Lecture 1 - UMD Physics › ... › agashe › S10 › notes › lecture1.pdf · Lecture 1 •...

11
Lecture 1 Oscillations (chapter 14) Fluids (15) Waves (20, 21) (Optics in PHYS 270) Thermodynamics (16-19) Electrostatics (26-30) Electric Currents (31-32) Outline of PHYS 260: 6 topics (applications of Newton’s laws from PHYS 161: increasing complexity) (beyond Newton’s laws: continue with magnetism in PHYS 270) Not much connection between topics: survey course

Transcript of Lecture 1 - UMD Physics › ... › agashe › S10 › notes › lecture1.pdf · Lecture 1 •...

Page 1: Lecture 1 - UMD Physics › ... › agashe › S10 › notes › lecture1.pdf · Lecture 1 • Oscillations (chapter 14) • Fluids (15) • Waves (20, 21) (Optics in PHYS 270) •

Lecture 1

• Oscillations (chapter 14)

• Fluids (15)

• Waves (20, 21) (Optics in PHYS 270)

• Thermodynamics (16-19)

• Electrostatics (26-30)

• Electric Currents (31-32)

Outline of PHYS 260: 6 topics

(applications of Newton’s laws from PHYS 161: increasing complexity)

(beyond Newton’s laws: continue with magnetism in PHYS 270)

Not much connection between topics: survey course

Page 2: Lecture 1 - UMD Physics › ... › agashe › S10 › notes › lecture1.pdf · Lecture 1 • Oscillations (chapter 14) • Fluids (15) • Waves (20, 21) (Optics in PHYS 270) •

Outline for today

• Kinematics of simple harmonic oscillations (mathematical description of motion): relation to uniform circular motion

• Dynamics: use conservation of energy and Newton’s laws to relate kinematics to physical parameters (mass...)

Chapter 14 (Oscillations)

Review: uniform circular motion (4.5);restoring forces; elastic potential energy (10.4, 10.5);

conservation of energy; energy diagrams (10.7)

Page 3: Lecture 1 - UMD Physics › ... › agashe › S10 › notes › lecture1.pdf · Lecture 1 • Oscillations (chapter 14) • Fluids (15) • Waves (20, 21) (Optics in PHYS 270) •

Features of Oscillations

• back-and-forth motion about equilibrium position

• period (T): time for 1 cycle

• frequency (f = 1/ T): number of cycles per second

• units: 1 hertz (Hz) = 1 cycle/second = 1/ s

• 1 k Hz = 1000 Hz T = 1 / ( 1000 / s ) = 1 ms

Page 4: Lecture 1 - UMD Physics › ... › agashe › S10 › notes › lecture1.pdf · Lecture 1 • Oscillations (chapter 14) • Fluids (15) • Waves (20, 21) (Optics in PHYS 270) •

Special case: Simple Harmonic Motion

• amplitude (A): max. displacement from equilibrium position (x=0)

• velocity (v) = dx/dt

• v=0 at x = +A, -A

• v = at x = 0vmax

(Sinusoidal)

Page 5: Lecture 1 - UMD Physics › ... › agashe › S10 › notes › lecture1.pdf · Lecture 1 • Oscillations (chapter 14) • Fluids (15) • Waves (20, 21) (Optics in PHYS 270) •

3 Questions

• related to A?

• T (or f) related to physical parameters (mass, spring constant)

• derive motion from Newton’s laws

vmax

Page 6: Lecture 1 - UMD Physics › ... › agashe › S10 › notes › lecture1.pdf · Lecture 1 • Oscillations (chapter 14) • Fluids (15) • Waves (20, 21) (Optics in PHYS 270) •

1. Mathematical description• focus on spring-mass (but general)

• empirical data (theory in next lecture):

• from graph:

• using calculus:

• stretch spring more mass moves faster

! (angular frequency) = 2"f = 2"/T(in radions/second, not cycles/second)

vx(t) = !vmax sin!

2!tT

"

x(t) = A cos!

2!t

T

"

= A cos (2!ft)= A cos "t

vx(t) =dx

dt

= !!A sin!

2"t

T

"

Page 7: Lecture 1 - UMD Physics › ... › agashe › S10 › notes › lecture1.pdf · Lecture 1 • Oscillations (chapter 14) • Fluids (15) • Waves (20, 21) (Optics in PHYS 270) •

Example• An object undergoing SHM has a maximum displacement of 4.7 m

at t = 0 s. If the angular frequency of oscillation is 1.6 rad/s, what is the object’s (a) displacement and (b) speed when t = 3.5 s?

Page 8: Lecture 1 - UMD Physics › ... › agashe › S10 › notes › lecture1.pdf · Lecture 1 • Oscillations (chapter 14) • Fluids (15) • Waves (20, 21) (Optics in PHYS 270) •

Relation to Circular motion (I)

• general initial condition:

• SHM: projection of uniform circular motion onto 1 dimension

• x = A cos ! = A cos "t(! = "t: uniform circular motion with ! = 0 at t = 0)

x != A at t = 0

Page 9: Lecture 1 - UMD Physics › ... › agashe › S10 › notes › lecture1.pdf · Lecture 1 • Oscillations (chapter 14) • Fluids (15) • Waves (20, 21) (Optics in PHYS 270) •

Relation to Circular motion (II)

• In general:

• phase of oscillation (or angle of circular motion)

• phase constant (sets initial condition: starting point on circle):!0

!(t)

x0 = A cos !0;v0 x = !"A sin!0

vs. cos !0 in x0

!(t = 0) ! !0 "= 0 #x(t) = A cos !(t) = A cos ("t + !0);vx(t) = $"A sin ("t + !0) = $vmax sin ("t + !0)

Page 10: Lecture 1 - UMD Physics › ... › agashe › S10 › notes › lecture1.pdf · Lecture 1 • Oscillations (chapter 14) • Fluids (15) • Waves (20, 21) (Optics in PHYS 270) •

2. Use conservation of energy to...• ...relate

• assume no friction (energy conserved)

• potential energy:

• mechanical...(constant):

• at turning point:

• at equilibrium:(independent

of A)

(period of oscillation is half)

E = K + U = 12mv2

x + 12kx2

U = 12k (!x)2 (!x = x! xc)

set to 0A, ! to m, k (spring constant)

E = U = 12kA2 (K = 0)

E = 12mv2

max (U = 0)

Page 11: Lecture 1 - UMD Physics › ... › agashe › S10 › notes › lecture1.pdf · Lecture 1 • Oscillations (chapter 14) • Fluids (15) • Waves (20, 21) (Optics in PHYS 270) •

3. Newton’s laws

• no friction/gravity

• acceleration not constant (2nd order differential equation):

• unique solution guess:

• verify:

• satisfied if (same as energy...)

• assumption justified by Newton’s + Hooke’s laws (theory agrees with experiment!)

ax = dvxdt = d2x

dt2 = ! kmx

(Fnet)x = (Fspring)x

= !k!x = !kx

= max

ax =dvx

dt= !!2A cos !t

= !!2x(t)

dxdt = !!A sin ... " dx2

dt2 = !!2A cos ...

x(t) = A cos (!t + "0)

x(t) = A cos (!t + "0)

!2 = k/m

unspecified constants