Lecture 10_optical Transitions in Semiconductors

46
7/26/2019 Lecture 10_optical Transitions in Semiconductors http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 1/46 1 Lecture 10: Optical transitions in semiconductors  Optical transitions in semiconductors  Direct- and indirect-bandgap semiconductors  Optical joint density of states  Spontaneous emission in equilibrium  Spontaneous emission in p-n junction  Degenerate semiconductors and p-n junctions  Population inversion in degenerate p-n junctions Reading: Senior 6.2.1-6.2.3, 6.3.2-6.3.4 Keiser 4.1.4 Ref: Lasers and Electro-Optics, Christopher Davis, Cambridge, 1996 Fundamentals of Photonics, Saleh and Teich, Wiley, 2007

Transcript of Lecture 10_optical Transitions in Semiconductors

Page 1: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 1/46

1

Lecture 10: Optical transitions in semiconductors

•  Optical transitions in semiconductors•  Direct- and indirect-bandgap semiconductors

•  Optical joint density of states

•  Spontaneous emission in equilibrium

•  Spontaneous emission in p-n junction

•  Degenerate semiconductors and p-n junctions

•  Population inversion in degenerate p-n junctions

Reading: Senior 6.2.1-6.2.3, 6.3.2-6.3.4Keiser 4.1.4

Ref: Lasers and Electro-Optics, Christopher Davis, Cambridge, 1996

Fundamentals of Photonics, Saleh and Teich, Wiley, 2007

Page 2: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 2/46

2

(excess minoritycarriers)

Electrical injection in a forward-biased pn junction

• Upon forw ard-bias V, minority carriers are injected (referred to as current

injection), the junction region can reach a quasi-equi l ibr ium  state in which

both electrons in the p-type and holes in the n-type exceed  the thermal

equilibrium concentrations and are characterized by two separate Ferm i

funct ions P c (E), P v (E) with quasi-Fermi levels E Fc , E FV , where E Fc   –

 E Fv  =eV .

e- diffuse

h+ diffuse

EFp EFn

e(V0  –  V)

EFc

EFv

energy

 position

eV

(excess minority

carriers)

Eg

Eg

+ -V

recombination

recombination

Page 3: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 3/46

3

Quasi-equilibrium near the junction region upon

forward-bias

E

Eg

Bandedge Ev

EFv

 p(E)

n(E)

Carrier concentration

Pv(E)

11/2

E

Bandedge Ec EFc

1

Pc(E)

1/2

Excess electrons in the normallydepeleted region

Excess holes in the normallydepeleted region

eV

Page 4: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 4/46

4

Fermi functions with quasi-Fermi levels

• Fermi function for the conduction band near the junctionregion upon forward-bias (where E > Ec > EFc):

Pc(E) = [1 + exp((E-EFc)/kBT)]-1 ≈ exp (-(E-EFc)/kBT)

• Fermi function for the valence band near the junctionregion upon forward-bias (where E < EV < EFv):

Pv(E) = [1 + exp((E-EFv)/kBT)]-1 

1 – Pv(E) ≈ exp ((E-EFv)/kBT)

Page 5: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 5/46

5

Radiative recombination in a forward-biased p-n

 junction

• The increased concentration of minority  carriers in theopposite-type region in the forward -biased p-n diode ofdirect -bandgap  materials leads to the radiat ive  recombinat ion  of carriers across the bandgap.

• The normally empty  electron states in the conductionband of the p-type material and the normally empty  holestates in the valence band of the n-type material arepopulated by injected  carriers which recombine with themajority carriers across the bandgap.

• The energy released  by this electron-hole recombinationis approximately equal to the bandgap energy Eg.

Page 6: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 6/46

6

Electroluminescence

• The spon taneous em iss ion  of light due to the radiative

recombination from within the diode structure is knownas electro luminescence .

• The term electroluminescence is used when the opticalemission results from the application of an electric field.

• The light is emitted at the site of carrier recombination which is primarily close to the junction, althoughrecombination may take place through the whole diodestructure as carriers diffuse away from the junction

region.

• The amount of radiative recombination and the emissionarea within the structure is dependent upon thesemiconductor materials used and the fabrication of the

device.

Page 7: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 7/46

7

Optical emission and absorption in semiconductors

k

E

absorption spontaneous emission stimulated emission

hu

hu

hu

igeneratedhu iinjected

hu iinjected

k

E

hu

k

E

hu

+

-

-

+

-

+

Page 8: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 8/46

8

Conditions for absorption and emission

•  Conservation of energy: the absorption or emission of a photon of

energy hu requires that the energies of the two states involved in theinteraction be separated by hu (a resonance process).

E2  –  E1 = hu

•  Conservation of momentum: momentum must also be conservedin the process of photon emission/absorption.

 p2  –  p1 = hu/c = h/l

=> k 2  –  k 1 = 2p/l

The photon-momentum magnitude h/l is, however, very small  in

comparison with the range of momentum values that electrons

and holes as waves can assume in a semiconductor crystal .

(p = ħk) 

Electron

momentum

Photon

momentum

Page 9: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 9/46

9

•  The semiconductor E-k diagram extends to values of k of theorder p/a, where the lattice constant  a (~nm) is much smaller  

than the wavelength l (~mm) 

The momenta of the electron and the hole in the interactionmust therefore be approximately equal .

=> k 2  k 1, is called the k-selection rule . Transitions that

obey this rule are represented in the E-k diagram by vertical  lines,indicating that the change in k is negligible.

k-selection rule

Page 10: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 10/46

10

Optical transitions are vertical

• Optical transitions are “vertical” in the band diagrambecause the photon momentum is very small .

• Electrons and holes recombine  when they collide witheach other and shed extra energy.

• The electron can lose energy by photon emission.

k

E

k

E

hu

absorption spontaneous emission

hu

Page 11: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 11/46

11

Direct-bandgap semiconductors

•  Electroluminescence occurs most efficiently in semiconductors that

are direct-bandgap - electrons and holes on either side of the energy gaphave the same value of electron wavevector  k  

=> direct radiative recombination  is possible

electron wavevector k

Electron

energy

 photon

valence

conduction

Eg

Page 12: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 12/46

12

•  The maximum energy of the valence band and the minimum energy

of the conduction band occur at different values of electron wavevector. For electron-hole recombination to occur  it is essential that the

electron loses momentum such that it has a value of momentum

corresponding to the maximum energy of the valence band (to conserve

momentum).

electron wavevector k

Electron

energy

 photon

valence

conductionPhonon emission

Indirect-bandgap semiconductors

Eg

Page 13: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 13/46

13

Phonons

•  Phonons –  quantized crystal lattice vibrations  (think phonon as a

 sound wave in the semiconductor crystal, like standing waves on a piece of guitar string )

•  Phonons are polarized  - acoustic phonons and optical  phonons

(longitudinal  and transverse)

lattice constant a

•  Phonons scatter   –  one limit  to mobility and conductivity.

•  Phonons have no spin   –  The probability of finding a phonon

of frequency u is given by the Bose-Einstein statistics (i.e.

 phonon is a boson):

f BE(u) = 1/[exp(hu/k BT) –  1]

Page 14: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 14/46

14

Phonon emission and absorption

• Phonons have small energy  (phonon freq. u is small, say

~ GHz) but large momentum (phonon wavelength is onthe order of the lattice constant a, say ~nm - tens of nm).

=> phonon emission or absorption is a horizontal  transition in the energy band diagram

• Photons have large energy  (~100 THz) but smallmomentum (wavelength ~ hundreds of nm).

=> photon emission or absorption is a vertical  transitionin the band diagram

•  Any process that involves the phonon leads to a changein the electron wave vector

=> Phonons are involved in transitions across the bandgap

of indirect -bandgap materials.

Page 15: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 15/46

15

•  The three- particle recombination process involving a phonon is farless probable than the two-particle process exhibited by direct-bandgap

semiconductors.

=>The recombination in indirect -bandgap semiconductors is therefore

relatively slow (10-2 - 10-4 s) vs. (10-8  –  10-10 s for direct recombination).

Amuch longer minor ity carr ier l i fetime  

(before the excess

minority carriers recombine with the majority carriers)

The competing nonradiative recombination  processes(i.e. converting the carrier recombination energy to heat )

which involve lattice defects and impurities (e.g. precipitates of

commonly used dopants) become more likely as they allow carrier

recombination in a relatively short time in most materials.

Photon emission is unlikely  in an indirect-bandgap

semiconductor

Page 16: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 16/46

16

• Nonradiative recombination  occurs via a number of independent

competing processes including the transfer of energy to latticevibrations (creating one or more phonons) or to another free electron

(Auger process).

•  Recombination may also take place at surfaces, and indirectly via

“    traps”     or defect centers, which are energy levels that lie within the forbidden band  associated with impurities or defects associated with

 grain boundaries, dislocations or other lattice imperfections.

Nonradiative recombination

trap

*An impurity or defect state can actas a recombination center  if it is

capable of trapping both an electron

and a hole.  Impurity-assisted  

recombination may be radiative or

nonradiative.

Page 17: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 17/46

17

Some direct- and indirect-bandgap

semiconductors

material Recombination coeff. (cm3

 s-1

)Bandgap energy (eV)

GaAs 7.21  10-10 Direct : 1.42

*Silicon is not an emitter material, as its holes and electrons do not

recombine directly, making it an inefficient emitter.

InAs 8.5  10-11 Direct : 0.35

InSb 4.58  10-11 Direct : 0.18

Si 1.79  10-15Indirect: 1.12

Ge 5.25  10-14

Indirect: 0.67

GaP 5.37  10-14Indirect: 2.26

Page 18: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 18/46

18

Photon absorption is not  unlikely in an indirect-bandgap

semiconductor

•  Although photon absorption also requires energy and momentum

conservation in an indirect-bandgap semiconductor, this is readily

achieved by means of a two-step sequential process.

•  The electron is first excited to a high energy level within the

conduction band by a k-conserving vertical  transition.•  It then quickly relaxes to the bottom of the conduction band by a

 process called “thermalization ”     --- its momentum is transferred to

 phonons (i.e. the conduction electrons collide with the lattice).

The generated hole behaves similarly.

•  As the process occurs sequentially, it does not require the

 simultaneous presence of three bodies and is thus not unlikely.

Silicon is therefore a photon absorber, though still less efficient than

direct-bandgap materials!

Page 19: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 19/46

19

electron wavevector k

Electron

energy

hu

Photon absorption in an indirect-bandgap semiconductor

• via a vertical (k-conserving ) transition

thermalization

The electron collides with the lattice 

to produce phonons ( phonon emission)

and drops to the minimum of the

conduction band.

The hole does the same and raises to

the maximum of the valence band.

Eg

e.g. Silicon absorbs light with wavelengths shorter than 1.1 mm which

correspond to photon energy larger than the bandgap energy of 1.12 eV

Page 20: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 20/46

20

Energies and momenta of the electron and hole

with which a photon interacts

•  Conservation of energy and momentum require that a photon offrequency u interact with electrons and holes of specific energies and

momenta determined by the semiconductor E-k relation.

•  Using the parabolic approximation of the E-k relation for a direct -

bandgap semiconductor, and Ec  –  Ev = Eg

E2  –  E1 = ħ2k 2/2mv + Eg + ħ2k 2/2mc = hu

k 2 = (2mr /ħ2) (hu  –  Eg), where 1/mr  = 1/mv + 1/mc

E2 = Ec + (mr /mc) (hu  –  Eg)

E1 = Ev  –  (mr /mv) (hu  –  Eg) = E2  –  hu

(mr : reduced

effective mass)

Page 21: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 21/46

21

Optical joint density of states

•  Here we determine the density of states r(u) with which a photon

of energy hu interacts (absorption or emission) under conditions ofenergy and momentum conservation in a direct-bandgap semiconductor.

•  This quantity incorporates the density of states in both the conduction

and valence bands and is called the optical joint density of states .

•  We can relate r(u) to the density of states rc(E2) in the conduction

 band as [recall rc(E) = ((2mc)3/2/2p2ħ3) (E –  Ec)

1/2] 

rc(E2) dE2 = r(u) du

=> r(u) = (dE2/du) rc(E2) = (hmr /mc) rc(E2)

Page 22: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 22/46

22

•  We can obtain the optical joint density of states  - the number of states

 per unit volume per unit frequency:

r(u) = ((2mr )3/2/pħ2) (hu  –  Eg)1/2  hu ≥ Eg

huEg

r(u)

•  The density of states with which a photon of energy hu interacts

increases with (hu  –  Eg) in accordance with a square-root law.

 (hu  –  Eg)1/2

Page 23: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 23/46

23

E2

Emission and absorption conditions

•  Emission condition : A conduction-band state of energy E2 is filled

(with an electron) and a valence-band state of energy E1 is empty (i.e.filled with a hole)

Pe(u) = Pc(E2) [1 –  Pv(E1)]

•  Absorption condition : A conduction-band state of energy E2 is

empty and a valence-band state of energy E1 is filled

Pa(u) = [1 –  Pc(E2)] Pv(E1)

k

E

hu

k

E

hu

E1

E2

E1

EFC

EFv

EFC

EFv

Page 24: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 24/46

24

Direct transition rates

•  In the presence of an optical radiation field  that has a spectral energy

density  of u(u) (J Hz-1 m-3), the induced transition rates  per unit volume 

of the semiconductor in the spectral range between u and u + du are

R a(u) du = B12 u(u) Pv(E1) [1 –  Pc(E2)] r(u) du  (m-3 s-1)

For optical absorption associated with upward  transitions of electrons

from the valence band to the conduction band, and

R e(u) du = B

21 u(u) P

c(E

2) [1 –  P

v(E

1)] r(u) du  (m-3 s-1)

For stimulated emission resulting from downward  transitions of electrons

from the conduction band to the valence band.

Absorption

Stimulated

emission

Page 25: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 25/46

25

•  The spontaneous emission rate is independent  of u(u)

R sp(u) du = A21 Pc(E2) [1 –  Pv(E1)] r(u) du  (m-3 s-1)

•  The A and B coefficients are known as the “Einstein A and B

coefficients. 

•  The coefficient A21 can be expressed in terms of a spontaneous lifetime

A21 = 1/tsp 

B12 = B21 = c3/(8pn3hu3tsp)

where n is the refractive index of the semiconductor

Einstein A and B coefficients

Spontaneous

emission

Page 26: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 26/46

26

 A semiconductor in thermal equilibrium•  A semiconductor in thermal equilibrium has only a single Fermi

function

The emission condition:

The absorption condition: 

•  The Fermi level lies within the bandgap, away from the band edges

 by at least several k BT, we may use the exponential approximation 

Pe(u) = P(E2) [1 –  P(E1)]

Pa(u) = [1 –  P(E2)] P(E1)

E2

k

E

hu

E1

EF

k

E

hu

E2

E1

EF

Page 27: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 27/46

27

 A semiconductor in thermal equilibrium

•  The emission condition:

•  The absorption condition: 

•  The probability of absorption is >> the probability of emission:

Pe(u) = P(E2) [1 –  P(E1)] = P(E2) –  P(E2) P(E1)

Pa(u) = [1 - P(E2)] P(E1) = P(E1) –  P(E2) P(E1)

Pa(u) –  Pe(u) = P(E1) –  P(E2) ≈ 1 

Page 28: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 28/46

28

 A semiconductor in thermal equilibrium

•  A semiconductor in thermal equilibrium has only a single Fermi

function

The emission condition:

•  If the Fermi level lies within the bandgap, away from the band edges by at least several k BT, we may use the exponential approximation to

the Fermi function

Pe(u) = P(E2) [1 –  P(E1)]

P(E2

) = [1 + exp((E2

-EF

)/k B

T)]-1 ≈ exp ((EF

  –  E2

)/k B

T)

1 –  P(E1) = 1 –  [1 + exp((E1-EF)/k BT)]-1 ≈ exp ((E1  –  EF)/k BT) 

Pe(u) ≈ exp ((E1  –  E2)/k BT) = exp ( – hu/k BT) (Boltzmann distribution!)

Page 29: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 29/46

29

 A semiconductor in thermal equilibrium

•  A semiconductor in thermal equilibrium has only a single Fermi

function

The absorption condition:

•  If the Fermi level lies within the bandgap, away from the band edges by at least several k BT

Pa(u) = P(E1) [1 –  P(E2)]

P(E1) = (1 + exp(E1-EF)/k BT)-1 ≈ 1 

1 –  P(E2) = 1 - (1 + exp(E2-EF)/k BT)-1 ≈ 1 

Pa(u) ≈ 1 

Page 30: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 30/46

30

 A semiconductor in thermal equilibrium

•  A semiconductor in thermal equilibrium has only a single Fermi

function

The probability of absorption to spontaneous emission:

Pa(u)/Pe(u) ≈ exp (hu/kBT) 

(Boltzmann distribution!) 

e.g. At T = 300 K, thermal energy k BT = 26 meV and photon

energy hu = hc/l = 2.5 eV (l ~ 0.5 mm),

Pa(u)/Pe(u) ≈ exp (2.5/.026) ≈ 6  1041 

=> Pe(u) << Pa(u) 

Page 31: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 31/46

31

 A semiconductor in thermal equilibrium

• For a semiconductor in thermal equilibrium, the upward  and downward  transition rates must be equal

B12 u(u) Pa(u) = A21 Pe(u) + B21 u(u) Pe(u)

• Thus the energy densi ty  of the radiation field is

u(u) = A21 Pe(u) / (B12 Pa(u) - B21 Pe(u))

= ( A21/B21) / [(B12/B21) (Pa(u)/Pe(u))  – 1]

= ( A21/B21) [(B12/B21) exp(hu/kBT)  – 1]-1

Page 32: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 32/46

32

Einstein relations

•  Again, comparing with Planck’s law of black bodyradiation energy density:

u(u) = (8phu3/c3) [exp(hu/kBT) – 1]-1

• Einstein relat ions :

B12 = B21

 A21/B21 = 8phu3/c3

(or A21 = hu  8pu2/c3  B21)

Page 33: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 33/46

33

•  The spontaneous emission rate (for hu ≥ Eg):

R sp(u) = ((2mr )3/2/pħ2tsp) (hu  –  Eg)

1/2 exp ( – hu/k BT) 

=> A parameter that increases with temperature at an exponential rate.

•  The spectrum  has a low-frequency cutoff  at u = Eg/h and extends

over a range of frequencies of approximate with 2k BT/h

1.2 1.3 1.4 1.5 1.6 1.7

R sp(u)

hu

Eg

k BT = 0.026 eV

 exp (-hu/k BT) 

Page 34: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 34/46

34

e.g.  We consider direct band-to-band optical transitions in GaAs at l

= 850 nm wavelength at 300 K. (a) Find the reduced effective mass mr

for GaAs. (b) Find the energy levels, E2 and E1, for the optical

transitions at this wavelength. (c) Calculate the value of the density of states r(u) for these transitions. (d) By taking tsp = 500 ps, find the

 spontaneous emission rate R sp(u) for intrinsic GaAs at this optical

wavelength. (assume mc = 0.067 mo and mv = 0.52 mo)

k

E

1.424 eV850 nm

Page 35: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 35/46

35

•  The reduced effective mass mr  = mcmv/(mc + mv) = 0.0594 mo

•  The photon energy for l = 850 nm is hu = 1.2398/0.85 eV = 1.459 eV

E2 = Ec + (0.0594/0.067) (1.459 –  1.424) eV = Ec + 31 meV

E1 = Ev  –  (0.0594/0.52) (1.459 –  1.424) eV = Ev  –  4 meV

•  The density of states:

r(u) = 4p (2 x 0.0594 x 9.11 x 10-31)3/2 / (6.626 x 10-34)2 

x [(1.459 –  1.424) x 1.6 x 10-19

]1/2

 m-3

 Hz-1

 

= 7.63 x 1010 m-3 Hz-1

Page 36: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 36/46

36

•  To find R sp(u), we need to first calculate Pc(E2) (1 –  Pv(E1)).

For intrinsic GaAs at room temperature, EF is near the middle of the

 bandgap, thus E2  –  EF >> k BT and EF  –  E1 >> k BT, and we can use theexponential approximation of the Fermi function.

Pc(E2) ≈ exp (EF  –  E2)/k BT and 1 –  Pv(E1) ≈ exp (E1  –  EF)/k BT 

Pc(E2) (1 –  Pv(E1)) ≈ exp (E1  –  E2)/k BT = exp – hu/k BT

With tsp = 500 ps, we calculate R sp(u):

R sp(u) = (1/500x10-12) e-1.459/0.0259 x 7.63 x 1010 m-3 = 5.23 x 10-5 m-3

This is the spontaneous emission rate per unit spectral bandwidth of

unexcited intrinsic GaAs in the thermal equilibrium state at 300 K at

hu  = 1.459 eV for l  = 850 nm.

Page 37: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 37/46

37

Degenerate pn junctions

• Populat ion invers ion  may be obtained at a p-n junction

by heavy doping  (degenerat ive doping ) of both the p-and n-type material.

• Heavy p-type doping (p+-doped) with acceptor impuritiescauses a lowering of the Fermi level into the valenceband .

• Heavy n-type doping (n+-doped) causes the Fermi levelto enter the conduction band .

k

E

EFc

k

E

EFv

n+-dopedp+-doped

Page 38: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 38/46

38

Heavy p-type doping

E

Eg

Ec

Ev EFv  p(E)

n(E)

Carrier concentration

P(E)

1

EA

1/2

E

Page 39: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 39/46

39

Heavy n-type doping

E

Eg

Ec

Ev

EFc

 p(E)

n(E)

Carrier concentration

P(E)

1

ED

1/2

E

Page 40: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 40/46

40

•  Heavy p-type doping  with acceptor impurities causes a

lowering of the Fermi level into the valence band.

•  Heavy n-type doping  causes the Fermi level to enter the

conduction band.

•  The material is referred to as a degenerate semiconduc tor  if

the (quasi) Fermi level lies inside the conduction or valence band.

•  The exponential approximation of the Fermi function cannot  beused, s.t. np ≠ ni2. (the law of mass act ion becomes inv al id )

The carrier concentrations must be obtained by numerical

solution.

Degenerate semiconductors

Page 41: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 41/46

41

Determination of the quasi-Fermi levels

Given the concentrations of electrons n and holes p in a degenerate

semiconductor at T = 0o K, one can show that the quasi-Fermi levels are

EFc = Ec + (3p2)2/3 (ħ2/2mc) n2/3

EFv = Ev - (3p2)2/3 (ħ2/2mv) p

2/3

These equations are approximately applicable for an arbitrary

temperature T if n and p are sufficiently large so that EFc  –  Ec >> k BTand Ev  –  EFV >> k BT, i.e. if the quasi-Fermi levels lie deep within the

conduction and valence bands.

Page 42: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 42/46

42

depletion

Forming a p+-n+ junction in equilibrium

p+  n+ ---- -

--- ++

++ +

+++p+  n+ 

x

E

W

 position  position

eV0

Electron

energy

Ecp

EvpEFp

Eg

Ecn

Evn

EFn

Eg

Ecp

EvpEFp

Eg

Ecn

Evn

EFn

Eg

eV0 > Eg

Page 43: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 43/46

43

Eg

EFvEFc

 position

Eg

Heavily doped p+-n+ junction at thermal equilibrium

   E   l  e  c   t  r  o  n  e  n

  e  r  g  y

eV0 > Eg

depletion

Page 44: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 44/46

44

Heavily doped p+-n+ junction under forward bias

hueV > Eg

EFv

EFc

hu

   E

   l  e  c   t  r  o  n  e  n  e  r  g  y

 position

e(V0-V) 

injection

injection

•  When a forward-bias nearly equals or exceeding the bandgap

voltage there is conduction.

•  At high injection carrier density in such a junction there is an

act ive region  near the depletion layer that contains

simultaneously degenerate  populations of electrons and holes.

•  The injection carriers may be largely electrons injected into the p-

n region because of their larger mobility.

 Active

Eg

Eg

Simultaneous degenerate populations of electrons

Page 45: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 45/46

45

Simultaneous degenerate populations of electrons

and holes in the active region

E

Eg

Ev EFv  p(E)

n(E)

Carrier concentration

Pv(E)

11/2

E

Ec

EFc

Pc(E)

11/2

Page 46: Lecture 10_optical Transitions in Semiconductors

7/26/2019 Lecture 10_optical Transitions in Semiconductors

http://slidepdf.com/reader/full/lecture-10optical-transitions-in-semiconductors 46/46

46

Condition for stimulated emission

• For the active region the condi t ion for st imulated

emiss ion  is satisfied for radiation of frequency

Eg/h < u < (EFc  – EFv)/h

=> any  radiation of this frequency which is confined to

the active region will be ampli f ied .

Eg

E

Ec

EFc

hu

Eg EFc-EFV

u

The peak emission

frequency is always

larger  than the

bandgap energy, with

the frequencydetermined by the

injection.

Stimulated emission