

rrectness

of

the

Tra

nsfo

rma

tion

– 19 – 2018-01-25 – main –

22/45

QE

-Tra

nsfo

rma

tion

Co

rrectness

– 19 – 2018-01-25 – Scorr –

23/45

Th

eo

rem

.LetN

bea

network

oftimed

automata

andCF

aconfiguration

formula

overN

.Then

N|=

∃♦CF

⇐⇒

N′|=

∃♦Ω(C

F).

Page 5: Lecture 19: Quasi-Equal Clocks - uni-freiburg.de...2018/01/25  · Lecture 19: Quasi-Equal Clocks 2018-01-25 Dr.Bernd Westphal Albert-Ludwigs-UniversitätFreiburg, Germany Motivation

Qu

eryT

ran

sform

atio

n

– 19 – 2018-01-25 – Scorr –

24/45

De

finitio

n.Let

N=

A1 ,...,A

n

bea

network

with

equivalenceclasses

ofquasi-equalclocksECN

=Y

1 ,...,Ym

andβ

abasic

formula

overN.

Ω0 (β

)=

ℓ∨(ℓ

′∧x)

,ifβ=

Ai .ℓ,

(ℓ,α,ϕ,〈x

:=0〉,ℓ

′)sim

ple.

(ℓ′∧

¬x)

,ifβ=

Ai .ℓ

′,(ℓ,α

,ϕ,〈x

:=0〉,ℓ

′)sim

ple.

β,ifβ∈A

i .ℓ,Ai .ℓ

′,(ℓ,α

,ϕ,~r,ℓ

′)notsim

ple.

Γ(β

)[tx /(t

x∨x)|x∈Y,Y

∈ECN]

,ifβ=ϕclk∧ϕin

t .

Ω(C

F)=

∃x1 ,...,x

|X(N

)| •Ω

0 (CF)∧κN

,where

κN

:=∧

1≤i≤

n,

1≤j≤m

,

(ℓ,α

,ϕ,〈x

:=0〉,ℓ

′)∈Sim

pEdgesYj(A

i )

κ(x),

κ(x):(x

=⇒

(ℓ,α

,ϕ,〈x

:=0〉,ℓ

′)∈Sim

pEdgesYj(A

i )

ℓ′∧

ℓnstR

Yj ).

Bystructuralinduction

Ω0

transforms

configurationform

ulasCF

.

Exa

mp

le

– 19 – 2018-01-25 – Scorr –

25/45

i,1i,10,0

,→

∗⟨

w,1

i,1

0.1,0

.1

,→

∗⟨

d,1

d,1

c,c

,→

i,0i,0c,c

,→

i,1i,10,c

,→

•N

|=∃♦

S0.idle

∧S1.done

•N

′|=

∃♦(∃x0 ,x

1•(S0

.idle∧¬x0 )

∧(S1.done

∨(S1.idle

∧x1 ))

∧(x

0=⇒

(S0.idle

∧nst))

∧(x

1=⇒

(S1.idle∧

nst)))

Exa

mp

le

– 19 – 2018-01-25 – Scorr –

25/45

i,1i,10,0

,→

∗⟨

w,1

i,1

0.1,0

.1

,→

∗⟨

d,1

d,1

c,c

,→

i,0i,0c,c

,→

i,1i,10,c

,→

•N

|=∃♦(x

0=

0∧x1>

0)

•N

′|=

∃♦(∃x0 ,x

1•((x

0=

0∧(t

x0∨x0 ))

∨(0

=0∧¬(t

x0∨x0 )))

∧((x

1>

0∧(t

x1∨x1 ))

∨(0>

0∧¬(t

x1∨x1 )))

∧(x

0=⇒

(S0.idle

∧nst))

∧(x

1=⇒

(S1.idle∧

nst)))

Bisim

ula

tion

Pro

ofs

– 19 – 2018-01-25 – main –

26/45

Pro

of

Sketch

– 19 – 2018-01-25 – Sbisim –

27/45

•U

sea

we

akb

isimu

lation

relatio

n—

thebasic

idea:

•Let

Ti=

(Confi ,Λ

i ,λ−→|λ∈Λi ,C

ini,i ),i=

1,2,be

labelledtransition

systems

with

(forsimplicity)C

ini,i=

cini,i .

•A

relationR

⊆Conf1×Conf2

iscalled

we

akb

isimu

lation

ifandonly

if

(i)the

initialco

nfig

uratio

ns

arerelated,i.e.(c

ini,1,c

ini,2 )∈R

,

(ii)tw

orelated

configurationssatisfy

the

same

term

s,i.e.

∀c1,c2,term

•(c

1,c2 )

∈R

=⇒

(c1|=

term

⇐⇒

c2|=

term

)

(iii)given

two

relatedconfigurations

(c1,c2 )

∈R

,

a)ifT1

hasaλ

-transitionfrom

c1

tosom

ec′1 ,

thenT2

hasτ-

andλ

-transitionsfrom

c2

toa

relatedc′2 ,i.e.

∀c′1•c1

λ−→c′1

=⇒

∃c′2•c2

λ−→∗c′2∧(c

′1,c′2 )

∈R

b)sim

ilarlyfor

T2

toT1 ,i.e.

∀c′2•c2

λ−→c′2

=⇒

∃c′1•c1

λ−→∗c′1∧(c

′1,c′2 )

∈R

•T1

andT2

arecalled

we

aklyb

isimilariffthere

existsa

weak

bisimulation

forT1 ,T

2 .

On

ceA

ga

in

– 19 – 2018-01-25 – Sbisim –

28/45

(i)(c

ini,1,c

ini,2 )∈R

,

(ii)∀c1,c2,term

•(c

1,c2 )

∈R

=⇒

(c1|=

term

⇐⇒

c2|=

term

)

(iii)forall(c

1,c2 )

∈R

,

a)“T

2can

simu

latetran

sition

so

fT1 ”:

c1

λ−→c′1

c2

R=⇒

∃c′2•

c1

λ−→c′1

c2

λ−→∗c′2

RR

(usingany

finitenum

berofτ-transitions

inbetw

een)

b)“T

1can

simu

latetran

sition

so

fT2 ”:

c1

c2

λ−→c′2

R=⇒

∃c′1•

c1

λ−→∗c′1

c′2 R

Page 6: Lecture 19: Quasi-Equal Clocks - uni-freiburg.de...2018/01/25  · Lecture 19: Quasi-Equal Clocks 2018-01-25 Dr.Bernd Westphal Albert-Ludwigs-UniversitätFreiburg, Germany Motivation

Exa

mp

le

– 19 – 2018-01-25 – Sbisim –

29/45

(i)(c

ini,1,c

ini,2)∈

R,

(ii)∀c1,c2,term

•(c

1,c

2)∈

R=⇒

(c1|=

term

⇐⇒

c2|=

term

)

(iii)forall(c

1,c2)∈

R,

a)c1

λ−→c′1

c2

R=⇒

∃c′2•

c′1

c2

λ−→∗c′2 R

b)

c1

c2

λ−→c′2

R=⇒

∃c′1•

c1

λ−→∗c′1

c′2 R

A1 :

A2 :

Exa

mp

le

– 19 – 2018-01-25 – Sbisim –

29/45

(i)(c

ini,1,c

ini,2)∈

R,

(ii)∀c1,c2,term

•(c

1,c

2)∈

R=⇒

(c1|=

term

⇐⇒

c2|=

term

)

(iii)forall(c

1,c2)∈

R,

a)c1

λ−→c′1

c2

R=⇒

∃c′2•

c′1

c2

λ−→∗c′2 R

b)

c1

c2

λ−→c′2

R=⇒

∃c′1•

c1

λ−→∗c′1

c′2 R

A1 :

A3 :

Wh

at

isIt

Go

od

Fo

r?

– 19 – 2018-01-25 – Sbisim –

30/45

(i)(c

ini,1,c

ini,2)∈

R,

(ii)∀c1,c2,term

•(c

1,c2)∈

R=⇒

(c1|=

term

⇐⇒

c2|=

term

)

(iii)forall(c

1,c2)∈

R,

a)c1

λ−→c′1

c2

R=⇒

∃c′2•

c′1

c2

λ−→∗c′2 R

b)

c1

c2

λ−→c′2

R=⇒

∃c′1•

c1

λ−→∗c′1

c′2 R

•Let

term

bea

termovertw

ow

eaklybisim

ilarnetworks

Nand

N′.

•C

laim:N

|=∃♦term

⇐⇒

N′|=

∃♦term

.

•P

roo

f:

•Because

Nand

N′are

weakly

bisimilar,there

isa

simu

lation

relatio

nR

.

•D

irection“=⇒

”:LetN

|=∃♦term

.

•Thus

thereis

aco

mp

utatio

np

athc1,0

λ1

−→

c1,1

λ2

−→

...

λn

−−→c1,n

with

c1,n

|=term

.

•In

du

ction

ove

rle

ng

tho

fp

ath:

•C

asen=

0:Then

c1,0

|=term

andc0,1

isan

initialconfiguration,thus

c2,0

isR

-related(by

(i))andthus

c2,0

|=term

(by(ii)).

•C

asen→

n+

1:

Forthepath

c1,0

λ1

−→

...

λn

−−→c1,n

λn+

1−−−→

c1,n

+1 ,there

is(by

ind

uctio

nh

yp

oth

esis)

anR

-relatedconfiguration

c2,m

,m≥

n, re

achab

leinN

′.

By(iii).a),there

isa

configurationc′2,m

,which

isR

-relatedto

c1,n

+1 ,

andre

achab

lefrom

c2,m

,thus,by(ii),c

1,n

+1|=

term

.

•D

irection“⇐

=”:sim

ilar.

Pro

of

of

QE

-Co

rrectness

– 19 – 2018-01-25 – main –

31/45

An

oth

erW

eak

Bisim

ula

tion

Rela

tion

No

tion

– 19 – 2018-01-25 – Sproof –

32/45

De

finitio

n.[W

eak

Bisim

ulatio

n]

Netw

orksN,N

′arecalled

weakly

bisimilarifand

onlyif

thereis

aw

eakbisim

ulationrelation

QE

⊆Conf(N

)×Conf(N

′)such

that:

(i)∀s∈C

ini (N

)∃r∈C

ini (N

′)•(s,r)

∈QE

,∀r∈C

ini (N

′)∃s∈C

ini (N

)•(s,r)

∈QE

.

(ii)∀CF

∈CF

N∀(s,r)

∈QE

•s|=

δCF

=⇒

r|=

δΩ(C

F).

(iii)∀CF

∈CF

N∀(s,r)

∈QE

r|=

δΩ(C

F)=⇒

∃s∈Conf(N

)•(s,r)

∈QE

∧s|=

δCF.

(iv)∀(s,r)

∈QE

∀λ,s

′•s

λ−→s′=⇒

∃r′•r

λ−→∗r′∧

(s′,r

′)∈QE

(v)∀CF

∈CF

N∀(s,r)

∈QE

∀λ,r

′•

rλ−→r′∧r′|=

δ′Ω

0 (CF)=⇒

∃s′•s

λ−→∗s′∧

(s′,r

′)∈QE

.

Here,r

τ−→∗r′denotes

zeroorm

oresuccessive

τ-transitionsfrom

rtor′.

AW

eak

Bisim

ula

tion

Rela

tion

for

QE

-Tra

nsfo

rma

tion

– 19 – 2018-01-25 – Sproof –

33/45

•Let

Nbe

anetw

orkoftim

edautom

ataand

N′the

network

obtainedby

QE-transform

ationof

N.Then

QE

:Conf(N

)→

2ConfN

′definedas

follows

isa

we

akb

isimu

lation

relatio

n.

QE(〈 ~ℓ

s,νs 〉)

=

r=

〈(ℓr,1,...,ℓ

r,n,ℓR

Y1,...,ℓR

Ym),ν

r〉|

(∀x∈

V(N

)•νr(x

)=

νs(x

))(6.2.1)

∧∀1≤

i≤

n•

(6.2.2)(

(

ℓr,i=

ℓs,i∧∀x∈

X(A

i )•νs(x

)=

νr(x

x)·νr(t

x))

(6.2.2a)

∨(

∃(ℓ,α

,ϕ,〈x

:=0〉,ℓ

′)∈

Sim

pEdgesY(A

i )•ℓR

Y6=

ℓin

iRY

ℓs,i=

ℓ∧ℓr,i=

ℓ′∧νs(x

)=

νr(x

x)∧νr(t

x)=

0∧

∀y∈

X(A

i )\x•νs(y)=

νr(x

y)·νr(t

y))

)

(6.2.2b)

∧∀Y

∈ECN

•(

(νr(s

Ai

Y)=

1⇐⇒

∃(ℓ,α,ϕ

,~r,ℓ′)

∈Sim

pEdgesY(A

i )•ℓr,i=

ℓ)(6.2.3)

∧νr(prio

Y)=

1⇐⇒

(ℓr,R

Y=

ℓnstR

Y))

(6.2.4)

Page 7: Lecture 19: Quasi-Equal Clocks - uni-freiburg.de...2018/01/25  · Lecture 19: Quasi-Equal Clocks 2018-01-25 Dr.Bernd Westphal Albert-Ludwigs-UniversitätFreiburg, Germany Motivation

Exa

mp

le

– 19 – 2018-01-25 – Sproof –

34/45

⟨i,0i,0⟩

,0→

∗⟨w

,0.1

i,0

.1

,0.1→

∗⟨d

,c

d,c

,c→

i,0d,c

,c

⟨d,c

i,0⟩

,c

→⟨i,0

i,0⟩

,c→

i,1i,1i,0

,0→

∗⟨

w,1

i,1

i,0.1

,0.1→

∗⟨

d,1

d,1

i,c

,c→⟨

i,0i,0n,c

,c→

i,1i,1i,0

,c→

Pro

of

of

Ha

ving

Ind

eeda

Bisim

ula

tion

– 19 – 2018-01-25 – Sproof –

35/45

ss′

rr′

t

r

τ

ss′

rr′

λ

λλ

ss′

rr′

λ0

ss′

rr′

λ

λ′

λ

ss′

rr′

λλ

•s

λ−→s′to

rλ−→

r′:

Case

s:

•delay

d>

0:s

s′

rr′

t

r

τ

resettermay

needto

goback

toidle,

thendo

same

delay.

Pro

of

of

Ha

ving

Ind

eeda

Bisim

ula

tion

– 19 – 2018-01-25 – Sproof –

35/45

ss′

rr′

t

r

τ

ss′

rr′

λ

λλ

ss′

rr′

λ0

ss′

rr′

λ

λ′

λ

ss′

rr′

λλ

•s

λ−→s′to

rλ−→

r′:

Case

s:

•delay

d>

0

•firstsim

pleedge:

ss′

rr′

λ

λλ

firstsimple

edgespushes

resetterandallothersim

ples.

Pro

of

of

Ha

ving

Ind

eeda

Bisim

ula

tion

– 19 – 2018-01-25 – Sproof –

35/45

ss′

rr′

t

r

τ

ss′

rr′

λ

λλ

ss′

rr′

λ0

ss′

rr′

λ

λ′

λ

ss′

rr′

λλ

•s

λ−→s′to

rλ−→

r′:

Case

s:

•delay

d>

0

•firstsim

pleedge

•othersim

pleedge:

ss′

rr′

λ0

resetterisin

nst,donothing

inN

′.

Pro

of

of

Ha

ving

Ind

eeda

Bisim

ula

tion

– 19 – 2018-01-25 – Sproof –

35/45

ss′

rr′

t

r

τ

ss′

rr′

λ

λλ

ss′

rr′

λ0

ss′

rr′

λ

λ′

λ

ss′

rr′

λλ

•s

λ−→s′to

rλ−→

r′:

Case

s:

•delay

d>

0

•firstsim

pleedge

•othersim

pleedge

•non-reset,oratleastone

complex:

ss′

rr′

λ

λ′

λ

resettermay

needto

pushsim

plesfirst,then

takesam

eedge

inN

′.

Pro

of

of

Ha

ving

Ind

eeda

Bisim

ula

tion

– 19 – 2018-01-25 – Sproof –

35/45

ss′

rr′

t

r

τ

ss′

rr′

λ

λλ

ss′

rr′

λ0

ss′

rr′

λ

λ′

λ

ss′

rr′

λλ

•s

λ−→s′to

rλ−→

r′:

Case

s:

•delay

d>

0

•firstsim

pleedge

•othersim

pleedge

•non-reset,oratleastone

complex

•delay

d=

0:s

s′

rr′

λλ

dosam

edelay

inN

′.

Page 8: Lecture 19: Quasi-Equal Clocks - uni-freiburg.de...2018/01/25  · Lecture 19: Quasi-Equal Clocks 2018-01-25 Dr.Bernd Westphal Albert-Ludwigs-UniversitätFreiburg, Germany Motivation

Pro

of

of

Ha

ving

Ind

eeda

Bisim

ula

tion

– 19 – 2018-01-25 – Sproof –

35/45

ss′

rr′

λλ

ss′

rr′

ss′

rr′

λ

λλ

•r

λ−→r′to

sλ−→

s′:

Case

s:

•delay

d>

0:s

s′

rr′

λλ

dosam

edelay

inN

.

Pro

of

of

Ha

ving

Ind

eeda

Bisim

ula

tion

– 19 – 2018-01-25 – Sproof –

35/45

ss′

rr′

λλ

ss′

rr′

ss′

rr′

λ

λλ

•r

λ−→r′to

sλ−→

s′:

Case

s:

•delay

d>

0

•com

plex,ornon-resetting:s

s′

rr′

λλ

takesam

eedge

inN

.

Pro

of

of

Ha

ving

Ind

eeda

Bisim

ula

tion

– 19 – 2018-01-25 – Sproof –

35/45

ss′

rr′

λλ

ss′

rr′

ss′

rr′

λ

λλ

•r

λ−→r′to

sλ−→

s′:

Case

s:

•delay

d>

0

•com

plex,ornon-resetting

•resetterto

nst,orreturns

(nosim

plesenab.in

N):

ss′

rr′

donothing

inN

.

Pro

of

of

Ha

ving

Ind

eeda

Bisim

ula

tion

– 19 – 2018-01-25 – Sproof –

35/45

ss′

rr′

λλ

ss′

rr′

ss′

rr′

λ

λλ

•r

λ−→r′to

sλ−→

s′:

Case

s:

•delay

d>

0

•com

plex,ornon-resetting

•resetterto

nst,orreturns

(nosim

plesenab.in

N)

•resetterreturns

(some

simples

enab.inN

):s

s′

rr′

λ

λλ

takeallenabled

simple

edgesinN

.

Mo

reE

xperim

ents

– 19 – 2018-01-25 – main –

36/45

Ca

seS

tud

ies

– 19 – 2018-01-25 – Scasestudies –

37/45

CD

50·106

states

10

GiB

5000

sec

6 • ••7 • ••

8 •••9 •••

10 •••

11 •••

12 •••

13 •••

14 •••

89

,39

6.8

9kS

ts9

,49

2.4M

iB6

,45

7.8s

15 •

CD

-K

50·106

states

10

GiB

5000

sec

6 • ••7 • ••

8 • ••9 • ••

10 • ••

11 • ••

12 •••

13 •••

14 •••

15 •••

93

8.18

kSts

146

.8M

iB4

2.9s

PG

100·106

states

5GiB

104

sec

9 •• •10 •• •

11 •• •

69

2.24kS

ts29

.5M

iB17,76

3.6

s

12 •

13 •

14 •

15 •

16 •

17 •

18 •

PG-K

100·106

states

5GiB

104

sec

9 •••10 •••

11 •••

12 •••

13 •••

14 •••

15 •• •

16 •• •

17 •• •

18 •• •

202,113

.18kS

ts6

,234

.1M

iB9

,179.0

s

FB

25·106

states

10

GiB

5000

sec

14 • ••

15 • • •

16 • • •

17 • • •

18 •• •

39

3,24

kSts

86

.7M

iB9

,427.0

s

19 •

20 •

21 •

22 •

23 •

FB-K

25·106

states

10

GiB

5000

sec

14 • ••

15 •••

16 •••

17 •••

18 •••

19 •••

20 •••

21 •••

22 •••

23 •••

50

,33

1.70kS

ts8

,732.3

MiB

8,6

04

.0s

EP

30·106

states

10

GiB

5000

sec

15 • ••

16 •••

17 •••

18 •••

19 •••

20 •••

21 •• •

22 •• •

23 •• •

25,16

5.9

0kS

ts4

,46

2.5M

iB5

,921.0

s

24 •

EP-K

30·106

states

10

GiB

5000

sec

15 • ••

16 • ••

17 • ••

18 • ••

19 • ••

20 • ••

21 • ••

22 • ••

23 • ••

24 • ••

50

,33

1.73kS

ts12,5

06

.5M

iB6

,64

0.1

s

LS

15·106

states

5GiB

2000

sec

1 • ••2 • ••

3 • ••4 • ••

5 • ••6 •••

7 •••8 •••

9 •••

10 •• •

33

,743

.86

kSts

3,4

01.2

MiB

3,4

27.3s

LS-K

15·106

states

5GiB

2000

sec

1 • ••2 • ••

3 • ••4 • ••

5 • ••6 •••

7 •••8 •••

9 •••

10 •••

34

,45

1.53

kSts

5,5

56

.2M

iB1,5

61.8

s

TT

10·106

states

2GiB

1000

sec

1 • ••2 • ••

3 • ••4 •••

5 •••6 •••

7 •••

10,8

47.6

1kS

ts6

25.3

MiB

236

.3s

TT-K

10·106

states

2GiB

1000

sec

1 • ••2 • ••

3 • ••4 • ••

5 •••6 •••

7 •••

11,05

4.9

7kS

ts1,23

2.3M

iB19

7.2s

FS

20·106

states

5GiB

2000

sec

9 •• •16

,910

.28kS

ts1,8

44

.4M

iB3

,30

0.7

s

10 •

15 •

20 •

40 •

60 •

80 •100•

•126•

FS-K

20·106

states

5GiB

2000

sec

9 • ••10 • ••

15 • ••

20 • ••

40 • ••

60 • ••

80 • ••

100

• ••• ••126

• ••

6,9

82.76

kSts

7,58

0.9

MiB

2,102.4

s

Page 9: Lecture 19: Quasi-Equal Clocks - uni-freiburg.de...2018/01/25  · Lecture 19: Quasi-Equal Clocks 2018-01-25 Dr.Bernd Westphal Albert-Ludwigs-UniversitätFreiburg, Germany Motivation

Ca

seS

tud

ies

– 19 – 2018-01-25 – Scasestudies –

37/45

CD

50·106

states

10

GiB

5000

sec

6 • ••7 • ••

8 •••9 •••

10 •••

11 •••

12 •••

13 •••

14 •••

89

,39

6.8

9kS

ts9

,49

2.4M

iB6

,45

7.8s

15 •

CD

-K

50·106

states

10

GiB

5000

sec

6 • ••7 • ••

8 • ••9 • ••

10 • ••

11 • ••

12 •••

13 •••

14 •••

15 •••

93

8.18

kSts

146

.8M

iB4

2.9s

PG

100·106

states

5GiB

104

sec

9 •• •10 •• •

11 •• •

69

2.24kS

ts29

.5M

iB17,76

3.6

s

12 •

13 •

14 •

15 •

16 •

17 •

18 •

PG-K

100·106

states

5GiB

104

sec

9 •••10 •••

11 •••

12 •••

13 •••

14 •••

15 •• •

16 •• •

17 •• •

18 •• •

202,113

.18kS

ts6

,234

.1M

iB9

,179.0

s

FB

25·106

states

10

GiB

5000

sec

14 • ••

15 • • •

16 • • •

17 • • •

18 •• •

39

3,24

kSts

86

.7M

iB9

,427.0

s

19 •

20 •

21 •

22 •

23 •

FB-K

25·106

states

10

GiB

5000

sec

14 • ••

15 •••

16 •••

17 •••

18 •••

19 •••

20 •••

21 •••

22 •••

23 •••

50

,33

1.70kS

ts8

,732.3

MiB

8,6

04

.0s

EP

30·106

states

10

GiB

5000

sec

15 • ••

16 •••

17 •••

18 •••

19 •••

20 •••

21 •• •

22 •• •

23 •• •

25,16

5.9

0kS

ts4

,46

2.5M

iB5

,921.0

s

24 •

EP-K

30·106

states

10

GiB

5000

sec

15 • ••

16 • ••

17 • ••

18 • ••

19 • ••

20 • ••

21 • ••

22 • ••

23 • ••

24 • ••

50

,33

1.73kS

ts12,5

06

.5M

iB6

,64

0.1

s

LS

15·106

states

5GiB

2000

sec

1 • ••2 • ••

3 • ••4 • ••

5 • ••6 •••

7 •••8 •••

9 •••

10 •• •

33

,743

.86

kSts

3,4

01.2

MiB

3,4

27.3s

LS-K

15·106

states

5GiB

2000

sec

1 • ••2 • ••

3 • ••4 • ••

5 • ••6 •••

7 •••8 •••

9 •••

10 •••

34

,45

1.53

kSts

5,5

56

.2M

iB1,5

61.8

s

TT

10·106

states

2GiB

1000

sec

1 • ••2 • ••

3 • ••4 •••

5 •••6 •••

7 •••

10,8

47.6

1kS

ts6

25.3

MiB

236

.3s

TT-K

10·106

states

2GiB

1000

sec

1 • ••2 • ••

3 • ••4 • ••

5 •••6 •••

7 •••

11,05

4.9

7kS

ts1,23

2.3M

iB19

7.2s

FS

20·106

states

5GiB

2000

sec

9 •• •16

,910

.28kS

ts1,8

44

.4M

iB3

,30

0.7

s

10 •

15 •

20 •

40 •

60 •

80 •100•

•126•

FS-K

20·106

states

5GiB

2000

sec

9 • ••10 • ••

15 • ••

20 • ••

40 • ••

60 • ••

80 • ••

100

• ••• ••126

• ••

6,9

82.76

kSts

7,58

0.9

MiB

2,102.4

s

CD

50·106

states

10

GiB

5000

sec

6 • ••7 • ••

8 •••9 •••

10 •••

11 •••

12 •••

13 •••

14 •••

89

,39

6.8

9kS

ts9

,49

2.4M

iB6

,45

7.8s

15 •

CD

-K

50·106

states

10

GiB

5000

sec

6 • ••7 • ••

8 • ••9 • ••

10 • ••

11 • ••

12 •••

13 •••

14 •••

15 •••

93

8.18

kSts

146

.8M

iB4

2.9s

H.E.Jensen,K.G

.Larsen,etal.“Mo

dellin

ga

nd

An

alysis

of

aC

ollisio

nA

void

an

ceP

roto

colusin

gS

PIN

an

dU

pp

aa

l”.In:DIM

AC

S.Vol.32.DIM

AC

S.1996,pp.33-50.

Ca

seS

tud

ies

– 19 – 2018-01-25 – Scasestudies –

37/45

CD

50·106

states

10

GiB

5000

sec

6 • ••7 • ••

8 •••9 •••

10 •••

11 •••

12 •••

13 •••

14 •••

89

,39

6.8

9kS

ts9

,49

2.4M

iB6

,45

7.8s

15 •

CD

-K

50·106

states

10

GiB

5000

sec

6 • ••7 • ••

8 • ••9 • ••

10 • ••

11 • ••

12 •••

13 •••

14 •••

15 •••

93

8.18

kSts

146

.8M

iB4

2.9s

PG

100·106

states

5GiB

104

sec

9 •• •10 •• •

11 •• •

69

2.24kS

ts29

.5M

iB17,76

3.6

s

12 •

13 •

14 •

15 •

16 •

17 •

18 •

PG-K

100·106

states

5GiB

104

sec

9 •••10 •••

11 •••

12 •••

13 •••

14 •••

15 •• •

16 •• •

17 •• •

18 •• •

202,113

.18kS

ts6

,234

.1M

iB9

,179.0

s

FB

25·106

states

10

GiB

5000

sec

14 • ••

15 • • •

16 • • •

17 • • •

18 •• •

39

3,24

kSts

86

.7M

iB9

,427.0

s

19 •

20 •

21 •

22 •

23 •

FB-K

25·106

states

10

GiB

5000

sec

14 • ••

15 •••

16 •••

17 •••

18 •••

19 •••

20 •••

21 •••

22 •••

23 •••

50

,33

1.70kS

ts8

,732.3

MiB

8,6

04

.0s

EP

30·106

states

10

GiB

5000

sec

15 • ••

16 •••

17 •••

18 •••

19 •••

20 •••

21 •• •

22 •• •

23 •• •

25,16

5.9

0kS

ts4

,46

2.5M

iB5

,921.0

s

24 •

EP-K

30·106

states

10

GiB

5000

sec

15 • ••

16 • ••

17 • ••

18 • ••

19 • ••

20 • ••

21 • ••

22 • ••

23 • ••

24 • ••

50

,33

1.73kS

ts12,5

06

.5M

iB6

,64

0.1

s

LS

15·106

states

5GiB

2000

sec

1 • ••2 • ••

3 • ••4 • ••

5 • ••6 •••

7 •••8 •••

9 •••

10 •• •

33

,743

.86

kSts

3,4

01.2

MiB

3,4

27.3s

LS-K

15·106

states

5GiB

2000

sec

1 • ••2 • ••

3 • ••4 • ••

5 • ••6 •••

7 •••8 •••

9 •••

10 •••

34

,45

1.53

kSts

5,5

56

.2M

iB1,5

61.8

s

TT

10·106

states

2GiB

1000

sec

1 • ••2 • ••

3 • ••4 •••

5 •••6 •••

7 •••

10,8

47.6

1kS

ts6

25.3

MiB

236

.3s

TT-K

10·106

states

2GiB

1000

sec

1 • ••2 • ••

3 • ••4 • ••

5 •••6 •••

7 •••

11,05

4.9

7kS

ts1,23

2.3M

iB19

7.2s

FS

20·106

states

5GiB

2000

sec

9 •• •16

,910

.28kS

ts1,8

44

.4M

iB3

,30

0.7

s

10 •

15 •

20 •

40 •

60 •

80 •100•

•126•

FS-K

20·106

states

5GiB

2000

sec

9 • ••10 • ••

15 • ••

20 • ••

40 • ••

60 • ••

80 • ••

100

• ••• ••126

• ••

6,9

82.76

kSts

7,58

0.9

MiB

2,102.4

s

PG

100·106

states

5GiB

104

sec

9 •• •10 •• •

11 •• •

69

2.24kS

ts29

.5M

iB17,76

3.6

s

12 •

13 •

14 •

15 •

16 •

17 •

18 •

PG-K

100·106

states

5GiB

104

sec

9 •••10 •••

11 •••

12 •••

13 •••

14 •••

15 •• •

16 •• •

17 •• •

18 •• •

202,113

.18kS

ts6

,234

.1M

iB9

,179.0

s

B.Bérard,P.Bouyer,etal.“An

alysin

gth

eP

GM

Pro

toco

lwith

UP

PA

AL”.In:IJPR

42.14(20

04),pp.

2773-2791.

Ca

seS

tud

ies

– 19 – 2018-01-25 – Scasestudies –

37/45

CD

50·106

states

10

GiB

5000

sec

6 • ••7 • ••

8 •••9 •••

10 •••

11 •••

12 •••

13 •••

14 •••

89

,39

6.8

9kS

ts9

,49

2.4M

iB6

,45

7.8s

15 •

CD

-K

50·106

states

10

GiB

5000

sec

6 • ••7 • ••

8 • ••9 • ••

10 • ••

11 • ••

12 •••

13 •••

14 •••

15 •••

93

8.18

kSts

146

.8M

iB4

2.9s

PG

100·106

states

5GiB

104

sec

9 •• •10 •• •

11 •• •

69

2.24kS

ts29

.5M

iB17,76

3.6

s

12 •

13 •

14 •

15 •

16 •

17 •

18 •

PG-K

100·106

states

5GiB

104

sec

9 •••10 •••

11 •••

12 •••

13 •••

14 •••

15 •• •

16 •• •

17 •• •

18 •• •

202,113

.18kS

ts6

,234

.1M

iB9

,179.0

s

FB

25·106

states

10

GiB

5000

sec

14 • ••

15 • • •

16 • • •

17 • • •

18 •• •

39

3,24

kSts

86

.7M

iB9

,427.0

s

19 •

20 •

21 •

22 •

23 •

FB-K

25·106

states

10

GiB

5000

sec

14 • ••

15 •••

16 •••

17 •••

18 •••

19 •••

20 •••

21 •••

22 •••

23 •••

50

,33

1.70kS

ts8

,732.3

MiB

8,6

04

.0s

EP

30·106

states

10

GiB

5000

sec

15 • ••

16 •••

17 •••

18 •••

19 •••

20 •••

21 •• •

22 •• •

23 •• •

25,16

5.9

0kS

ts4

,46

2.5M

iB5

,921.0

s

24 •

EP-K

30·106

states

10

GiB

5000

sec

15 • ••

16 • ••

17 • ••

18 • ••

19 • ••

20 • ••

21 • ••

22 • ••

23 • ••

24 • ••

50

,33

1.73kS

ts12,5

06

.5M

iB6

,64

0.1

s

LS

15·106

states

5GiB

2000

sec

1 • ••2 • ••

3 • ••4 • ••

5 • ••6 •••

7 •••8 •••

9 •••

10 •• •

33

,743

.86

kSts

3,4

01.2

MiB

3,4

27.3s

LS-K

15·106

states

5GiB

2000

sec

1 • ••2 • ••

3 • ••4 • ••

5 • ••6 •••

7 •••8 •••

9 •••

10 •••

34

,45

1.53

kSts

5,5

56

.2M

iB1,5

61.8

s

TT

10·106

states

2GiB

1000

sec

1 • ••2 • ••

3 • ••4 •••

5 •••6 •••

7 •••

10,8

47.6

1kS

ts6

25.3

MiB

236

.3s

TT-K

10·106

states

2GiB

1000

sec

1 • ••2 • ••

3 • ••4 • ••

5 •••6 •••

7 •••

11,05

4.9

7kS

ts1,23

2.3M

iB19

7.2s

FS

20·106

states

5GiB

2000

sec

9 •• •16

,910

.28kS

ts1,8

44

.4M

iB3

,30

0.7

s

10 •

15 •

20 •

40 •

60 •

80 •100•

•126•

FS-K

20·106

states

5GiB

2000

sec

9 • ••10 • ••

15 • ••

20 • ••

40 • ••

60 • ••

80 • ••

100

• ••• ••126

• ••

6,9

82.76

kSts

7,58

0.9

MiB

2,102.4

s

FB

25·106

states

10

GiB

5000

sec

14 • ••

15 • • •

16 • • •

17 • • •

18 • • •

39

3,24

kSts

86

.7M

iB9

,427.0

s

19 •

20 •

21 •

22 •

23 •

FB-K

25·106

states

10

GiB

5000

sec

14 • ••

15 •••

16 •••

17 •••

18 •••

19 •••

20 •••

21 •••

22 •••

23 •••

50

,33

1.70kS

ts8

,732.3

MiB

8,6

04

.0s

N.Petalidis.“V

erificatio

no

fa

Fieldb

usS

ched

uling

Pro

toco

lUsin

gT

imed

Auto

ma

ta”.In:CI28

.5(20

09),pp.655-672.

Ca

seS

tud

ies

– 19 – 2018-01-25 – Scasestudies –

37/45

CD

50·106

states

10

GiB

5000

sec

6 • ••7 • ••

8 •••9 •••

10 •••

11 •••

12 •••

13 •••

14 •••

89

,39

6.8

9kS

ts9

,49

2.4M

iB6

,45

7.8s

15 •

CD

-K

50·106

states

10

GiB

5000

sec

6 • ••7 • ••

8 • ••9 • ••

10 • ••

11 • ••

12 •••

13 •••

14 •••

15 •••

93

8.18

kSts

146

.8M

iB4

2.9s

PG

100·106

states

5GiB

104

sec

9 •• •10 •• •

11 •• •

69

2.24kS

ts29

.5M

iB17,76

3.6

s

12 •

13 •

14 •

15 •

16 •

17 •

18 •

PG-K

100·106

states

5GiB

104

sec

9 •••10 •••

11 •••

12 •••

13 •••

14 •••

15 •• •

16 •• •

17 •• •

18 •• •

202,113

.18kS

ts6

,234

.1M

iB9

,179.0

s

FB

25·106

states

10

GiB

5000

sec

14 • ••

15 • • •

16 • • •

17 • • •

18 •• •

39

3,24

kSts

86

.7M

iB9

,427.0

s

19 •

20 •

21 •

22 •

23 •

FB-K

25·106

states

10

GiB

5000

sec

14 • ••

15 •••

16 •••

17 •••

18 •••

19 •••

20 •••

21 •••

22 •••

23 •••

50

,33

1.70kS

ts8

,732.3

MiB

8,6

04

.0s

EP

30·106

states

10

GiB

5000

sec

15 • ••

16 •••

17 •••

18 •••

19 •••

20 •••

21 •• •

22 •• •

23 •• •

25,16

5.9

0kS

ts4

,46

2.5M

iB5

,921.0

s

24 •

EP-K

30·106

states

10

GiB

5000

sec

15 • ••

16 • ••

17 • ••

18 • ••

19 • ••

20 • ••

21 • ••

22 • ••

23 • ••

24 • ••

50

,33

1.73kS

ts12,5

06

.5M

iB6

,64

0.1

s

LS

15·106

states

5GiB

2000

sec

1 • ••2 • ••

3 • ••4 • ••

5 • ••6 •••

7 •••8 •••

9 •••

10 •• •

33

,743

.86

kSts

3,4

01.2

MiB

3,4

27.3s

LS-K

15·106

states

5GiB

2000

sec

1 • ••2 • ••

3 • ••4 • ••

5 • ••6 •••

7 •••8 •••

9 •••

10 •••

34

,45

1.53

kSts

5,5

56

.2M

iB1,5

61.8

s

TT

10·106

states

2GiB

1000

sec

1 • ••2 • ••

3 • ••4 •••

5 •••6 •••

7 •••

10,8

47.6

1kS

ts6

25.3

MiB

236

.3s

TT-K

10·106

states

2GiB

1000

sec

1 • ••2 • ••

3 • ••4 • ••

5 •••6 •••

7 •••

11,05

4.9

7kS

ts1,23

2.3M

iB19

7.2s

FS

20·106

states

5GiB

2000

sec

9 •• •16

,910

.28kS

ts1,8

44

.4M

iB3

,30

0.7

s

10 •

15 •

20 •

40 •

60 •

80 •100•

•126•

FS-K

20·106

states

5GiB

2000

sec

9 • ••10 • ••

15 • ••

20 • ••

40 • ••

60 • ••

80 • ••

100

• ••• ••126

• ••

6,9

82.76

kSts

7,58

0.9

MiB

2,102.4

s

EP

30·106

states

10

GiB

5000

sec

15 • ••

16 •••

17 •••

18 •••

19 •••

20 •••

21 •• •

22 •• •

23 •• •

25,16

5.9

0kS

ts4

,46

2.5M

iB5

,921.0

s

24 •

EP-K

30·106

states

10

GiB

5000

sec

15 • ••

16 • ••

17 • ••

18 • ••

19 • ••

20 • ••

21 • ••

22 • ••

23 • ••

24 • ••

50

,33

1.73kS

ts12,5

06

.5M

iB6

,64

0.1

s

S.Limal,S.Potier,etal.“Fo

rma

lVerifica

tion

of

Red

und

an

tM

edia

Exten

sion

of

Eth

ernet

Po

werLin

k”.In:ETFA

.IEEE,200

7,pp.1045-10

52.

Ca

seS

tud

ies

– 19 – 2018-01-25 – Scasestudies –

37/45

CD

50·106

states

10

GiB

5000

sec

6 • ••7 • ••

8 •••9 •••

10 •••

11 •••

12 •••

13 •••

14 •••

89

,39

6.8

9kS

ts9

,49

2.4M

iB6

,45

7.8s

15 •

CD

-K

50·106

states

10

GiB

5000

sec

6 • ••7 • ••

8 • ••9 • ••

10 • ••

11 • ••

12 •••

13 •••

14 •••

15 •••

93

8.18

kSts

146

.8M

iB4

2.9s

PG

100·106

states

5GiB

104

sec

9 •• •10 •• •

11 •• •

69

2.24kS

ts29

.5M

iB17,76

3.6

s

12 •

13 •

14 •

15 •

16 •

17 •

18 •

PG-K

100·106

states

5GiB

104

sec

9 •••10 •••

11 •••

12 •••

13 •••

14 •••

15 •• •

16 •• •

17 •• •

18 •• •

202,113

.18kS

ts6

,234

.1M

iB9

,179.0

s

FB

25·106

states

10

GiB

5000

sec

14 • ••

15 • • •

16 • • •

17 • • •

18 •• •

39

3,24

kSts

86

.7M

iB9

,427.0

s

19 •

20 •

21 •

22 •

23 •

FB-K

25·106

states

10

GiB

5000

sec

14 • ••

15 •••

16 •••

17 •••

18 •••

19 •••

20 •••

21 •••

22 •••

23 •••

50

,33

1.70kS

ts8

,732.3

MiB

8,6

04

.0s

EP

30·106

states

10

GiB

5000

sec

15 • ••

16 •••

17 •••

18 •••

19 •••

20 •••

21 •• •

22 •• •

23 •• •

25,16

5.9

0kS

ts4

,46

2.5M

iB5

,921.0

s

24 •

EP-K

30·106

states

10

GiB

5000

sec

15 • ••

16 • ••

17 • ••

18 • ••

19 • ••

20 • ••

21 • ••

22 • ••

23 • ••

24 • ••

50

,33

1.73kS

ts12,5

06

.5M

iB6

,64

0.1

s

LS

15·106

states

5GiB

2000

sec

1 • ••2 • ••

3 • ••4 • ••

5 • ••6 •••

7 •••8 •••

9 •••

10 •• •

33

,743

.86

kSts

3,4

01.2

MiB

3,4

27.3s

LS-K

15·106

states

5GiB

2000

sec

1 • ••2 • ••

3 • ••4 • ••

5 • ••6 •••

7 •••8 •••

9 •••

10 •••

34

,45

1.53

kSts

5,5

56

.2M

iB1,5

61.8

s

TT

10·106

states

2GiB

1000

sec

1 • ••2 • ••

3 • ••4 •••

5 •••6 •••

7 •••

10,8

47.6

1kS

ts6

25.3

MiB

236

.3s

TT-K

10·106

states

2GiB

1000

sec

1 • ••2 • ••

3 • ••4 • ••

5 •••6 •••

7 •••

11,05

4.9

7kS

ts1,23

2.3M

iB19

7.2s

FS

20·106

states

5GiB

2000

sec

9 •• •16

,910

.28kS

ts1,8

44

.4M

iB3

,30

0.7

s

10 •

15 •

20 •

40 •

60 •

80 •100•

•126•

FS-K

20·106

states

5GiB

2000

sec

9 • ••10 • ••

15 • ••

20 • ••

40 • ••

60 • ••

80 • ••

100

• ••• ••126

• ••

6,9

82.76

kSts

7,58

0.9

MiB

2,102.4

s

LS

15·106

states

5GiB

2000

sec

1 • ••2 • ••

3 • ••4 • ••

5 • ••6 •••

7 •••8 •••

9 •••

10 •• •

33

,743

.86

kSts

3,4

01.2

MiB

3,4

27.3s

LS-K

15·106

states

5GiB

2000

sec

1 • ••2 • ••

3 • ••4 • ••

5 • ••6 •••

7 •••8 •••

9 •••

10 •••

34

,45

1.53

kSts

5,5

56

.2M

iB1,5

61.8

s

P.Kordy,R.Langerak,etal.“R

e-verificatio

no

fa

LipS

ynch

ron

izatio

nP

roto

colU

sing

Ro

bust

Rea

cha

bility”.In:FM

A.Vol.20

.EPTCS.20

09,pp.49-62.

Ca

seS

tud

ies

– 19 – 2018-01-25 – Scasestudies –

37/45

CD

50·106

states

10

GiB

5000

sec

6 • ••7 • ••

8 •••9 •••

10 •••

11 •••

12 •••

13 •••

14 •••

89

,39

6.8

9kS

ts9

,49

2.4M

iB6

,45

7.8s

15 •

CD

-K

50·106

states

10

GiB

5000

sec

6 • ••7 • ••

8 • ••9 • ••

10 • ••

11 • ••

12 •••

13 •••

14 •••

15 •••

93

8.18

kSts

146

.8M

iB4

2.9s

PG

100·106

states

5GiB

104

sec

9 •• •10 •• •

11 •• •

69

2.24kS

ts29

.5M

iB17,76

3.6

s

12 •

13 •

14 •

15 •

16 •

17 •

18 •

PG-K

100·106

states

5GiB

104

sec

9 •••10 •••

11 •••

12 •••

13 •••

14 •••

15 •• •

16 •• •

17 •• •

18 •• •

202,113

.18kS

ts6

,234

.1M

iB9

,179.0

s

FB

25·106

states

10

GiB

5000

sec

14 • ••

15 • • •

16 • • •

17 • • •

18 •• •

39

3,24

kSts

86

.7M

iB9

,427.0

s

19 •

20 •

21 •

22 •

23 •

FB-K

25·106

states

10

GiB

5000

sec

14 • ••

15 •••

16 •••

17 •••

18 •••

19 •••

20 •••

21 •••

22 •••

23 •••

50

,33

1.70kS

ts8

,732.3

MiB

8,6

04

.0s

EP

30·106

states

10

GiB

5000

sec

15 • ••

16 •••

17 •••

18 •••

19 •••

20 •••

21 •• •

22 •• •

23 •• •

25,16

5.9

0kS

ts4

,46

2.5M

iB5

,921.0

s

24 •

EP-K

30·106

states

10

GiB

5000

sec

15 • ••

16 • ••

17 • ••

18 • ••

19 • ••

20 • ••

21 • ••

22 • ••

23 • ••

24 • ••

50

,33

1.73kS

ts12,5

06

.5M

iB6

,64

0.1

s

LS

15·106

states

5GiB

2000

sec

1 • ••2 • ••

3 • ••4 • ••

5 • ••6 •••

7 •••8 •••

9 •••

10 •• •

33

,743

.86

kSts

3,4

01.2

MiB

3,4

27.3s

LS-K

15·106

states

5GiB

2000

sec

1 • ••2 • ••

3 • ••4 • ••

5 • ••6 •••

7 •••8 •••

9 •••

10 •••

34

,45

1.53

kSts

5,5

56

.2M

iB1,5

61.8

s

TT

10·106

states

2GiB

1000

sec

1 • ••2 • ••

3 • ••4 •••

5 •••6 •••

7 •••

10,8

47.6

1kS

ts6

25.3

MiB

236

.3s

TT-K

10·106

states

2GiB

1000

sec

1 • ••2 • ••

3 • ••4 • ••

5 •••6 •••

7 •••

11,05

4.9

7kS

ts1,23

2.3M

iB19

7.2s

FS

20·106

states

5GiB

2000

sec

9 •• •16

,910

.28kS

ts1,8

44

.4M

iB3

,30

0.7

s

10 •

15 •

20 •

40 •

60 •

80 •100•

•126•

FS-K

20·106

states

5GiB

2000

sec

9 • ••10 • ••

15 • ••

20 • ••

40 • ••

60 • ••

80 • ••

100

• ••• ••126

• ••

6,9

82.76

kSts

7,58

0.9

MiB

2,102.4

s

TT

10·106

states

2GiB

1000

sec

1 • ••2 • ••

3 • ••4 •••

5 •••6 •••

7 •••

10,8

47.6

1kS

ts6

25.3

MiB

236

.3s

TT-K

10·106

states

2GiB

1000

sec

1 • ••2 • ••

3 • ••4 • ••

5 •••6 •••

7 •••

11,05

4.9

7kS

ts1,23

2.3M

iB19

7.2s

W.Steinerand

W.Elm

enreich.“Auto

ma

ticR

ecovery

of

the

TT

P/AS

enso

r/Actua

tor

Netw

ork”.In:

WISES.V

iennaU

niversityofTechnology,20

03,pp.25-37.

Page 10: Lecture 19: Quasi-Equal Clocks - uni-freiburg.de...2018/01/25  · Lecture 19: Quasi-Equal Clocks 2018-01-25 Dr.Bernd Westphal Albert-Ludwigs-UniversitätFreiburg, Germany Motivation

Ca

seS

tud

ies

– 19 – 2018-01-25 – Scasestudies –

37/45

CD

50·106

states

10

GiB

5000

sec

6 • ••7 • ••

8 •••9 •••

10 •••

11 •••

12 •••

13 •••

14 •••

89

,39

6.8

9kS

ts9

,49

2.4M

iB6

,45

7.8s

15 •

CD

-K

50·106

states

10

GiB

5000

sec

6 • ••7 • ••

8 • ••9 • ••

10 • ••

11 • ••

12 •••

13 •••

14 •••

15 •••

93

8.18

kSts

146

.8M

iB4

2.9s

PG

100·106

states

5GiB

104

sec

9 •• •10 •• •

11 •• •

69

2.24kS

ts29

.5M

iB17,76

3.6

s

12 •

13 •

14 •

15 •

16 •

17 •

18 •

PG-K

100·106

states

5GiB

104

sec

9 •••10 •••

11 •••

12 •••

13 •••

14 •••

15 •• •

16 •• •

17 •• •

18 •• •

202,113

.18kS

ts6

,234

.1M

iB9

,179.0

s

FB

25·106

states

10

GiB

5000

sec

14 • ••

15 • • •

16 • • •

17 • • •

18 •• •

39

3,24

kSts

86

.7M

iB9

,427.0

s

19 •

20 •

21 •

22 •

23 •

FB-K

25·106

states

10

GiB

5000

sec

14 • ••

15 •••

16 •••

17 •••

18 •••

19 •••

20 •••

21 •••

22 •••

23 •••

50

,33

1.70kS

ts8

,732.3

MiB

8,6

04

.0s

EP

30·106

states

10

GiB

5000

sec

15 • ••

16 •••

17 •••

18 •••

19 •••

20 •••

21 •• •

22 •• •

23 •• •

25,16

5.9

0kS

ts4

,46

2.5M

iB5

,921.0

s

24 •

EP-K

30·106

states

10

GiB

5000

sec

15 • ••

16 • ••

17 • ••

18 • ••

19 • ••

20 • ••

21 • ••

22 • ••

23 • ••

24 • ••

50

,33

1.73kS

ts12,5

06

.5M

iB6

,64

0.1

s

LS

15·106

states

5GiB

2000

sec

1 • ••2 • ••

3 • ••4 • ••

5 • ••6 •••

7 •••8 •••

9 •••

10 •• •

33

,743

.86

kSts

3,4

01.2

MiB

3,4

27.3s

LS-K

15·106

states

5GiB

2000

sec

1 • ••2 • ••

3 • ••4 • ••

5 • ••6 •••

7 •••8 •••

9 •••

10 •••

34

,45

1.53

kSts

5,5

56

.2M

iB1,5

61.8

s

TT

10·106

states

2GiB

1000

sec

1 • ••2 • ••

3 • ••4 •••

5 •••6 •••

7 •••

10,8

47.6

1kS

ts6

25.3

MiB

236

.3s

TT-K

10·106

states

2GiB

1000

sec

1 • ••2 • ••

3 • ••4 • ••

5 •••6 •••

7 •••

11,05

4.9

7kS

ts1,23

2.3M

iB19

7.2s

FS

20·106

states

5GiB

2000

sec

9 •• •16

,910

.28kS

ts1,8

44

.4M

iB3

,30

0.7

s

10 •

15 •

20 •

40 •

60 •

80 •100•

•126•

FS-K

20·106

states

5GiB

2000

sec

9 • ••10 • ••

15 • ••

20 • ••

40 • ••

60 • ••

80 • ••

100

• ••• ••126

• ••

6,9

82.76

kSts

7,58

0.9

MiB

2,102.4

s

FS

20·106

states

5GiB

2000

sec

9 •• •16

,910

.28kS

ts1,8

44

.4M

iB3

,30

0.7

s

10 •

15 •

20 •

40 •

60 •

80 •100•

•126•

FS-K

20·106

states

5GiB

2000

sec

9 • ••10 • ••

15 • ••

20 • ••

40 • ••

60 • ••

80 • ••

100

• ••• ••126

• ••

6,9

82.76

kSts

7,58

0.9

MiB

2,102.4

s

D.D

ietsch,A.Podelski,etal.“D

isam

bigua

tion

of

Ind

ustrialS

tan

da

rds

Th

rough

Form

aliza

tion

an

dG

rap

hica

lLan

guages”.In:R

E.IEEE,2011,pp.265-270

.

Sa

ving

s

– 19 – 2018-01-25 – main –

38/45

Up

per

Bo

un

do

nN

um

ber

of

Co

nfi

gu

ratio

ns

– 19 – 2018-01-25 – Ssavings –

39/45

Th

eo

rem

.LetNbe

anetw

orkoftim

edautom

ataw

ithequivalence

classesofquasi-equalclocks

ECN

=Y

1 ,...,Ym.

Thenthe

numberofconfigurations

ofN

′isbounded

aboveby:

|L(A

1 )×···×

L(A

n)×L(R

Y1 )

×···×

L(R

Ym)|

·(2c+2)

|ECN|·(4c

+3)

12|E

CN|·(|E

CN|−

1)

·2|Y

1∪···∪

Ym|,

where

c=

maxc

x|x∈X(N

).

On

lyS

imp

leE

dges

– 19 – 2018-01-25 – Ssavings –

40/45

Lem

ma.Let

Nbe

anetw

orkoftim

edautom

ataw

itha

setofequivalenceclasses

ofquasi-equalclocksECN

,where

•|Y

|≥

2,Y∈ECN

,and

•each

clockx∈Y

,Y∈ECN

,ise

xclusive

lyre

set

by

simp

lee

dge

s.

Then|ReachN

′|<

|ReachN|.

(Here,R

eachN

denotesthe

setofallreachable(zone

graph-)configurationsof

N.)

Pro

of:U

sethe

following

lemm

a.

Lem

ma.Let

Nbe

anetw

orkw

hereallquasi-equalclocks

areexclusively

resetbysim

pleedges.Then

|ReachN

′|=

|ReachN|−

(

s∈RC

2|clks(s)|

)

+∑

s∈RC

[|class(s)|

+2]

.

Co

mp

lexE

dges

– 19 – 2018-01-25 – Ssavings –

41/45

•“it’s

(abitm

ore)complicated”

Co

nten

t

– 19 – 2018-01-25 – Scontent –

42/45

•Q

uasi-E

qu

alC

locks

•D

efin

ition,P

rop

ertie

s

•Q

EC

lock

Re

du

ction

•T

he

simp

le,an

dw

ron

gap

pro

ach

•Tran

sform

ation

exam

ple

•E

xpe

rime

nts

•S

imp

leand

Co

mp

lex

Ed

ges

•Tran

sform

ation

sche

me

s

•C

orre

ctne

sso

fth

eTran

sform

ation

•E

xcursio

n:

Bisim

ulatio

nP

roo

fs

•P

roo

fo

fQ

E-C

orre

ctne

ss

•a

particularw

eak

bisim

ulatio

nre

lation

•M

ore

Exp

erim

en

ts

Page 11: Lecture 19: Quasi-Equal Clocks - uni-freiburg.de...2018/01/25  · Lecture 19: Quasi-Equal Clocks 2018-01-25 Dr.Bernd Westphal Albert-Ludwigs-UniversitätFreiburg, Germany Motivation

Tell

Th

emW

ha

tYo

u’ve

To

ldT

hem

...

– 19 – 2018-01-25 – Sttwytt –

43/45

•The

space

com

ple

xityofPure-TA

reachability-checkingis

L1×···×

Ln×

Regions(X),

i.e.,exponentialinnum

berofclocks,ando

fTA

.

•Ifa

modelis

exp

en

siveto

che

ck,

•itm

aynecessarily

bethatexpensive,

•orartificially

/non-necessarily.

→take

acloserlook

(→exercises).

•O

neexam

ple:Qu

asi-eq

ualclo

cks

•advantage:can

be

goo

dfo

rvalid

ation,

•dis-advantage:e

xpe

nsive

toch

eck.

•The

QE

transfo

rmatio

n(source-to-source)

•e

limin

ates

inte

rleavin

so

fsim

ple

ed

ges,

•reduces

DB

Msize

to(n

um

be

ro

fe

qu

iv.classes)

2,

•re

flects

allqueries.

Referen

ces

– 19 – 2018-01-25 – main –

44/45

Referen

ces

– 19 – 2018-01-25 – main –

45/45

Arenis,S.F.,W

estphal,B.,Dietsch,D

.,Muñiz,M

.,Andisha,A

.S.,andPodelski,A

.(2016).Ready

fortesting:ensuring

conformance

toindustrialstandards

throughform

alverification.Fo

rma

lAsp

.Co

mp

ut.,28(3):499–527.

Herrera,C

.(2011).Reducing

quasi-equalclocksin

networks

oftimed

automata.M

aster’sthesis,

Albert-Ludw

igs-UniversitätFreiburg.

Herrera,C

.(2017).

Th

eC

lass

of

Tim

edA

utom

ata

with

Qua

si-Equa

lClo

cks.PhDthesis,A

lbert-Ludwigs-U

niversitätO

ldenburg.

Herrera,C

.andW

estphal,B.(2015).Q

uasi-equalclockreduction:Elim

inatingassum

ptionson

networks.In

Piterman,N

.,editor,HV

C,volume

9434of

LNC

S,pages173–18

9.Springer.

Herrera,C

.andW

estphal,B.(2016).The

modelchecking

problemin

networks

with

quasi-equalclocks.InD

yreson,C.E.,H

ansen,M.R

.,andH

unsberger,L.,editors,TIM

E,pages21–30

.IEEEC

omputerSociety.

Herrera,C

.,Westphal,B.,and

Podelski,A.(20

14).Quasi-equalclock

reduction:More

networks,m

orequeries.In

Ábrahám

,E.andH

avelund,K.,editors,TAC

AS,volum

e8

413of

LNC

S,pages295–30

9.Springer.

Olderog,E.-R

.andD

ierks,H.(20

08).

Rea

l-Tim

eS

ystems

-Fo

rma

lSp

ecificatio

na

nd

Auto

ma

ticV

erificatio

n.C

ambridge

University

Press.