Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices,...

148
FAX YOUR ORDER TO 614 760-9781 OR ORDER ONLINE AT QUANTABIODESIGN.COM 7470 MONTGOMERY DRIVE, PLAIN CITY, OHIO 43064 TEL: 614 792-2958 OR TOLL-FREE (U.S. ONLY): 866 792-9222 I EMAIL: [email protected] I WEB: QUANTABIODESIGN.COM Leading Innovator, producer and commercial provider of single molecule discrete PEG (dPEG ® ) derivatives PRODUCT CATALOG EXCLUSIVELY INVENTED, DEVELOPED AND MANUFACTURED 04.17

Transcript of Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices,...

Page 1: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

FAX YOUR ORDER TO 614 760-9781 OR ORDER ONLINE AT QUANTABIODESIGN.COM

7470 MONTGOMERY DRIVE, PLAIN CITY, OHIO 43064

TEL: 614 792-2958 OR TOLL-FREE (U.S. ONLY): 866 792-9222 I EMAIL: [email protected] I WEB: QUANTABIODESIGN.COM

Leading Innovator,

producer and

commercial provider of

single molecule discrete

PEG (dPEG®) derivatives

PRODUCT CATALOGE X C L U S I V E LY I N V E N T E D , D E V E L O P E D A N D M A N U FA C T U R E D

04.17

Page 2: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

uanta BioDesign, Ltd. was founded in March, 1999 in Powell, Ohio by

Paul D. Davis, Ph.D. for the purpose of developing and commercializing an

extensive line of products for companies involved in drug discovery and

diagnostic development programs. These products are based on our proprietary

discrete polyethylene glycol (dPEG®) chemistries, including our unique processes

for making these important compounds. Our single molecular weight ethylene

glycol conjugation technology, dPEG®, can eliminate common problems found in

the development of diagnostic and therapeutic products, such as aggregation and

non-specific interactions, poor water solubility, poor delivery, delivery

issues/options, short serum half life, toxicity and antigenicity.

The dPEG® product line is a unique technology platform which can be

custom tailored to meet specific physical, chemical and morphological

requirements in a broad array of diagnostic and therapeutic applications.

Chemistry applications which incorporate dPEG® products include conjugations,

simple chemical modifications, cross linking, biotinylation, signal amplification,

modification of biological therapeutics and peptide synthesis.

Recently we introduced dPEG® products that offer new delivery options as

well. We are involved in developing new cross-linking and labeling chemistries

that incorporate the dPEG® technology, and will allow for completely new

approaches to existing opportunities in these same areas of therapeutic and

diagnostic development, and will revolutionize many of these areas as the new

generations of drugs and diagnostics evolve.

Each product is of high purity, a single discrete compound and available in

bulk quantities at discounted prices.

Quanta BioDesign, Ltd’s dPEG® products are available from R & D material needs to cGMP material needs for Phase II Trials and beyond.

Please also visit our website: www.QuantaBioDesign.com .

Page 3: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Ordering Information How do I order?

Phone: (866) 792-9222 or (614) 792-2958 Monday through Friday 9:00 am to 5:00 pm (EST)

Fax: (614) 760-9781 (24 hours, 7 days a week)

E-mail: [email protected]

Website: www.quantabiodesign.com

Ordering Information needed

Company Name

Purchaser

Telephone and Fax number

E-mail Address for shipping confirmation

Shipping and Billing Addresses

P.O # and Credit Card Information

Orders can be placed via web, e-mail or fax

Payment

We accept MasterCard, Visa, American Express, USD check, and bank transfers. Some international orders may require payment in advance. Our banking information will be on the invoice. (Please do not send cash)

Shipping and Storage Details

Products will usually ship the same day as ordered, if it is received by 3:00pm EST. We ship all products by Fedex overnight. Storage details will be shipped with each product. We recommend storing Quanta BioDesign products in the freezer at -20° upon arrival. Orders outside the United States are shipped by Fedex International Priority.

No products are shipped or delivered on weekends or U.S. holidays.

Page 4: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

General Information If you have a technical question about a product you received or have seen in the catalog, please send an e-mail to [email protected] or call us at (614) 792-2958 or (866) 792-9222.

Safety Data Sheets SDS’s are available for each individual product upon request.

Product Analysis Quanta BioDesign’s products are unique, single molecular weight (MW), discrete PEG (dPEG®) compounds, synthesized de novo from pure, small units (e.g., triethylene glycol or tetraethylene glycol).Purity is assayed by HPLC, TLC, and/or NMR.

Certificate of Analysis A certificate of analysis (C of A) will be sent with your product(s) if requested. The C of A provides the test method used, the results, and the purity level of the product.

Re-Stocking Fee Due to the cost of re-qualifying product, there is a charge of $250 for each previously un-opened vial/bottle that is returned. No previously opened product will be accepted. Please note there are no returns on bulk quantity purchases.

Page 5: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Distributors

United States

Peptides International

11621 Electron Drive Louisville, Kentucky 40299

Phone: 1-800-777-4779 www.pepnet.com

VWR International

1310 Goshen Parkway West Chester, PA 19380

Phone: 800-932-5000 www.vwr.com

Fisher Scientific 200 Park Lane Drive Pittsburg, PA 15275

Phone: (800) 766-7000 www.fishersci.com

MilliporeSigma 2909 Laclede Ave.

Saint Louis, MO 63103 Phone: 800-325-3010

www.sigmaaldrich.com

Tim Tec, Inc.

Harmony Business Park 301-A Newark, Delaware 19711

Phone: (302) 292-8500 www.timtec.net

Europe

Bio-Connect Services BV

Begonialaan 3a 6851 TE Huissen The Netherlands

Phone: +31 (0)326 4450 www.bio-connectservices.nl

Stratech Scientific Limited

Cambridge House, St Thomas’ Place Cambridgeshire Business Park CB7 4EX Ely, United Kingdom Phone: +44 (0) 1638-782600

www.stratech.co.uk

Iris Biotech GmbH Waldershofer Str. 51 95615 Marktredwitz

Germany Phone: +49-(0)9231-9619-73

www.iris-biotech.de

Australia

Stratech Scientific APAC Pty Ltd. Sydney, Australia

Phone: +61 (0)2 9973 2421 www.startechscientific.com.au

Japan

Nacalai Tesque, Inc.

Nijo Karasuma,Nakagyo-ku Kyoto 604-0855 Japan

Phone: +81 75 251 1723 www.nacalai.com

FUJIFILM Wako Pure Chemical Corporation

1-2 Doshomachi 3-Chome Chuo-ku

Osaka 540-8605 Phone: +81 6 6203 3741

www.wako-chem.co.j

Page 6: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Terms and Conditions

Quanta BioDesign, Ltd. owns self-developed technologies, materials and information, as well as accompanying patents, patent applications, know-how and practical knowledge for the production of discrete polyethylene glycols, dPEG®s, and related products.

The following are standard terms of trade and are an integral part of all quotations and sales of Quanta BioDesign, Ltd. to customers, buyers and business enterprises:

1. By placing a Purchase Order, the customeraccepts the standard Terms and Conditions ofSale of Quanta BioDesign, Ltd. as binding.

2. Payment terms of sale are net 30 days of dateof invoice, unless otherwise stated. CreditCards may not be used on past due invoices.

3. Products sold are solely for use by qualifiedindividuals who are experts in their fields forlaboratory use only and are not intended to beused for any other purposes, including but notlimited to, in vitro diagnostic purposes, in foods,drugs, medical devices, cosmetics orcommercial use. Customer represents andwarrants to Quanta BioDesign, Ltd. that Buyerwill properly use any products purchased fromor materials produced from products made orpurchased from Quanta BioDesign, Ltd. in strictcompliance with all applicable laws andregulations.

4. Nothing in terms of trade or quotation of ordersby Quanta BioDesign, Ltd. may be interpretedsuch that they would result in the assignment ofrights of manufacture by Quanta BioDesign, Ltd.technology to the customer.

5. A separate licensing agreement/supplyagreement* between Quanta BioDesign, Ltd.and its customer will be necessary for the use ofQuanta BioDesign, Ltd. products in applicationsbeyond laboratory use. Customers areresponsible to informing Quanta BioDesignwhen products are being used beyond lab use.

6. All goods must be inspected upon arrival andmay not be returned for credit except withQuanta BioDesign, Ltd.’s permission. Customerhas 20 business days to report anyinconsistencies with shipment. Due to the costof re-qualifying product, there is a charge of$250 for each previously un-opened vial/bottlethat is returned. No previously opened productwill be accepted. Please note there are noreturns on bulk quantity purchases.

7. Quanta BioDesign, Ltd.’s products are subject toUS export laws, treaties, rules internationalagreements and regulations. All customerspurchasing Quanta BioDesign, Ltd.’s productsassume the responsibility of abiding by USexport laws, treaties, rules internationalagreements and regulations along withapplicable foreign laws.

Please Note: International customers are responsible for any international customs, duties or taxes on merchandise delivered to addresses outside the United States. These amount are not included in the shipping charges shown on invoices and will be billed to the customer separately by the chosen carrier, if applicable.

* SidewinderTM dPEG® Constructs/Branched dPEG® PK Modifiers are available for evaluation under an MTA.

Page 7: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Table of Contents

Bioconjugate Techniques ............................................................................................................................................................. 5

Premier Offering of NEW Cross-linkers & Probes with our Exclusive dPEG® spacers ...................................... 6 DOTA-dPEG® Bifunctional Chelators with Adjustable Hydrophilic Linker Lengths .................................................................... 6

DOTA-tris(TBE)-amido-dPEG®

x-TFP ester ..................................................................................................................................... 6 DOTA-tris(acid)-amido-dPEG

®x-TFP ester..................................................................................................................................... 6

DOTA-tris(TBE)-amido-dPEG®

x-MAL ............................................................................................................................................. 7 DOTA-tris(acid)-amido-dPEG

®x-MAL ............................................................................................................................................ 7

DBCO-dPEG® Reagents - A New set of Hydrophilic Copper-Free Click Reagents ........................................................................ 9 DBCO-dPEG

®x-TFP ester ............................................................................................................................................................... 9

DBCO-dPEG®

x-MAL ..................................................................................................................................................................... 10 Bromoacetamido-dPEG

®x-amido-DBCO ..................................................................................................................................... 10

New Superhydrophilic dPEG® Chemical Modification Reagents .............................................................................................. 11 Biotin-dPEG

®12-DBCO ................................................................................................................................................................. 11

DBCO-dPEG®

x-Fluorescent Dyes ................................................................................................................................................. 11 Bromoacetamido-dPEG

®x-azide ................................................................................................................................................. 11

Payload Delivery dPEG® Reagents ............................................................................................................... 13SidewinderTM dPEG® Constructs - Proprietary - Offered under MTA and license ................................................................... 13

MAL-dPEG®

4-Glu(OH)-NH-m-dPEG®

24 ......................................................................................................................................... 15 MAL-dPEG

®4-Glu(TFP ester)-NH-m-dPEG

®24 ............................................................................................................................... 15

MAL-dPEG®

4-Glu(TFP ester)-NH-dPEG®

4- ................................................................................................................................... 15 Glu(TFP ester)-NH-m-dPEG

®24 .................................................................................................................................................... 15

MAL-[NH-dPEG®

4-Glu ................................................................................................................................................................. 16 (TFP ester)]3-NH-m-dPEG

®24 ....................................................................................................................................................... 16

MAL-dPEG®

4-Lys(t-boc)-NH-m-dPEG®

24 ...................................................................................................................................... 16 MAL-dPEG

®4-Lys(TFA-)-NH-m-dPEG

®24 ....................................................................................................................................... 16

NH2-dPEG®

4-Glu(OH)-NH-m-dPEG®

24 .......................................................................................................................................... 17 NH2-dPEG

®4-Glu(OH)-NH-dPEG

®4- .............................................................................................................................................. 17

Glu(OH)-NH-m-dPEG®

24 .............................................................................................................................................................. 17 NH2-dPEG

®4-Glu(OH)-[NH- ......................................................................................................................................................... 17

dPEG®

4-Glu(OH)]2-NH-m-dPEG®

24 ............................................................................................................................................... 17 MAL-dPEG

®4-Lys(-5(6)- ............................................................................................................................................................... 18

carboxyfluorescein)-NH-m-dPEG®

24 ........................................................................................................................................... 18

Phospholipids ......................................................................................................................................................................... 19 m-dPEG

®x-amido-dPEG

®24-DSPE ................................................................................................................................................. 19

MAL-dPEG®

12-DSPE .................................................................................................................................................................... 20 MAL-dPEG®₂₄-amido-dPEG®₂₄-DSPE .......................................................................................................................................... 20 NHS ester-dPEG

®x-amido-dPEG

®₂₄-DSPE ..................................................................................................................................... 21

DBCO-dPEG®

x-amido-dPEG®

24-DSPE ........................................................................................................................................... 21 DOTA-tris(acid)-amido-dPEG

®x-amido-dPEG

®24-DSPE ................................................................................................................ 21

Biotin-dPEG®

x-amido-dPEG®

x-amido-dPEG®

24-DSPE ................................................................................................................... 22 Mal-dPEG

®x-amido-dPEG

®x-amido-dPEG

®24-DSPE ...................................................................................................................... 22

dPEG® Based Chemical Modification Reagents............................................................................................. 23Branched dPEG

® PK Modifiers - Proprietary - Offered under MTA and license ........................................................................ 23

MAL-dPEG®

12 or 24-Tris(m-dPEG®

x24or -dPEG®

y-acid)3 and 9 ...................................................................................................... 24 Amino-dPEG

®12 or 24-Tris(m-dPEG

®x25or -dPEG

®y-t-butyl ester)3 and 9 ...................................................................................... 25

Bis-MAL-Lysine-dPEG®

4+12- ......................................................................................................................................................... 26

Page 8: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Tris(m-dPEG®

24 or -dPEG®

24-acid)3 .............................................................................................................................................. 26

Amine Reactive ....................................................................................................................................................................... 27 Hydroxy-dPEG

®x-TFP ester ......................................................................................................................................................... 27

m-dPEG®

x-NHS ester .................................................................................................................................................................. 27 m-dPEG

®x-TFP ester ................................................................................................................................................................... 28

m-dPEG®

48-NH-CO(CH2)3 ............................................................................................................................................................ 29 CO-TFP ester .............................................................................................................................................................................. 29 m-dPEG

®x-amido-dPEG

®x-TFP ester ............................................................................................................................................ 29

m-dPEG®

x-amido-dPEG®

x-acid .................................................................................................................................................... 29

Carboxyl and Active Ester Reactive ......................................................................................................................................... 32 m-dPEG

®x-Propionaldehyde ....................................................................................................................................................... 32

m-dPEG®

x-amine ........................................................................................................................................................................ 33 Amino-dPEG

®x-acid .................................................................................................................................................................... 34

Amino-dPEG®

24-amido-dPEG®

24-acid .......................................................................................................................................... 35

Click Reagents: Copper Free .................................................................................................................................................... 36 m-dPEG

®x-DBCO ......................................................................................................................................................................... 36

Thiol and Sulfhydryl Reactive .................................................................................................................................................. 37 m-dPEG

®x-MAL ........................................................................................................................................................................... 37

MAL-dPEG®

4-(m-dPEG®

x)3 ........................................................................................................................................................... 38

Other important reactivities ................................................................................................................................................... 39 m-dPEG

®x-Azide (Azido-m-dPEG

®x) ............................................................................................................................................. 39

Metal Surface Modification Reagents (e.g., Au) ...................................................................................................................... 40 Thiol-dPEG

®x-acid ....................................................................................................................................................................... 40

m-dPEG®

x-Thiol .......................................................................................................................................................................... 41 Lipoamido-dPEG

®x-TFP ester ...................................................................................................................................................... 42

Lipoamido-dPEG®

x-acid .............................................................................................................................................................. 43 MAL and Biotin-dPEG

®x-Lipoamide ............................................................................................................................................ 44

m-dPEG®

x-Lipoamide .................................................................................................................................................................. 45

Reactivity: Converting an Amine to a Latent Thiol .................................................................................................................. 46 dPEG

®x-SATA (S-acetyl-dPEG

®x-NHS ester) ................................................................................................................................. 46

Reagents to Extend Carboxyl with a dPEG® Spacer .................................................................................................................. 47

Amino-dPEG®

x-t-butyl ester ....................................................................................................................................................... 47 Hydroxy-dPEG

®x-t-butyl ester .................................................................................................................................................... 48

Amino-dPEG®

x-OH ...................................................................................................................................................................... 49 t-boc-N-amido-dPEG

®x-OH ......................................................................................................................................................... 49

Azido-dPEG®

x-OH ....................................................................................................................................................................... 50 S-acetyl-dPEG

®x-OH .................................................................................................................................................................... 51

dPEG®

12-diol ............................................................................................................................................................................... 51

dPEG® Based Crosslinking ........................................................................................................................... 52 MAL-dPEG

®x-NHS ester .............................................................................................................................................................. 52

Heterobifunctional Reagents: Amine and Thiol Reactive ........................................................................................................ 53 MAL-dPEG

®x-TFP ester ............................................................................................................................................................... 53

MAL-dPEG®

x-acid ........................................................................................................................................................................ 54 Bromoacetamido-dPEG

®x-TFP ester ........................................................................................................................................... 55

Bromoacetamido-dPEG®

x-amido-DBCO ..................................................................................................................................... 55 4-formyl-benzamido-dPEG

®x-TFP ester ...................................................................................................................................... 56

4-formyl-benzamido-dPEG®

12-EDA-MAL .................................................................................................................................... 57 Phthalimidooxy-dPEG

®x-NHS ester ............................................................................................................................................ 58

SPDP-dPEG®

x-NHS ester ............................................................................................................................................................. 59

Page 9: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Tris (2-carboxyethyl) phosphine ................................................................................................................................................ 60 hydrochloride (TCEP) ................................................................................................................................................................. 60

Homobifunctional Reagents: Amine Reactive ......................................................................................................................... 61 Bis-dPEG

®x-NHS ester ................................................................................................................................................................. 61

Bis-dPEG®

x-NHS ester (cont.) ..................................................................................................................................................... 62 Bis-dPEG

®x-PFP & TFP esters ...................................................................................................................................................... 63

Bis-dPEG®

x-PFP & TFP esters (cont.)........................................................................................................................................... 64

Click Reagents: Azide .............................................................................................................................................................. 65 Azido-dPEG

®x-TFP ester .............................................................................................................................................................. 66

Azido-dPEG®

x-acid ...................................................................................................................................................................... 67 Azido-dPEG

®x-amine................................................................................................................................................................... 68

Bromoacetamido-dPEG®

x-azide ................................................................................................................................................. 68

Click Reagents: Amine and Carboxyl Acetylide Partners ......................................................................................................... 69 Propargyl-dPEG

®1-NHS ester ...................................................................................................................................................... 69

Propargyl amine......................................................................................................................................................................... 69

Homobifunctional: DBCO (Copper-Free Click) ......................................................................................................................... 70 Bis-dPEG®x-DBCO ...................................................................................................................................................................... 70

Homotetrafunctional: DBCO (Copper-Free Click) .................................................................................................................... 71 Tetra(-dPEG

®x-DBCO) ................................................................................................................................................................. 71

Homobifunctional: Thiol Reactive ........................................................................................................................................... 72 Bis-MAL-dPEG

®x.......................................................................................................................................................................... 72

Bis-Bromoacetamido-dPEG®

x ..................................................................................................................................................... 72

Homotetrafunctional: Thiol Reactive ...................................................................................................................................... 73 MAL-dPEG

®12-Tris(-dPEG

®11-amido-MAL)3.................................................................................................................................. 73

Tetra(-amido-dPEG®

x-MAL)pentaerythritol ............................................................................................................................... 73 Bromoacetamido-dPEG

®12-Tris .................................................................................................................................................. 73

(-dPEG®

11-bromoacetamide)3 ..................................................................................................................................................... 74

Homohexafunctional: Thiol Reactive ...................................................................................................................................... 75 Hexa(-amido-dPEG

®x-MAL)dipentaerythritol ............................................................................................................................. 75

t-boc-N-amido-dPEG®

x-amine .................................................................................................................................................... 76 Diamido-dPEG

®11-diamine ......................................................................................................................................................... 76

Homobifunctional: Diamine Monoprotected .......................................................................................................................... 77 CBZ-N-amido-dPEG

®3-amine ...................................................................................................................................................... 77

t-boc-N-EDA ............................................................................................................................................................................... 77 Acid-dPEG

®x-NHS ester ............................................................................................................................................................... 78

Amino-dPEG®

11-ONH-t-boc ........................................................................................................................................................ 79 Bis-dPEG

®5, half benzyl half NHS ester ....................................................................................................................................... 79

Other Thiol Reactive ............................................................................................................................................................... 80 MPS (NHS-3-maleimidopropionate) .......................................................................................................................................... 80 MPS-Acid.................................................................................................................................................................................... 80 MPS-EDA.TFA ............................................................................................................................................................................. 80 Bis-Maleimide amine, TFA salt .................................................................................................................................................. 81 Bis-MAL-Lysine-dPEG

®4-acid ...................................................................................................................................................... 82

Bis-MAL-Lysine-dPEG®

4-TFP ester .............................................................................................................................................. 83

Other Heterobifunctional ....................................................................................................................................................... 84 Amino-dPEG

®x-t-boc-hydrazide .................................................................................................................................................. 84

Fmoc-N-amido-dPEG®

4-t-boc-hydrazide .................................................................................................................................... 85

Page 10: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Biotinylation Reagents ..................................................................................................................... 86NHS-dPEG

®x-biotin ..................................................................................................................................................................... 86

dPEG®

x-biotin acid ...................................................................................................................................................................... 87 Biotin-dPEG

®x-TFP ester ............................................................................................................................................................. 88

NHS-S-S-dPEG®

4-biotin (cleavable) ............................................................................................................................................. 89 TFP/NHS-dPEG

®x-biotinidase ..................................................................................................................................................... 90

resistant biotin ........................................................................................................................................................................... 90 Biotin-dPEG

®4-hydrazide ............................................................................................................................................................ 91

Biotin-dPEG®

x-NH2 ...................................................................................................................................................................... 92 Biotin-dPEG

®x-oxyamine. HCl ..................................................................................................................................................... 93

Thiol Reactive ......................................................................................................................................................................... 94 Biotin-dPEG

®x-MAL ..................................................................................................................................................................... 94

Photoaffinity Biotinylation Reagents ...................................................................................................................................... 95 Biotin-dPEG

®3-TFPA .................................................................................................................................................................... 95

Additional Biotinylation Reagents .......................................................................................................................................... 96 Biotin-dPEG

®x-azide .................................................................................................................................................................... 96

NHS-biotin ................................................................................................................................................................................. 97 Bis-dPEG

®3-biotin ....................................................................................................................................................................... 97

Biotin-dPEG®

3-cyanocobalamin.................................................................................................................................................. 97

dPEG® based Fluorescent and other Dye Labels ........................................................................................... 98Lissamine Rhodamine B sulfonamide-dPEG

®4-acid .................................................................................................................... 98

DNP-dPEG®

x-NHS ester .............................................................................................................................................................. 98 DNP-dPEG

®x-acid ........................................................................................................................................................................ 99

Carboxyfluorescein-dPEG®

12-NHS ester ..................................................................................................................................... 99

dPEG® Based Reagents for Peptide Modification ....................................................................................... 100Fmoc-N-amido-dPEG

®x-acid ..................................................................................................................................................... 100

Fmoc-amido-dPEG®

24-amido-................................................................................................................................................... 101 dPEG

®24-acid ............................................................................................................................................................................. 101

Fmoc-N-amido-dPEG®

x-NHS ester ............................................................................................................................................ 102 Fmoc-N-amido-dPEG

®x-TFP ester ............................................................................................................................................. 103

Fmoc-N-Lys-(dPEG®

x-biotin)-OH-(acid) .................................................................................................................................... 104 t-boc-N-amido-dPEG

®x-acid ..................................................................................................................................................... 105

Fmoc-amidooxy-dPEG®

12 acid .................................................................................................................................................. 106 CBZ-N-amido-dPEG

®x-acid ........................................................................................................................................................ 107

CBZ-amido-dPEG®

24-amido- ..................................................................................................................................................... 107 dPEG

®24-acid ............................................................................................................................................................................. 107

Methoxytrityl-S-dPEG®x acid .................................................................................................................................................... 108

dPEG® Reagents for Nucleic Acids .............................................................................................................. 109Amino-dPEG

®12-ODMT ............................................................................................................................................................. 109

References ............................................................................................................................................... 110

Please Note: We make and offer many intermediates from which a range of otherwise unavailable nucleic/oligonucleotides reagents can be created.

Page 11: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

For quotes on bulk quantities, please contact [email protected] 5

Bioconjugate Techniques

A Tour de Force!

Buy it NOW!!

Greg has accomplished a Tour de Force with his new edition of “Bioconjugate Techniques.” It is without a doubt the best resource for those practicing in this broad field. He not only teaches his theory, but also shows practical applications of his theory. The book discusses the latest advances in the field of bioconjugates and is a great tool for those wishing to further their understanding of biomolecules and bioconjugates. See Chapter 18 for an introduction to the world of discrete PEG

(dPEG®). Thank you, Greg!

Buy a copy for only $90 or get it FREE with an order of $900 or more!

One book per customer.

Upon Request.

PLEASE NOTE: Book is shipped separately from products ordered.

Please allow 7-10 days for delivery.

Product # Description Price Per Book

10001 Bioconjugate Techniques by Greg T. Hermanson $90

Page 12: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Premier Offering of NEW Cross-linkers & Probes with our Exclusive dPEG® spacers DOTA-dPEG® Bifunctional Chelators

To place an order, call 614-792-2958 or visit www.quantabiodesign.com 6

Premier Offering of NEW Cross-linkers & Probes with our Exclusive dPEG® spacers DOTA-dPEG® Bifunctional Chelators with Adjustable Hydrophilic Linker Lengths

DOTA-tris(TBE)-amido-dPEG®x-TFP ester

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

DOTA-tris(acid)-amido-dPEG®x-TFP ester

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Product # Description 100 mg 500 mg 1000 mg

11155 DOTA-tris(TBE)-amido-dPEG®4-TFP ester $125 $490 $900

Mol. Wt.: 968.08; single compound; dPEG® Spacer is 16 atoms and 17.834 Å

11157 DOTA-tris(TBE)-amido-dPEG®12-TFP ester $200 $565 $975

Mol. Wt.: 1320.50; single compound; dPEG® Spacer is 40 atoms and 47.091 Å

11158 DOTA-tris(TBE)-amido-dPEG®24-TFP ester $275 $640 $1100

Mol. Wt.: 1849.132; single compound; dPEG® Spacer is 76 atoms and 88.809 Å

Product # Description 100 mg 500 mg 1000 mg

11160 DOTA-tris(acid)-amido-dPEG®4-TFP ester $125 $490 $925

Mol. Wt.: 1027.808; single compound; dPEG® Spacer is 16 atoms and 17.942 Å

11162 DOTA-tris(acid)-amido-dPEG®12-TFP ester $200 $565 $1000

Mol. Wt.: 1380.229; single compound; dPEG® Spacer is 40 atoms and 46.267 Å

11163 DOTA-tris(acid)-amido-dPEG®24-TFP ester $275 $640 $1200

Mol. Wt.: 1908.859; single compound; dPEG® Spacer is 76 atoms and 88.830 Å

Page 13: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Premier Offering of NEW Cross-linkers & Probes with our Exclusive dPEG® spacers DOTA-dPEG® Bifunctional Chelators

Browse products by compound or category at www.quantabiodesign.com 7

DOTA-tris(TBE)-amido-dPEG®x-MAL

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

DOTA-tris(acid)-amido-dPEG®x-MAL

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Product # Description 50 mg 100 mg 500 mg

11166 DOTA-tris(TBE)-amido-dPEG®11-MAL $350 $600 $1200

Mol. Wt.: 1250.52; single compound; dPEG® Spacer is 37 atoms and 44.541 Å

11170 DOTA-tris(TBE)-amido-dPEG®23-MAL $425 $675 $1350

Mol. Wt.: 1779.15; single compound; dPEG® Spacer is 73 atoms and 86.378 Å

Product # Description 50 mg 100 mg 500 mg

11167 DOTA-tris(acid)-amido-dPEG®11-MAL $375 $625 $1350

Mol. Wt.: 1310.24; single compound; dPEG® Spacer is 37 atoms and 43.519 Å

11171 DOTA-tris(acid)-amido-dPEG®23-MAL $450 $700 $1500

Mol. Wt.: 1838.874; single compound; dPEG® Spacer is 74 atoms and 85.941 Å

Page 14: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Premier Offering of NEW Cross-linkers & Probes with our Exclusive dPEG® spacers DOTA-dPEG® Bifunctional Chelators

Additional References can be found at the end of each category 8

DOTA-tris(acid)-amido-dPEG®x-bromoacetamide

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Product # Description 50 mg 100 mg 500 mg

11150 DOTA-tris(acid)-amido-dPEG®3-bromoacetamide $230 $350 $1050

Mol. Wt.: 927.636; single compound; dPEG® Spacer is 14 atoms and 15.561 Å

11152 DOTA-tris(acid)-amido-dPEG®11-bromoacetamide $375 $625 $1350

Mol. Wt.: 1280.056; single compound; dPEG® Spacer is 38 atoms and 43.895 Å

11154 DOTA-tris(acid)-amido-dPEG®23-bromoacetamide $450 $700 $1500

Mol. Wt.: 1808.687; single compound; dPEG® Spacer is 74 atoms and 86.374 Å

Page 15: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Premier Offering of NEW Cross-linkers & Probes with our Exclusive dPEG® spacers DBCO-dPEG® Reagents

Additional References can be found at the end of each category 9

DBCO-dPEG® Reagents - A New set of Hydrophilic Copper-Free Click Reagents

DBCO Reagents

DBCO-dPEG®x-TFP ester

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Product # Description 100 mg 1000 mg

11750 DBCO-amine $240 $1300

Mol. Wt.: 276.33; single compound;

11814 DBCO-acid $240 $1300

Mol. Wt.: 319.35; single compound;

11815 DBCO-TFP ester $240 $1300

Mol. Wt.: 467.41; single compound;

Product # Description 25 mg 100 mg 500 mg

11362 DBCO-dPEG®4-TFP ester $190 $480 $1650

Mol. Wt.: 714.70; single compound; dPEG® Spacer is 16 atoms and 17.942 Å

11366 DBCO-dPEG®12-TFP ester $195 $540 $1750

Mol. Wt.: 1067.12; single compound; dPEG® Spacer is 39 atoms and 46.285 Å

11370 DBCO-dPEG®24-TFP ester $225 $600 $1850

Mol. Wt.: 1595.75; single compound; dPEG® Spacer is 86 atoms and 88.793 Å

Page 16: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Premier Offering of NEW Cross-linkers & Probes with our Exclusive dPEG® spacers DBCO-dPEG® Reagents

Browse products by compound or category at www.quantabiodesign.com 10

DBCO-dPEG®x-MAL

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Bromoacetamido-dPEG®x-amido-DBCO

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Product # Description 25 mg 100 mg 500 mg

10592 DBCO-dPEG®4-MAL $195 $490 $1650

Mol. Wt.:674.74; single compound; dPEG® Spacer is 30 atoms and 29.747 Å

10593 DBCO-dPEG®12-MAL $210 $575 $1900

Mol. Wt.:1027.161; single compound; dPEG® Spacer is 54 atoms and 56.426 Å

10594 DBCO-dPEG®24-MAL $240 $645 $2100

Mol. Wt.: 1555.791; single compound; dPEG® Spacer is 90 atoms and 99.848 Å

Product # Description 25 mg 100 mg 500 mg

11221 Bromoacetamido-dPEG®4-amido-DBCO $195 $490 $1650

Mol. Wt.: 644.55; single compound; dPEG® Spacer is 16 atoms and 17.943 Å

11223 Bromoacetamido-dPEG®12-amido-DBCO $210 $575 $1900

Mol. Wt.: 996.974; single compound; dPEG® Spacer is 40 atoms and 46.154 Å

11224 Bromoacetamido-dPEG®24-amido-DBCO $240 $645 $2100

Mol. Wt.: 1525.60; single compound; dPEG® Spacer is 76 atoms and 89.962 Å

Page 17: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Premier Offering of NEW Cross-linkers & Probes with our Exclusive dPEG® spacers New Superhydrophilic Chemical Modification Reagents

Browse products by compound or category at www.quantabiodesign.com 11

New Superhydrophilic dPEG® Chemical Modification Reagents

Biotin-dPEG®12-DBCO

DBCO-dPEG®x-Fluorescent Dyes

Bromoacetamido-dPEG®x-azide

Product # Description 100 mg 1000 mg

11217 Bromoacetamido-dPEG®3-azide $250 $600

Mol. Wt.: 339.19; single compound; dPEG® Spacer is 16 atoms and 17.5 Å

11204 Bromoacetamido-dPEG®11-azide $350 $1350

Mol. Wt.: 691.61; single compound; dPEG® Spacer is 39 atoms and 46.0 Å

11205 Bromoacetamido-dPEG®23-azide $400 $1400

3

Mol. Wt.: 1220.24; single compound; dPEG® Spacer is 76 atoms and 88.5 Å

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Product # Description 10 mg 25 mg 100 mg

11811 Biotin-dPEG®12-DBCO $190 $350 $1250

Mol. Wt.: 1102.34; single compound; dPEG® Spacer is 40 atoms and 46.301 Å

Product # Description 1 mg 5 mg

11812 DBCO-dPEG®12-carboxyfluorescein $195 $350

Mol. Wt.: 1234.34; single compound; dPEG® Spacer is 40 atoms and 47.620 Å

11813 DBCO-dPEG®12-meso-TP-IR775 $195 $350

Mol. Wt.: 1447.26; single compound; dPEG® Spacer is 40 atoms and 49.348 Å

Page 18: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Premier Offering of NEW Cross-linkers & Probes with our Exclusive dPEG® spacers New Superhydrophilic Chemical Modification Reagents

Browse products by compound or category at www.quantabiodesign.com 12

Hydroxy-dPEG®x-TFP ester

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Product # Description 100 mg 1000 mg

11341 Hydroxy-dPEG®4-TFP ester $100 $330

Mol. Wt.: 414.35; single compound; dPEG® Spacer is 16 atoms and 17.909 Å

11345 Hydroxy-dPEG®12-TFP ester $180 $600

Mol. Wt.: 766.77; single compound; dPEG® Spacer is 40 atoms and 46.226 Å

11349 Hydroxy-dPEG®24-TFP ester $230 $1250

Mol. Wt.: 1295.40; single compound; dPEG® Spacer is 76 atoms and 88.758 Å

Page 19: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Payload Delivery dPEG® Reagents Sidewinder™ dPEG

® Constructs - Proprietary - Offered under MTA and license

For quotes on bulk quantities, please contact [email protected] 13

Payload Delivery dPEG® Reagents

SidewinderTM dPEG® Constructs - Proprietary - Offered under MTA and license

Quanta BioDesign, Ltd. offers Sidewinder™ dPEG® Constructs1

Proprietary and available for evaluation under an MTA

Quanta BioDesign scientists have designed a new class of dPEG® constructs, the Sidewinder™ dPEG

®s, which offer a unique opportunity

for taking advantage of dPEG® properties. These additions open a vast range of new ways to incorporate the dPEG

® to optimize PK and

BD properties for any targeting species in diagnostic and therapeutic applications.

The proprietary in-house expertise developed and utilized by Quanta for processing dPEG® constructs as single molecules, allows us to

make this exceptional offering under a variety of business relationships.

The foundation of the Sidewinder™ dPEG® concept is the ability to add distinct therapeutic or diagnostic moieties onto one or more

functionalized side-arms, with a “naked” dPEG® construct extending into the in vitro or in vivo medium. This masks the payload on the

targeting agent as it moves to or interacts selectively with the site of interest.

All of the ideal properties of the PEG moiety are in play.

The “naked” dPEG® can serve a number of functions when attached to a targeting moiety:

Masking a drug or diagnostic agent from interacting with the medium; e.g. optimizing PK and increasing solubility in ADCapplications

2

Increasing cell internalization of cell surface antigen targeting species

Reducing non-specific interactions and aggregation for improved BD and decreased immunogenicity

Additional features include our ability to make the Sidewinder™ dPEG® constructs with multiple moieties; allowing one to either

multiplex at a single point of attachment or attach different moieties on a single construct, including, e.g., both a therapeutic and diagnostic, as well as building on a dendritic core.

As with all of Quanta BioDesign’s other dPEG® products, ALL of the Sidewinder™ dPEG

® constructs are being developed and

manufactured completely and exclusively in Ohio, USA.

“Ready to Use” Sidewinder™ dPEG® products

Several general structural representations of Sidewinder™ dPEG® constructs that Quanta BioDesign has made or can be made

available through collaboration under an MTA, are represented infra.

This technology continues to evolve as we explore new dPEG®

x/y options, as well as functional group and orthogonal chemistrycombinations; please contact us for more information to discuss how we can help you optimize your application.

1. Patents pending.2. Reducing hydrophobicity of homogeneous ADCs improves PK and TI. R.Lyon, et al., Nature Biotechnology, 33, 733-735

(2015).

Page 20: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Payload Delivery dPEG® Reagents Sidewinder™ dPEG

® Constructs - Proprietary - Offered under MTA and license

Additional References can be found at the end of each category 14

Generalized SidewinderTM dPEG® Construct

FG: Maleimide; Bromoacetyl; DBCO; Azide; Aminooxy; Aldehyde.

dPEG®

x spacer: x = 4; spacers can optionally be up to 48.

AA and SAFG: Glutamic acid and lysine w/ or w/o a dPEG®

x spacer with various FG options.

dPEG® options: m-dPEG

®24 can be linear or branched; see Amino products containing dPEG

®’s; z can be

customized.

Specific Examples of Recently Made Custom Materials:

MAL-dPEG®12-Lys(DMACAA)-NH-m-dPEG®

24

MAL-dPEG®12-Lys(NH3

+TFA-)[NH-dPEG®4-Lys(NH3

+TFA-)]2-NH-m-dPEG®24

Page 21: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Payload Delivery dPEG® Reagents Sidewinder™ dPEG

® Constructs - Proprietary - Offered under MTA and license

For quotes on bulk quantities, please contact [email protected] 15

MAL-dPEG®4-Glu(OH)-NH-m-dPEG®

24

Products Protected under U.S. Patent Pending # 2015/0065711

MAL-dPEG®4-Glu(TFP ester)-NH-m-dPEG®

24

Products Protected under U.S. Patent Pending # 2015/0065711

MAL-dPEG®4-Glu(TFP ester)-NH-dPEG®

4-Glu(TFP ester)-NH-m-dPEG®

24

Products Protected under U.S. Patent Pending # 2015/0065711

Product # Description

11580 MAL-dPEG®4-Glu(OH)-NH-m-dPEG®

24 Please Inquire

Mol. Wt.: 1615.84; single compound

Product # Description

11581 MAL-dPEG®4-Glu(TFP ester)-NH-m-dPEG®

24 Please Inquire

Mol. Wt.: 1763.90; single compound

Product # Description

11626 MAL-dPEG®4-Glu(TFP ester)-NH-dPEG®

4-Glu(TFP ester)-NH-m-dPEG®24 Please Inquire

Mol. Wt.: 2288.36; single compound

Page 22: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Payload Delivery dPEG® Reagents Sidewinder™ dPEG

® Constructs - Proprietary - Offered under MTA and license

To place an order, call 614-792-2958 or visit www.quantabiodesign.com 16

MAL-[NH-dPEG®4-Glu

(TFP ester)]3-NH-m-dPEG®24

Products Protected under U.S. Patent Pending # 2015/0065711

MAL-dPEG®4-Lys(t-boc)-NH-m-dPEG®

24

Products Protected under U.S. Patent Pending # 2015/0065711

MAL-dPEG®4-Lys(TFA-)-NH-m-dPEG®

24

Products Protected under U.S. Patent Pending # 2015/0065711

Product # Description

11597 MAL-[NH-dPEG®4-Glu(TFP ester)]3-NH-m-dPEG®

24 Please Inquire

Mol. Wt.: 2812.82; single compound

Product # Description

11575 MAL-dPEG®4-Lys(t-boc)-NH-m-dPEG®

24 Please Inquire

Mol. Wt.: 1715.01; single compound

Product # Description

11576 MAL-dPEG®4-Lys(TFA-)-NH-m-dPEG®

24 Please Inquire

Mol. Wt.: 1728.94; single compound

Page 23: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Payload Delivery dPEG® Reagents Sidewinder™ dPEG

® Constructs - Proprietary - Offered under MTA and license

For technical questions, please call 614-792-2958 or contact [email protected] 17

NH2-dPEG®4-Glu(OH)-NH-m-dPEG®

24

Products Protected under U.S. Patent Pending # 2015/0065711

NH2-dPEG®4-Glu(OH)-NH-dPEG®

4-Glu(OH)-NH-m-dPEG®

24

Products Protected under U.S. Patent Pending # 2015/0065711

NH2-dPEG®4-Glu(OH)-[NH-

dPEG®4-Glu(OH)]2-NH-m-dPEG®

24

Products Protected under U.S. Patent Pending # 2015/0065711

Product # Description

11643 NH2-dPEG®4-Glu(OH)-NH-m-dPEG®

24 Please Inquire

Mol. Wt.: 1464.72; single compound

Product # Description

11624 NH2-dPEG®4-Glu(OH)-NH-dPEG®

4-Glu(OH)-NH-m-dPEG®24 Please Inquire

Mol. Wt.: 1841.12; single compound

Product # Description

11644 NH2-dPEG®4-Glu(OH)-[NH-dPEG®

4-Glu(OH)]2-NH-m-dPEG®24 Please Inquire

Mol. Wt.: 2217.52; single compound

Page 24: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Payload Delivery dPEG® Reagents Sidewinder™ dPEG

® Constructs - Proprietary - Offered under MTA and license

For custom synthesis please contact us at [email protected] 18

NH2-dPEG®4-Lys(t-boc)-NH-m-dPEG®

24

Products Protected under U.S. Patent Pending # 2015/0065711

MAL-dPEG®4-Lys(-5(6)-

carboxyfluorescein)-NH-m-dPEG®24

Products Protected under U.S. Patent Pending # 2015/0065711

Product # Description

11598 NH2-dPEG®4-Lys(t-boc)-NH-m-dPEG®

24 Please Inquire

Mol. Wt.: 1563.89; single compound

Product # Description

11577 MAL-dPEG®4-Lys(-5(6)-carboxyfluorescein)-NH-m-dPEG®

24 Please Inquire

Mol. Wt.: 1973.20; single compound

Page 25: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Payload Delivery dPEG® Reagents Phospholipids

Browse products by compound or category at www.quantabiodesign.com 19

Phospholipids

m-dPEG®x-DSPE

m-dPEG®x-amido-dPEG®

24-DSPE

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Product # Description 25 mg 100 mg

11024 m-dPEG®8-DSPE $125 $250

Mol. Wt.: 1142.52; single compound; dPEG® Spacer is 26 atoms and 29.8 Å, avg.

11025 m-dPEG®12-DSPE $125 $250

Mol. Wt.: 1318.73; single compound; dPEG® Spacer is 38 atoms and 44.0 Å, avg.

11026 m-dPEG®24-DSPE $125 $250

Mol. Wt.: 1847.36; single compound; dPEG® Spacer is 74 atoms and 86.2 Å, avg. .

Product # Description 25 mg 100 mg

11094 m-dPEG®12-amido-dPEG®

24-DSPE $125 $225

Mol. Wt.: 2491.12; single compound; dPEG® Spacer is 117 atoms and 76.364 Å

11095 m-dPEG®25-amido-dPEG®

24-DSPE $125 $250

Mol. Wt.: 3019.76; single compound; dPEG® Spacer is 153 atoms and 179.8 Å, avg.

Page 26: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Payload Delivery dPEG® Reagents Phospholipids

For quotes on bulk quantities, please contact [email protected] 20

TFP-dPEG®13-DSPE

MAL-dPEG®12-DSPE

MAL-dPEG®₂₄-amido-dPEG®₂₄-DSPE

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Product # Description 25 mg 100 mg

11029 TFP-dPEG®13-DSPE $125 $400

Mol. Wt.: 1568.88; single compound; dPEG® Spacer is 43 atoms and 50.0 Å, avg.

Product # Description 25 mg 100 mg

11028 MAL-dPEG®12-DSPE $250 $600

Mol. Wt.: 1498.89; single compound; dPEG® Spacer is 46 atoms and 53.3Å, avg.

Product # Description 25 mg 100 mg

11093 MAL-dPEG®₂₄-amido-dPEG®₂₄-DSPE $600 $1250

Mol. Wt.: 3155.864; single compound; dPEG® Spacer is 158 atoms and 150.397 Å, avg.

Page 27: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Payload Delivery dPEG® Reagents Phospholipids

For quotes on bulk quantities, please contact [email protected] 21

Methoxy-dPEG®x-DSPE

NHS ester-dPEG®x-amido-dPEG®

₂₄-DSPE

DBCO-dPEG®x-amido-dPEG®

24-DSPE

DOTA-tris(acid)-amido-dPEG®x-amido-dPEG®

24-DSPE

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Product # Description 25 mg 100 mg

11373 Methoxy-dPEG®₂₅-DSPE $125 $250

Mol. Wt.: 1891.416; single compound; dPEG® Spacer is 77 atoms and 90.0 Å.

Product # Description 25 mg 100 mg

11382 NHS ester-dPEG®₂₅-amido-dPEG®₂₄-DSPE $600 $1250

Mol. Wt.: 3174.864; single compound; dPEG® Spacer is 155 atoms and 182.3 Å.

Product # Description 25 mg 100 mg

11383 DBCO-dPEG®₂₄-amido-dPEG®₂₄-DSPE $750 $1400

Mol. Wt.: 3306.083; single compound; dPEG® Spacer is 152 atoms and 180.0 Å.

Product # Description 25 mg 100 mg

11384 DOTA-tris(acid)-amido-dPEG®₂₄-amido-dPEG®₂₄-DSPE $800 $1450

Mol. Wt.: 3391.14; single compound; dPEG® Spacer is 152 atoms and 180.0 Å.

Page 28: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Payload Delivery dPEG® Reagents Phospholipids

For quotes on bulk quantities, please contact [email protected] 22

Carboxyfluorescein-dPEG®x-amido-dPEG®

24-DSPE

Biotin-dPEG®x-amido-dPEG®

x-amido-dPEG®24-DSPE

Mal-dPEG®x-amido-dPEG®

x-amido-dPEG®24-DSPE

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Product # Description 5 mg 10 mg

11385 Carboxyfluorescein-dPEG®₂₄-amido-dPEG®₂₄-DSPE $500 $900

Mol. Wt.: 3363.04; single compound; dPEG® Spacer is 152 atoms and 180.0 Å.

Product # Description 25 mg 250 mg

11386 Biotin-dPEG®₄-amido-dPEG®₂₄-amido-dPEG®₂₄-DSPE $600 $1250

Mol. Wt.: 3478.328; single compound; dPEG® Spacer is 169 atoms and 186.3 Å.

Product # Description 25 mg 100 mg

11388 Mal-dPEG®₂₄-amido-dPEG®₂₄-amido-dPEG®₂₄-DSPE $750 $1600

Mol. Wt.: 4284.20; single compound; dPEG® Spacer is 228 atoms and 222.8 Å.

Page 29: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Branched dPEG

® PK Modifiers - Proprietary - Offered under MTA and license

MTA and license

Additional References can be found at the end of each category 23

dPEG® Based Chemical Modification Reagents

Branched dPEG

® PK Modifiers - Proprietary - Offered under MTA and license

Quanta BioDesign, Ltd. offers Branched dPEG® PK Modifiers*

Proprietary and available for evaluation under an MTA

Quanta BioDesign’s vision for the dPEG® process and product technology has been to offer products that cover a broad range of size options in a single molecule dPEG® format.

Through our design of the single molecule dPEG® format; a full range of biological applications are provided the incredible benefits and outstanding properties of PEG, but in a single molecule format.

Conventional polymeric PEGs have generally been used as high MW polymers to modify serum half-life of biologics. These products are problematic as they are uncharacterized and contain hundreds of different active species with a broad range of activities.

With the design options that the dPEG® offers, they can be made into constructs that are not available using the conventional polymeric PEG format. The inherent single molecule nature of the dPEG® construct allows for full characterization of conjugated, labelled and modified products. It is routine to monitor conjugations via MALDI-TOF MS with our dPEG® constructs.

To present a complete range of hydrodynamic volumes for modulating PK, we are offering our proprietary single molecule branched dPEG®s through collaboration under a MTA. This empowers the scientist to innovate with a powerful new set of tools.

The branched dPEG®s, each being a single molecule, allows multiple constructs to be added without fear of losing the ability to precisely characterize the dPEG®ylated biologic, even in a random conjugation format. If different functional sites are available, then different MW’s or different types of dPEG® constructs can be incorporated.

Concomitant with the ability to modulate the PK comes the benefit of the dPEG® to enhance BD (in vivo S/N) as dPEG®s minimize or eliminate non-specific binding. They are also designed NOT to block binding sites by keeping the dPEG®

x in a MW range for it to be primarily hydrogen bonded. All of the positive properties of PEG, which make it non-immunogenic and non-toxic, are inherent in these dPEG® products as well.

Work with Quanta BioDesign to optimize the performance of your therapeutic or diagnostic applications, using the branched dPEG® PK modifiers and any of our other high quality dPEG® constructs - all developed, processed and manufactured at commercial scale in Ohio, USA.

*Patent’s Pending

Page 30: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Branched dPEG

® PK Modifiers - Proprietary - Offered under MTA and license

MTA and license

For technical questions, please call 614-792-2958 or contact [email protected] 24

MAL-dPEG®12 or 24-Tris(m-dPEG®

x

or -dPEG®y-acid)3 and 9

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patent Pending # 2013/005213

Product # Description

11471 MAL-dPEG®12-Tris(m-dPEG®

24)3 Please Inquire

Mol. Wt.: 4299.06; single compound; dPEG® Spacer is 127 atoms and 103.0 Å, avg.

11451 MAL-dPEG®12-Tris(-dPEG®

24-acid)3 Please Inquire

Mol. Wt.: 4473.21; single compound; dPEG® Spacer is 130 atoms and 102.4 Å, avg.

10484 MAL-dPEG®12-Tris(dPEG®

12-Tris (m-dPEG®11)3)3 Please Inquire

Mol. Wt.: 8323.87; single compound; dPEG® Spacer is 135 atoms and 98.3 Å, avg.

11487 MAL-dPEG®24-Tris(-dPEG®

24-Tris (m-dPEG®24)3)3 Please Inquire

Mol. Wt.: 15592.45; single compound; dPEG® Spacer is 247 atoms and 158.8 Å, avg.

Page 31: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Branched dPEG

® PK Modifiers - Proprietary - Offered under MTA and license

MTA and license

To place an order, call 614-792-2958 or visit www.quantabiodesign.com 25

Amino-dPEG®12 or 24-Tris(m-dPEG®

x

or -dPEG®y-t-butyl ester)3 and 9

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patent Pending # 2013/0052130

Product # Description

11474 Amino-dPEG®12-Tris(m-dPEG®

24)3 Please Inquire

Mol. Wt.: 4147.94; single compound; dPEG® Spacer is 121 atoms and 99.8 Å, avg.

11449 Amino-dPEG®12-Tris(-dPEG®

24-t-butyl ester)3 Please Inquire

Mol. Wt.: 4490.37; single compound; dPEG® Spacer is 126 atoms and 102.8 Å, avg.

10482 Amino-dPEG®12-Tris(dPEG®

12-Tris(m-dPEG®11)3)3 Please Inquire

Mol. Wt.: 8172.75; single compound; dPEG® Spacer is 129 atoms and 96.0 Å, avg.

11486 Amino-dPEG®24-Tris(-dPEG®

24-Tris(m-dPEG®24)3)3 Please Inquire

Mol. Wt.: 15441.49; single compound; dPEG® Spacer is 241 atoms and 155.1 Å, avg.

Page 32: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Branched dPEG

® PK Modifiers - Proprietary - Offered under MTA and license

MTA and license

For technical questions, please call 614-792-2958 or contact [email protected] 26

Bis-MAL-Lysine-dPEG®4+12-

Tris(m-dPEG®24 or -dPEG®

24-acid)3

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patent Pending # 2013/0052130

Product # Description

11633 Bis-MAL-Lysine-dPEG®4-dPEG®

12-Tris(m-dPEG®24)3 Please Inquire

Mol. Wt.: 4825.69; single compound; dPEG® Spacers are 149 and 153 atoms; 110.3 and 112.5 Å, avg.

11630 Bis-MAL-Lysine-dPEG®4-dPEG®

12-Tris(-dPEG®24-acid)3 Please Inquire

Mol. Wt.: 4999.80; single compound; dPEG® Spacers are 152 and 156 atoms; 113 and 115.4 Å, avg.

Page 33: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Amine Reactive

For quotes on bulk quantities, please contact [email protected] 27

Amine Reactive

Hydroxy-dPEG®x-TFP ester

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

m-dPEG®x-NHS ester

Series continued on next page

Product # Description 100 mg 1000 mg

11341 Hydroxy-dPEG®4-TFP ester $100 $330

Mol. Wt.: 414.35; single compound; dPEG® Spacer is 16 atoms and 17.909 Å

11345 Hydroxy-dPEG®12-TFP ester $180 $600

Mol. Wt.: 766.77; single compound; dPEG® Spacer is 40 atoms and 46.226 Å

11349 Hydroxy-dPEG®24-TFP ester $230 $1250

Mol. Wt.: 1295.40; single compound; dPEG® Spacer is 76 atoms and 88.758 Å

Product # Description 100 mg 1000 mg

10327 m-dPEG®2-NHS ester $100 $265

Mol. Wt.: 245.23; single compound; dPEG® Spacer is 8 atoms and 8.5 Å

10211 m-dPEG®4-NHS ester $100 $330

Mol. Wt.: 333.33; single compound; dPEG® Spacer is 14 atoms and 15.6 Å

10260 m-dPEG®8-NHS ester $175 $500

Mol. Wt.: 509.54; single compound; dPEG® Spacer is 26 atoms and 29.8 Å

10262 m-dPEG®12-NHS ester $225 $850

Mol. Wt.: 685.75; single compound; dPEG® Spacer is 38 atoms and 44.7 Å

Page 34: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Amine Reactive

Additional References can be found at the end of each category 28

m-dPEG®x-NHS ester (cont.)

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Product # Description 100 mg 1000 mg

11086 m-dPEG®13-NHS ester $225 $850

Mol. Wt.: 729.807; single compound; dPEG® Spacer is 41 atoms and 47.3 Å

10304 m-dPEG®24-NHS ester $225 $850

Mol. Wt.: 1214.39; single compound; dPEG® Spacer is 74 atoms and 86.2 Å

11291 m-dPEG®25-NHS ester $275 $900

Mol. Wt.: 1258.44; single compound; dPEG® Spacer is 77 atoms and 89.9 Å

10910 m-dPEG®37-NHS ester $325 $1200

Mol. Wt.: 1787.07; single compound; dPEG® Spacer is 112 atoms and 133.9 Å

m-dPEG®x-TFP ester

Product # Description 100 mg 1000 mg

10306 m-dPEG®12-TFP ester $175 $600

Mol. Wt.: 736.75; single compound; dPEG® Spacer is 38 atoms and 44.0 Å

11087 m-dPEG®13-TFP ester $175 $600

Mol. Wt.: 780.793; single compound; dPEG® Spacer is 41 atoms and 47.3 Å

10303 m-dPEG®24-TFP ester $225 $1250

Mol. Wt.: 1265.38; single compound; dPEG® Spacer is 74 atoms and 86.2 Å

11290 m-dPEG®25-TFP ester $275 $1300

Mol. Wt.: 1309.42; single compound; dPEG® Spacer is 77 atoms and 89.9 Å

Page 35: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Amine Reactive

To place an order, call 614-792-2958 or visit www.quantabiodesign.com 29

m-dPEG®48-NH-CO(CH2)3

CO-TFP ester

m-dPEG®x-amido-dPEG®

x-TFP ester

m-dPEG®x-amido-dPEG®

x-acid

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Product # Description 100 mg 1000 mg

10143 m-dPEG®48-NH-CO(CH2)3CO-TFP ester $375 $1600

Mol. Wt.: 2407.76; single compound; dPEG® Spacer is 151 atoms and 178.5 Å

Product # Description 100 mg 1000 mg

10149 m-dPEG®12-amido-dPEG®

12-TFP ester $275 $1300

Mol. Wt.: 1336.45; single compound; dPEG® Spacer is 77 atoms and 91.3 Å

11096 m-dPEG®25-amido-dPEG®

24-TFP ester $400 $1700

Mol. Wt.: 2437.76; single compound; dPEG® Spacer is 79 atoms and 89.8 Å

Product # Description 100 mg 1000 mg

10148 m-dPEG®12-amido-dPEG®

12-acid $250 $1100

Mol. Wt.: 1188.39; single compound; dPEG® Spacer is 77 atoms and 91.3 Å

11097 m-dPEG®25-amido-dPEG®

24-acid $400 $1700

Mol. Wt.: 2289.71; single compound; dPEG® Spacer is 153 atoms and 179.8 Å

Page 36: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Amine Reactive

For technical questions, please call 614-792-2958 or contact [email protected] 30

m-dPEG®x-acid

Product # Description 100 mg 1000 mg

10326 m-dPEG®2-acid $100 $230

Mol. Wt.: 148.16; single compound; dPEG® Spacer is 8 atoms and 8.5 Å

10234 m-dPEG®4-acid $100 $265

Mol. Wt.: 236.26; single compound; dPEG® Spacer is 14 atoms and 15.6 Å

10324 m-dPEG®8-acid $175 $400

Mol. Wt.: 412.47; single compound; dPEG® Spacer is 26 atoms and 29.8 Å

10328 m-dPEG®12-acid $175 $515

Mol. Wt.: 588.68; single compound; dPEG® Spacer is 38 atoms and 44.0 Å

11289 m-dPEG®₂₅-acid $275 $850

Mol. Wt.: 1161.37; single compound; dPEG® Spacer is 77 atoms and 89.9 Å

10909 m-dPEG®37-acid $325 $1200

Mol. Wt.: 1690.00; single compound; dPEG® Spacer is 112 atoms and 133.9 Å

10142 m-dPEG®48-CO(CH2)3-acid $400 $1500

Mol. Wt.: 2259.70; single compound; dPEG® Spacer is 151 atoms and 178.5 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 37: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Amine Reactive

For custom synthesis please contact us at [email protected] 31

NHS/TFP-dPEG®4-(m-dPEG®

x)3-ester

Product # Description 100 mg 1000 mg

11401 TFP-dPEG®4-(m-dPEG®

11)3-ester $250 $1300

Mol. Wt.: 2339.62; single compound; dPEG® Spacer is 63 atoms and 74.1 Å, avg.

10401 NHS-dPEG®4-(m-dPEG®

12)3-ester $250 $1300

Mol. Wt.: 2420.80; single compound; dPEG® Spacer is 66 atoms and 51.1 Å, avg.

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 38: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Carboxyl and Active Ester Reactive

For quotes on bulk quantities, please contact [email protected] 32

Carboxyl and Active Ester Reactive

m-dPEG®x-Propionaldehyde

Product # Description 100 mg 1000 mg

10362 m-dPEG®4-Propionaldehyde $100 $600

Mol. Wt.: 220.26; single compound; dPEG® Spacer is 14 atoms and 16.5 Å

10363 m-dPEG®8-Propionaldehyde $100 $600

Mol. Wt.: 396.47; single compound; dPEG® Spacer is 27 atoms and 29.8 Å

10424 m-dPEG®12-Propionaldehyde $175 $900

Mol. Wt.: 572.68; single compound; dPEG® Spacer is 38 atoms and 44.0 Å

10364 m-dPEG®24-Propionaldehyde $225 $1200

Mol. Wt.: 1101.31; single compound; dPEG® Spacer is 74 atoms and 86.4 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 39: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Carboxyl and Active Ester Reactive

Additional References can be found at the end of each category 33

m-dPEG®x-amine

Product # Description 100 mg 1000 mg

10175 m-dPEG®4-amine $125 $285

Mol. Wt.: 207.27; single compound; dPEG® Spacer is 14 atoms and 15.5 Å

10278 m-dPEG®8-amine $175 $450

Mol. Wt.: 383.48; single compound; dPEG® Spacer is 26 atoms and 29.7 Å

10288 m-dPEG®12-amine $200 $600

Mol. Wt.: 559.69; single compound; dPEG® Spacer is 38 atoms and 43.9 Å

10298 m-dPEG®15-amine $225 $650

Mol. Wt.: 691.85; single compound; dPEG® Spacer is 47 atoms and 53.4 Å

10318 m-dPEG®24-amine $250 $900

Mol. Wt.: 1088.32; single compound; dPEG® Spacer is 74 atoms and 86.1 Å

10908 m-dPEG®36-amine $300 $1000

Mol. Wt.: 1616.95; single compound; dPEG® Spacer is 109 atoms and 130.0 Å

10918 m-dPEG®48-amine $350 $1100

Mol. Wt.: 2145.58; single compound; dPEG® Spacer is 146 atoms and 173.1 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 40: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Carboxyl and Active Ester Reactive

To place an order, call 614-792-2958 or visit www.quantabiodesign.com 34

Amino-dPEG®x-acid

Product # Description 100 mg 1000 mg

10244 Amino-dPEG®4-acid $100 $350

Mol. Wt.: 265.30; single compound; dPEG® Spacer is 16 atoms and 18.0 Å

10067 Amino-dPEG®6-acid $100 $450

Mol. Wt.: 353.41; single compound; dPEG® Spacer is 22 atoms and 25.1 Å

10277 Amino-dPEG®8-acid $175 $500

Mol. Wt.: 441.51; single compound; dPEG® Spacer is 28 atoms and 32.2 Å

Series continued on next page

Page 41: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Carboxyl and Active Ester Reactive

For technical questions, please call 614-792-2958 or contact [email protected] 35

Amino-dPEG®x-acid (cont.)

Product # Description 100 mg 1000 mg

10287 Amino-dPEG®12-acid $195 $800

Mol. Wt.: 617.72; single compound; dPEG® Spacer is 40 atoms and 46.5 Å

10317 Amino-dPEG®24-acid $250 $950

Mol. Wt.: 1146.35; single compound; dPEG® Spacer is 76 atoms and 89.0 Å

10907 Amino-dPEG®36-acid $300 $1150

Mol. Wt.: 1674.99; single compound; dPEG® Spacer is 111 atoms and 132.7 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 2nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). Chapter 14, pp. 582-626. Many of these can be applied to surfaces as well as particles, as Greg has emphasized in this chapter. A great picture of an optimal chemistry is shown in his Figure 14.5, pg. 591. The example uses them in conjunction with the m-dPEG®

x amines, generally equal to or shorter than the amino-dPEG® acid.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Amino-dPEG®24-amido-dPEG®

24-acid

Product # Description 100 mg 1000 mg

11305 Amino-dPEG®24-amido-dPEG®

24-acid $400 $1500

Mol. Wt.: 2274.72; single compound

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 42: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Click Reagents: Copper Free

For quotes on bulk quantities, please contact [email protected] 36

Click Reagents: Copper Free

m-dPEG®x-DBCO

Product # Description 100 mg 1000 mg

10596 m-dPEG®12-DBCO $250 $680

Mol. Wt.: 861.03; single compound; dPEG® Spacer is 39 atoms and 45.0 Å

10583 m-dPEG®24-DBCO $450

upon request

Mol. Wt.: 1375.63; single compound; dPEG® Spacer is 96 atoms and 92.9 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 43: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Thiol and Sulfhydryl Reactive

For technical questions, please call 614-792-2958 or contact [email protected] 37

Thiol and Sulfhydryl Reactive

m-dPEG®x-MAL

Product # Description 100 mg 1000 mg

10745 m-dPEG®4-MAL $200 $450

Mol. Wt.: 358.39; single compound; dPEG® Spacer is 20 atoms and 22.1Å

10746 m-dPEG®8-MAL $225 $550

Mol. Wt.: 534.60; single compound; dPEG® Spacer is 32 atoms and 36.4 Å

10289 m-dPEG®12-MAL $250 $680

Mol. Wt.: 710.81; single compound; dPEG® Spacer is 44 atoms and 50.7 Å

10319 m-dPEG®24-MAL $275 $850

Mol. Wt.: 1239.44; single compound; dPEG® Spacer is 80 atoms and 50.7 Å

10931 m-dPEG®36-MAL $350 $1400

Mol. Wt.: 1768.07; single compound; dPEG® Spacer is 116 atoms and 137.2 Å

10932 m-dPEG®48-MAL $425 $1500

Mol. Wt.: 2296.70; single compound; dPEG® Spacer is 152 atoms and 178.6 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 2

nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). See all of the

extensive references to the reactions of maleimides with a wide variety of compounds and applications, Hermanson, pg. 1174 (index for malemides) and references therein.

Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 44: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Thiol and Sulfhydryl Reactive

Additional References can be found at the end of each category 38

MAL-dPEG®4-(m-dPEG®

x)3

Product # Description 100 mg 1000 mg

10416 MAL-dPEG®4-(m-dPEG®

4)3 $250 $1300

Mol. Wt.: 1303.49; single compound; dPEG® Spacer is 43 atoms and 47.9 Å, avg.

11406 MAL-dPEG®4-(m-dPEG®

11)3 $250 $1300

Mol. Wt.: 2228.59; single compound; dPEG® Spacer is 64 atoms and 75.8 Å, avg.

10406 MAL-dPEG®4-(m-dPEG®

12)3 $250 $1300

Mol. Wt.: 2360.75; single compound; dPEG® Spacer is 67 atoms and 75.8 Å, avg.

10456 MAL-dPEG®4-(m-dPEG®

24)3 $350 $1575

Mol. Wt.: 3946.64; single compound; dPEG® Spacer is 103 atoms and 108.3 Å, avg.

References:

Greg T. Hermanson, Bioconjugate Techniques, 2nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). Ch. 1, Pg. 30.

Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 45: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Other important reactivities

To place an order, call 614-792-2958 or visit www.quantabiodesign.com 39

Other important reactivities

m-dPEG®x-Azide (Azido-m-dPEG®

x)

Product # Description 100 mg 1000 mg

10532 m-dPEG®4-Azide (Azido-m-dPEG®

4) $125 $480

Mol. Wt.: 233.26; single compound; dPEG® Spacer is 14 atoms and 15.5 Å

10534 m-dPEG®8-Azide (Azido-m-dPEG®

8) $175 $550

Mol. Wt.: 409.48; single compound; dPEG® Spacer is 26 atoms and 29.7 Å

10536 m-dPEG®12-Azide (Azido-m-dPEG®

12) $225 $650

Mol. Wt.: 585.69; single compound; dPEG® Spacer is 38 atoms and 44.0 Å

10540 m-dPEG®24 Azide (Azido-m-dPEG®

24) $275 $800

Mol. Wt.: 1114.32; single compound; dPEG® Spacer is 74 atoms and 86.9 Å

10531 m-dPEG®36 Azide (Azido-m-dPEG®

36) $300 $950

Mol. Wt.: 1642.95; single compound; dPEG® Spacer is 110 atoms and 131.2 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 46: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Metal Surface Modification Reagents (e.g., Au)

For technical questions, please call 614-792-2958 or contact [email protected] 40

Metal Surface Modification Reagents (e.g., Au)

Thiol-dPEG®x-acid

Product # Description 100 mg 1000 mg

10247 Thiol-dPEG®4-acid $200 $450

Mol. Wt.: 282.35; single compound; dPEG® Spacer is 16 atoms and 18.3 Å

10183 Thiol-dPEG®8-acid $250 $650

Mol. Wt.: 458.57; single compound; dPEG® Spacer is 28 atoms and 32.5 Å

10850 Thiol-dPEG®12-acid $250 $875

Mol. Wt.: 634.77; single compound; dPEG® Spacer is 39 atoms and 46.8 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 47: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Metal Surface Modification Reagents (e.g., Au)

For custom synthesis please contact us at [email protected] 41

m-dPEG®x-Thiol

Product # Description 100 mg 1000 mg

10792 m-dPEG®4-Thiol $150 $355

Mol. Wt.: 224.32; single compound; dPEG® Spacer is 14 atoms and 15.8 Å

10793 m-dPEG®8-Thiol $200 $575

Mol. Wt.: 400.53; single compound; dPEG® Spacer is 26 atoms and 30.0 Å

10794 m-dPEG®12-Thiol $250 $850

Mol. Wt.: 576.74; single compound; dPEG® Spacer is 38 atoms and 44.2 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 48: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Metal Surface Modification Reagents (e.g., Au)

Browse products by compound or category at www.quantabiodesign.com 42

Lipoamido-dPEG®x-TFP ester

Product # Description 100 mg 1000 mg

10641 Lipoamido-dPEG®4-TFP ester $200 $800

Mol. Wt.: 601.67; single compound; dPEG® Spacer is 24 atoms and 28.0 Å

10642 Lipoamido-dPEG®8-TFP ester $250 $1150

Mol. Wt.: 777.88; single compound; dPEG® Spacer is 36 atoms and 42.7 Å

10814 Lipoamido-dPEG®12-TFP ester $300 $1250

Mol. Wt.: 954.09; single compound; dPEG® Spacer is 48 atoms and 56.5 Å

10643 Lipoamido-dPEG®24-TFP ester $400 $1400

Mol. Wt.: 1482.72; single compound; dPEG® Spacer is 84 atoms and 98.8 Å

10644 Lipoamido-dPEG®36-TFP ester $500 $1750

Mol. Wt.: 2011.35; single compound; dPEG® Spacer is 120 atoms and 136.1 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 49: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Metal Surface Modification Reagents (e.g., Au)

For quotes on bulk quantities, please contact [email protected] 43

Lipoamido-dPEG®x-acid

Product # Description 100 mg 1000 mg

10806 Lipoamido-dPEG®4-acid $200 $800

Mol. Wt.: 453.61; single compound; dPEG® Spacer is 24 atoms and 27.5 Å

10807 Lipoamido-dPEG®8-acid $250 $1150

Mol. Wt.: 629.82; single compound; dPEG® Spacer is 36 atoms and 41.2 Å

10808 Lipoamido-dPEG®12-acid $300 $1250

Mol. Wt.: 806.03; single compound; dPEG® Spacer is 48 atoms and 55.5 Å

10811 Lipoamido-dPEG®24-acid $400 $1400

Mol. Wt.: 1334.66; single compound; dPEG® Spacer is 83.5 atoms and 99.0 Å

References: Greg T. Hermanson. Bioconjugate Techniques, 2nd Edition, Elsevier, Inc., Burlington, MA 01803, April 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0), pages 188-190,

485-497, 924-935.

Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 50: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Metal Surface Modification Reagents (e.g., Au)

Additional References can be found at the end of each category 44

MAL and Biotin-dPEG®x-Lipoamide

Product # Description 100 mg 1000 mg

10817 MAL-dPEG®3-Lipoamide $225 $900

Mol. Wt.: 559.74; single compound; dPEG® Spacer is 27 atoms and 31.1 Å

10820 Biotin-dPEG®3-Lipoamide $250 $975

Mol. Wt.: 634.91; single compound; dPEG® Spacer is 22 atoms and 27.7 Å

10819 MAL-dPEG®11-Lipoamide $325 $1100

Mol. Wt.: 884.11; single compound; dPEG® Spacer is 49 atoms and 59.3 Å

10822 Biotin-dPEG®11-Lipoamide $350 $1250

Mol. Wt.: 959.28; single compound; dPEG® Spacer is 43 atoms and 52.9 Å

10828 Biotin-dPEG®23-Lipoamide $450 $1250

Mol. Wt.: 1487.92; single compound; dPEG® Spacer is 73 atoms and 87.6 Å

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 51: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Metal Surface Modification Reagents (e.g., Au)

To place an order, call 614-792-2958 or visit www.quantabiodesign.com 45

m-dPEG®x-Lipoamide

Product # Description 100 mg 1000 mg

10799 m-dPEG®4-Lipoamide $150 $700

Mol. Wt.: 395.58; single compound; dPEG® Spacer is 21 atoms and 23.9 Å

10800 m-dPEG®8-Lipoamide $200 $1000

Mol. Wt.: 571.79; single compound; dPEG® Spacer is 34.5 atoms and 38.8 Å

10801 m-dPEG®12-Lipoamide $300 $1150

Mol. Wt.: 748.00; single compound; dPEG® Spacer is 46 atoms and 53.3 Å

10804 m-dPEG®24-Lipoamide $400 $1300

Mol. Wt.: 1276.63; single compound; dPEG® Spacer is 82 atoms and 96.2 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 2

nd edition. Elsevier, Inc., Burlington, MA 01803, April 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0), pages 188-190,

485-497, 924-935.

Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 52: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Reactivity: Converting an Amine to a Latent Thiol

For technical questions, please call 614-792-2958 or contact [email protected] 46

Reactivity: Converting an Amine to a Latent Thiol

dPEG®x-SATA (S-acetyl-dPEG®

x-NHS ester)

Product # Description 100 mg 1000 mg

10181 dPEG®4-SATA (S-acetyl-dPEG®

4-NHS ester) $235 $1250

Mol. Wt.: 421.46; single compound; dPEG® Spacer is 16 atoms and 18.3 Å

10184 dPEG®8-SATA (S-acetyl-dPEG®

8-NHS ester) $350 $1250

Mol. Wt.: 597.67; single compound; dPEG® Spacer is 28 atoms and 32.5 Å

10852 dPEG®12-SATA (S-acetyl-dPEG®

12-NHS ester) $400 $1300

Mol. Wt.: 773.88; single compound; dPEG® Spacer is 39 atoms and 46.8 Å

10188 dPEG®24-SATA (S-acetyl-dPEG®

24-NHS ester) $550 $1600

Mol. Wt.: 1302.51; single compound; dPEG® Spacer is 76 atoms and 89.1 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 2

nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). References to

SATA, which can be directly applied to the dPEG® pegylation versions: a) general description and use, pg. 71; b) modification of antibodies, pg. 795; c) modification of amines on nucleotides and DNA probes, pg. 984 ; and d) modification of enzymes, avidin and streptavidin with, pg. 90,909, and 919.

Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 53: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Reagents to Extend Carboxyl with a dPEG

® Spacer

Browse products by compound or category at www.quantabiodesign.com 47

Reagents to Extend Carboxyl with a dPEG® Spacer

Amino-dPEG®x-t-butyl ester

Product # Description 100 mg 1000 mg

10264 Amino-dPEG®2-t-butyl ester $100 $200

Mol. Wt.: 233.30; single compound; dPEG® Spacer is 10 atoms and 10.9 Å

10221 Amino-dPEG®4-t-butyl ester $135 $400

Mol. Wt.: 321.41; single compound; dPEG® Spacer is 16 atoms and 18.0 Å

10061 Amino-dPEG®6-t-butyl ester $135 $500

Mol. Wt.: 409.51; single compound; dPEG® Spacer is 22 atoms and 25.1 Å

10271 Amino-dPEG®8-t-butyl ester $175 $600

Mol. Wt.: 497.62; single compound; dPEG® Spacer is 28 atoms and 32.2 Å

10281 Amino-dPEG®12-t-butyl ester $225 $700

Mol. Wt.: 673.83; single compound; dPEG® Spacer is 40 atoms and 46.5 Å

10311 Amino-dPEG®24-t-butyl ester $250 $1000

Mol. Wt.: 1202.46; single compound; dPEG® Spacer is 76 atoms and 89.0 Å

10901 Amino-dPEG®36-t-butyl ester $300 $1200

Mol. Wt.: 1731.09; single compound; dPEG® Spacer is 111 atoms and 132.7 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 54: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Reagents to Extend Carboxyl with a dPEG

® Spacer

Additional References can be found at the end of each category 48

Hydroxy-dPEG®x-t-butyl ester

Product # Description 100 mg 1000 mg

10223 Hydroxy-dPEG®4-t-butyl ester $100 $200

Mol. Wt.: 322.39; single compound; dPEG® Spacer is 16 atoms and 18.0 Å

10717 Hydroxy-dPEG®6-t-butyl ester $125 $250

Mol. Wt.: 410.50; single compound; dPEG® Spacer is 22 atoms and 25.1 Å

10185 Hydroxy-dPEG®8-t-butyl ester $150 $275

Mol. Wt.: 498.60; single compound; dPEG® Spacer is 28 atoms and 32.1 Å

10719 Hydroxy-dPEG®12-t-butyl ester $200 $650

Mol. Wt.: 674.81; single compound; dPEG® Spacer is 40 atoms and 46.4 Å

10722 Hydroxy-dPEG®24-t-butyl ester $300 $750

Mol. Wt.: 1203.45; single compound; dPEG® Spacer is 86 atoms and 88.5 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 55: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Reagents to Extend Carboxyl with a dPEG

® Spacer

To place an order, call 614-792-2958 or visit www.quantabiodesign.com 49

Amino-dPEG®x-OH

Product # Description 100 mg 1000 mg

10249 Amino-dPEG®4-OH $100 $200

Mol. Wt.: 193.24; single compound; dPEG® Spacer is 13 atoms and 14.3 Å

10240 Amino-dPEG®8-OH $150 $450

Mol. Wt.: 369.45; single compound; dPEG® Spacer is 28 atoms and 32.1 Å

10170 Amino-dPEG®12-OH $200 $650

OH

O

O

O

O

O

O

O

O

O

O

O

H2N

Mol. Wt.: 545.66; single compound; dPEG® Spacer is 38 atoms and 42.7 Å

10868 Amino-dPEG®24-OH $250 $850

Mol. Wt.: 1074.29; single compound; dPEG® Spacer is 71 atoms and 86.0 Å

10869 Amino-dPEG®36-OH $350 $1050

Mol. Wt.: 1602.92; single compound; dPEG® Spacers is 107 atoms and 129.0 Å

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

.

t-boc-N-amido-dPEG®x-OH

Product # Description 100 mg 1000 mg

10250 t-boc-N-amido-dPEG®4-OH $100 $300

Mol. Wt.: 293.36; single compound; dPEG® Spacer is 13 atoms and 14.3 Å

10171 t-boc-N-amido-dPEG®12-OH $225 $900

Mol. Wt.: 645.78; single compound; dPEG® Spacer is 38 atoms and 42.7 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 56: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Reagents to Extend Carboxyl with a dPEG

® Spacer

For technical questions, please call 614-792-2958 or contact [email protected] 50

Azido-dPEG®x-OH

N3-dPEG

®

x-OH

+

e.g., Dmt-Cl

N3-dPEG

®

x-O-Dmt NH

2-dPEG

®

x-O-Dmt

N3-dPEG

®

x-OH

N

N

N

-dPEG®

x-OH

Cu(I)

Click:

(reduction)

Product # Description 100 mg 1000 mg

10541 Azido-dPEG®4-OH $100 $150

Mol. Wt.: 219.24; single compound; dPEG® Spacer is 14 atoms and 15.3 Å.

10542 Azido-dPEG®8-OH $200 $450

Mol. Wt.: 395.45; single compound; dPEG® Spacer is 24 atoms and 29.5 Å

10340 Azido-dPEG®12-OH $225 $550

Mol. Wt.: 571.66; single compound; dPEG® Spacer is 37 atoms and 43.0 Å

10543 Azido-dPEG®24-OH $325 $800

Mol. Wt.: 1100.29; single compound; dPEG® Spacer is 72 atoms and 86.7 Å

10544 Azido-dPEG®36-OH $350 $950

Mol. Wt.: 1628.92; single compound; dPEG® Spacer is 108 atoms and 129.7 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 57: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Chemical Modification Reagents Reagents to Extend Carboxyl with a dPEG

® Spacer

Additional References can be found at the end of each category 51

S-acetyl-dPEG®x-OH

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

dPEG®12-diol

Product # Description 100 mg 1000 mg

10261 dPEG®12-diol $125 $750

Mol. Wt.: 546.65; single compound; dPEG® Spacer is 37 atoms and 42.8 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

.

Product # Description 100 mg 1000 mg

10156 S-acetyl-dPEG®4-OH $100 $500

Mol. Wt.: 252.33; single compound; dPEG® Spacer is 13 atoms and 14.6 Å

10160 S-acetyl-dPEG®8-OH $150 $650

Mol. Wt.: 428.54; single compound; dPEG® Spacer is 25 atoms and 28.8 Å

10939 S-acetyl-dPEG®12-OH $200 $800

Mol. Wt.: 604.75; single compound; dPEG® Spacer is 36 atoms and 43.1 Å

Page 58: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Heterobifunctional Reagents: Amine and Thiol Reactive

Browse products by compound or category at www.quantabiodesign.com 52

dPEG® Based Crosslinking

MAL-dPEG®x-NHS ester

Try it with you antigens on your carrier protein and be amazed!

Product # Description 100 mg 1000 mg

10266 MAL-dPEG®2-NHS ester $150 $225

Mol. Wt.: 425.39; single compound; dPEG® Spacer is 16 atoms and 17.7 Å

10214 MAL-dPEG®4-NHS ester $200 $255

Mol. Wt.: 513.50; single compound; dPEG® Spacer is 22 atoms and 24.8 Å

10064 MAL-dPEG®6-NHS ester $215 $300

Mol. Wt.: 601.60; single compound; dPEG® Spacer is 28 atoms and 31.7 Å

10274 MAL-dPEG®8-NHS ester $225 $450

Mol. Wt.: 689.71; single compound; dPEG® Spacer is 34 atoms and 39.2 Å

10284 MAL-dPEG®12-NHS ester $225 $650

Mol. Wt.: 865.92; single compound; dPEG® Spacer is 46 atoms and 53.3 Å

10314 MAL-dPEG®24-NHS ester $250 $1250

Mol. Wt.: 1394.55; single compound; dPEG® Spacer is 82 atoms and 95.2 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 59: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Heterobifunctional Reagents: Amine and Thiol Reactive

For quotes on bulk quantities, please contact [email protected] 53

Heterobifunctional Reagents: Amine and Thiol Reactive

MAL-dPEG®x-TFP ester

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Product # Description 100 mg 1000 mg

10549 MAL-dPEG®2-TFP ester $150 $200

Mol. Wt.: 476.38; single compound; dPEG® Spacer is 16 atoms and 17.3 Å

10551 MAL-dPEG®4-TFP ester $200 $250

Mol. Wt.: 564.48; single compound; dPEG® Spacer is 22 atoms and 24.1 Å

10556 MAL-dPEG®6-TFP ester $215 $300

Mol. Wt.: 652.59; single compound; dPEG® Spacer is 28 atoms and 32.100 Å

10552 MAL-dPEG®8-TFP ester $225 $500

Mol. Wt.: 740.69; single compound; dPEG® Spacer is 38 atoms and 37.9 Å

10553 MAL-dPEG®12-TFP ester $225 $750

Mol. Wt.: 916.90; single compound; dPEG® Spacer is 49 atoms and 51.1 Å

10554 MAL-dPEG®24-TFP ester $250 $1250

Mol. Wt.: 1445.53; single compound; dPEG® Spacer is 87 atoms and 92.6 Å

10555 MAL-dPEG®36-TFP ester $400 $1800

Mol. Wt.: 1974.16; single compound; dPEG® Spacer is 117 atoms and 139.7 Å

11303 MAL-dPEG®24-amido-dPEG®

24-TFP ester $400 $1700

Mol. Wt.: 2573.87; single compound; dPEG® Spacer is 158 atoms and 183.5 Å

Page 60: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Heterobifunctional Reagents: Amine and Thiol Reactive

Additional References can be found at the end of each category 54

MAL-dPEG®x-acid

References: Greg T. Hermanson, Bioconjugate Techniques, 2

nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0)., See pp. 276-335

for general description and use of heterobifunctional crosslinkers, and the specific sample protocol for SMCC or sulfo-SMCC on pp. 283-286.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Product # Description 100 mg 1000 mg

10265 MAL-dPEG®2-acid $60 $100

Mol. Wt.: 328.32; single compound; dPEG® Spacer is 16 atoms and 17.5 Å

10338 MAL-dPEG®4-acid $100 $125

Mol. Wt.: 416.42; single compound; dPEG® Spacer is 16 atoms and 17.5 Å

10065 MAL-dPEG®6-acid $125 $150

Mol. Wt.: 504.53; single compound; dPEG® Spacer is 28 atoms and 31.9 Å

10275 MAL-dPEG®8-acid $225 $275

Mol. Wt.: 592.63; single compound; dPEG® Spacer is 34 atoms and 38.8 Å

10285 MAL-dPEG®12-acid $225 $300

Mol. Wt.: 768.84; single compound; dPEG® Spacer is 46 atoms and 53.3 Å

10315 MAL-dPEG®24-acid $225 $1000

Mol. Wt.: 1297.47; single compound; dPEG® Spacer is 82 atoms and 95.2 Å

Page 61: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Heterobifunctional Reagents: Amine and Thiol Reactive

For quotes on bulk quantities, please contact [email protected] 55

Bromoacetamido-dPEG®x-TFP ester

Product # Description 100 mg 1000 mg

11200 Bromoacetamido-dPEG®4-TFP ester $200 $250

Mol. Wt.: 534.29; single compound; dPEG® Spacer is 18 atoms and 20.4 Å

11202 Bromoacetamido-dPEG®12-TFP ester $225 $750

Mol. Wt.: 886.71; single compound; dPEG® Spacer is 42 atoms and 48.7 Å

11203 Bromoacetamido-dPEG®24-TFP ester $250 $1250

Mol. Wt.: 1415.35; single compound; dPEG® Spacer is 78 atoms and 91.2 Å

Bromoacetamido-dPEG®x-amido-DBCO

Product # Description 25 mg 100 mg 500 mg

11221 Bromoacetamido-dPEG®4-amido-DBCO $195 $490 $1650

Mol. Wt.: 644.55; single compound; dPEG® Spacer is 16 atoms and 17.943 Å

11223 Bromoacetamido-dPEG®12-amido-DBCO $210 $575 $1900

Mol. Wt.: 996.974; single compound; dPEG® Spacer is 40 atoms and 46.154 Å

11224 Bromoacetamido-dPEG®24-amido-DBCO $240 $645 $2100

Mol. Wt.: 1525.60; single compound; dPEG® Spacer is 76 atoms and 89.962 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 62: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Heterobifunctional Reagents: Amine and Thiol Reactive

To place an order, call 614-792-2958 or visit www.quantabiodesign.com 56

4-formyl-benzamido-dPEG®x-TFP ester

Convert an AMINE to a dPEG® containing ALDEHYDE, reactable with an aminooxy or hydrazide compound!

Product # Description 100 mg 1000 mg

10081 4-formyl-benzamido-dPEG®12-TFP ester $200 $1250

Mol. Wt.: 897.90; single compound; dPEG® Spacer is 46 atoms and 49.3 Å

10082 4-formyl-benzamido-dPEG®24-TFP ester $275 $1500

Mol. Wt.: 1426.53; single compound; dPEG® Spacer is 83 atoms and 93.0 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 2nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0)., See pp.

276-335 for general description and use of heterobifunctional crosslinkers, and the specific sample protocol for SPDP and LC-SPDP on pp. 286-288. See Greg’s extensive index on pg. 1192-1193 for references to a number and range of applications and their respective protocols.

Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Aldehydes (latent) are common incarbohydrates, carbohydrate containingproteins, and other oxidizable matrices;and can be incorporated using reagentslike the 4-FB-dPEG

®x TFP esters (amine

reactive).

Aminooxy-dPEG®s with a LABEL - Quanta

has available a BIOTIN label; PN 11112 isperfect for making your own.

Page 63: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Heterobifunctional Reagents: Amine and Thiol Reactive

For technical questions, please call 614-792-2958 or contact [email protected] 57

4-formyl-benzamido-dPEG®12-EDA-MAL

Convert a THIOL to a dPEG® containing ALDEHYDE, reactable with an aminooxy or hydrazide compound!

Product # Description 100 mg 1000 mg

10075 4-formyl-benzamido-dPEG®12-EDA-MAL $250 $1500

Mol. Wt.: 943.04; single compound; dPEG® Spacer is 57 atoms and 59.6 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821,

for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Aldehydes (latent) are common incarbohydrates, carbohydrate containingproteins, and other oxidizable matrices;and can be incorporated using reagentslike the 4-FB-dPEG

®x TFP esters (amine

reactive).

Aminooxy-dPEG®s with a LABEL - Quanta

has available a BIOTIN label; PN 11112 isperfect for making your own.

Page 64: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Heterobifunctional Reagents: Amine and Thiol Reactive

For custom synthesis please contact us at [email protected] 58

Phthalimidooxy-dPEG®x-NHS ester

A New dPEG® Reagent for Stable Oxime Conjugation Systems!

Product # Description 100 mg 1000 mg

10011 Phthalimidooxy-dPEG®4 NHS ester $100 $750

Mol. Wt.: 508.48; single compound; dPEG® Spacer is 17 atoms and 19.0 Å

11135 Phthalimidooxy-dPEG®12 NHS ester $250 $1250

Mol. Wt.: 860.90; single compound; dPEG® Spacer is 41 atoms and 46.3 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Aldehydes (latent) are common in carbohydrates, carbohydrate containing proteins, and other oxidizable matrices; including most native antibodies and many enzymes, e.g. HRP. The amines from the lysines in proteins can also be converted to aldehydes and incorporated using reagents like the 4-FB-dPEG

®x TFP esters (amine

reactive). See PN’s 10081 and 10082.

Page 65: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Heterobifunctional Reagents: Amine and Thiol Reactive

For quotes on bulk quantities, please contact [email protected] 59

SPDP-dPEG®x-NHS ester

Product # Description 100 mg 1000 mg

10374 SPDP-dPEG®4-NHS ester $225 $1075

Mol. Wt.: 559.65; single compound; dPEG® Spacer is 20 atoms and 23.1 Å

10376 SPDP-dPEG®8-NHS ester $250 $1200

Mol. Wt.: 735.87; single compound; dPEG® Spacer is 32 atoms and 37.2 Å

10378 SPDP-dPEG®12-NHS ester $250 $1200

Mol. Wt.: 912.08; single compound; dPEG® Spacer is 44 atoms and 51.3 Å

10379 SPDP-dPEG®24 -NHS ester $275 $1325

Mol. Wt.: 1440.70; single compound; dPEG® Spacer is 80 atoms and 97.3 Å

10867 SPDP-dPEG®36-NHS ester $300 $1450

Mol. Wt.: 1969.33; single compound; dPEG® Spacer is 115 atoms and 137.8 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 2nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0)., See pp. 276-335

for general description and use of heterobifunctional crosslinkers, and the specific sample protocol for SPDP and LC-SPDP on pp. 286-288. See Greg’s extensive index on pg. 1192-1193 for references to a number and range of applications and their respective protocols.

Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 66: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Heterobifunctional Reagents: Amine and Thiol Reactive

60

Tris (2-carboxyethyl) phosphine hydrochloride (TCEP)

References: Greg T. Hermanson, Bioconjugate Techniques, 2nd Edition, Elsevier Inc., Burlington, MA 01803, April 2008 (ISBN-13:978-0-12-370501-3; ISBN-10:0-12-370501-0), pages 95-97

(protocol), 654. Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Product # Description 1000 mg 5000 mg

10014 Tris (2-carboxyethyl) phosphine hydrochloride (TCEP) $55 $100

Mol. Wt.: 286.65; single compound

Page 67: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Homobifunctional Reagents: Amine Reactive

For technical questions, please call 614-792-2958 or contact [email protected] 61

Homobifunctional Reagents: Amine Reactive

Bis-dPEG®x-NHS ester

Product # Description 100 mg 1000 mg

10724 Bis-dPEG®2-NHS ester $150 $325

Mol. Wt.: 400.34; single compound; dPEG® Spacer is 10 atoms and 11.0 Å

10726 Bis-dPEG®3-NHS ester $150 $335

Mol. Wt.: 444.39; single compound; dPEG® Spacer is 13 atoms and 14.6 Å

10988 Bis-dPEG®7-NHS ester $225 $500

Mol. Wt.: 620.60; single compound; dPEG® Spacer is 25 atoms and 28.6 Å

Series continued on next page

Page 68: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Homobifunctional Reagents: Amine Reactive

For custom synthesis please contact us at [email protected] 62

Bis-dPEG®x-NHS ester (cont.)

Product # Description 100 mg 1000 mg

10246 Bis-dPEG®9-NHS ester $250 $550

Mol. Wt.: 708.71; single compound; dPEG® Spacer is 31 atoms and 35.7 Å

10954 Bis-dPEG®13-NHS ester $275 $650

Mol. Wt.: 884.92; single compound; dPEG® Spacer is 43 atoms and 50.1Å

10979 Bis-dPEG®17-NHS ester $300 $950

Mol. Wt.: 1061.13; single compound; dPEG® Spacer is 55 atoms and 64.4 Å

10956 Bis-dPEG®21-NHS ester $325 $975

Mol. Wt.: 1237.34; single compound; dPEG® Spacer is 67 atoms and 79.1 Å

10968 Bis-dPEG®25-NHS ester $350 $1000

Mol. Wt.: 1413.55; single compound; dPEG® Spacer is 79 atoms and 93.0 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 69: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Homobifunctional Reagents: Amine Reactive

Browse products by compound or category at www.quantabiodesign.com 63

Bis-dPEG®x-PFP & TFP esters

All of our bis-dPEG®x-NHS esters, now as the -PFP esters!

More aqueous stable than the NHS esters!

Product # Description 100 mg 1000 mg

10981 Bis-dPEG®2-PFP ester $150 $650

Mol. Wt.: 538.29; single compound; dPEG® Spacer is 10 atoms and 10.9 Å

10982 Bis-dPEG®3-PFP ester $150 $550

Mol. Wt.: 582.34; single compound; dPEG® Spacer is 13 atoms and 14.5 Å

10085 Bis-dPEG®4-TFP ester $150 $650

Mol. Wt.: 590.41; single compound; dPEG® Spacer is 16 atoms and 18.1 Å

Series continued on next page

Page 70: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Homobifunctional Reagents: Amine Reactive

For quotes on bulk quantities, please contact [email protected] 64

Bis-dPEG®x-PFP & TFP esters (cont.)

Product # Description 100 mg 1000 mg

10015 Bis-dPEG®5-PFP ester $150 $650

Mol. Wt.: 670.45; single compound; dPEG® Spacer is 19 atoms and 21.7 Å

10987 Bis-dPEG®7-PFP ester $225 $750

Mol. Wt.: 758.55; single compound; dPEG® Spacer is 25 atoms and 28.6 Å

10983 Bis-dPEG®9-PFP ester $250 $1100

Mol. Wt.: 846.66; single compound; dPEG® Spacer is 31 atoms and 35.8 Å

10984 Bis-dPEG®13-PFP ester $275 $1200

Mol. Wt.: 1022.87; single compound; dPEG® Spacer is 43 atoms and 50.0 Å

10980 Bis-dPEG®17-PFP ester $300 $1275

Mol. Wt.: 1199.08; single compound; dPEG® Spacer is 55 atoms and 64.4 Å

10985 Bis-dPEG®21-PFP ester $325 $1350

Mol. Wt.: 1375.29; single compound; dPEG® Spacer is 67 atoms and 78.7 Å

10092 Bis-dPEG®25-TFP ester $350 $1400

Mol. Wt.: 1515.52; single compound; dPEG® Spacer is 79 atoms and 93.0 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 71: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Click Reagents: Azide

To place an order, call 614-792-2958 or visit www.quantabiodesign.com 65

Click Reagents: Azide

Azido-dPEG®x-NHS ester

Product # Description 100 mg 1000 mg

10501 Azido-dPEG®4-NHS ester $175 $500

Mol. Wt.: 388.37; single compound; dPEG® Spacer is 16 atoms and 17.7 Å

10503 Azido-dPEG®8-NHS ester $200 $650

.

Mol. Wt.: 564.58; single compound; dPEG® Spacer is 28 atoms and 32.2 Å

10505 Azido-dPEG®12-NHS ester $225 $750

Mol. Wt.: 740.79; single compound; dPEG® Spacer is 40 atoms and 47.2 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 72: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Click Reagents: Azide

For technical questions, please call 614-792-2958 or contact [email protected] 66

Azido-dPEG®x-TFP ester

Product # Description 100 mg 1000 mg

10567 Azido-dPEG®4-TFP ester $175 $500

Mol. Wt.: 439.36; single compound; dPEG® Spacer is 16 atoms and 17.7 Å

10569 Azido-dPEG®12-TFP ester $225 $750

Mol. Wt.: 791.78; single compound; dPEG® Spacer is 40 atoms and 46.306 Å

10571 Azido-dPEG®24-TFP ester $275 $1375

Mol. Wt.: 1320.41; single compound; dPEG® Spacer is 76 atoms and 90.4 Å

10573 Azido-dPEG®36-TFP ester $350 $1750

Mol. Wt.: 1849.04; single compound; dPEG® Spacer is 112 atoms and 130.9 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 73: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Click Reagents: Azide

For custom synthesis please contact us at [email protected] 67

Azido-dPEG®x-acid

Product # Description 100 mg 1000 mg

10502 Azido-dPEG®4-acid $200 $500

Mol. Wt.: 291.30; single compound; dPEG® Spacer is 16 atoms and 17.7 Å

10512 Azido-dPEG®8-acid $225 $750

Mol. Wt.: 467.51; single compound; dPEG® Spacer is 28 atoms and 32.2 Å

10513 Azido-dPEG®12-acid $250 $850

Mol. Wt.: 643.72 ; single compound; dPEG® Spacer is 40 atoms and 46.4 Å

10514 Azido-dPEG®24-acid $275 $950

Mol. Wt.: 1172.35; single compound; dPEG® Spacer is 76 atoms and 90.4 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 74: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Click Reagents: Azide

Browse products by compound or category at www.quantabiodesign.com 68

Azido-dPEG®x-amine

Product # Description 100 mg 1000 mg

10522 Azido-dPEG®3-amine $100 $200

Mol. Wt.: 218.25; single compound; dPEG® Spacer is 14 atoms and 15.4 Å

10523 Azido-dPEG®7-amine $200 $500

Mol. Wt.: 394.46; single compound; dPEG® Spacer is 25 atoms and 28.8 Å

10524 Azido-dPEG®11-amine $250 $600

Mol. Wt.: 570.67; single compound; dPEG® Spacer is 36 atoms and 44.2 Å

10525 Azido-dPEG®23-amine $300 $850

Mol. Wt.: 1099.30; single compound; dPEG® Spacer is 72 atoms and 86.8 Å

10526 Azido-dPEG®35-amine $350 $1350

Mol. Wt.: 1627.94; single compound; dPEG® Spacer is 107 atoms and 129 Å

Bromoacetamido-dPEG®x-azide

Product # Description 100 mg 1000 mg

11217 Bromoacetamido-dPEG®3-azide $250 $600

Mol. Wt.: 339.19; single compound; dPEG® Spacer is 16 atoms and 17.5 Å

11204 Bromoacetamido-dPEG®11-azide $350 $1350

Mol. Wt.: 691.61; single compound; dPEG® Spacer is 39 atoms and 46.0 Å

11205 Bromoacetamido-dPEG®23-azide $400 $1400

3

Mol. Wt.: 1220.24; single compound; dPEG® Spacer is 76 atoms and 88.5 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 75: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Click Reagents: Amine and Carboxyl Acetylide Partners

For quotes on bulk quantities, please contact [email protected] 69

Click Reagents: Amine and Carboxyl Acetylide Partners

Propargyl-dPEG®1-NHS ester

Product # Description 100 mg 1000 mg

10511 Propargyl-dPEG®1-NHS ester $100 $450

Mol. Wt.: 225.20; single compound; dPEG® Spacer is 7 atoms and 7.2 Å

.

Propargyl amine

Product # Description 1000 mg

10510 Propargyl amine $50

Mol. Wt.: 55.08; single compound; Spacer is 4 atoms and 3.5 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 2nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). Pp. 722-716 (Greg has several general protocols on pp. 725 and 726).

Products Protected under U.S. Patents # 7,888,536 & 8,637,711 ..

Page 76: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Homobifunctional: DBCO (Copper-Free Click)

Additional References can be found at the end of each category 70

Homobifunctional: DBCO (Copper-Free Click)

Bis-dPEG®x-DBCO

Product # Description 25 mg 100 mg 500 mg

11372 Bis-dPEG®₁₁-DBCO $240 $645 $2100

Mol. Wt.: 1147.35; single compound; dPEG® Spacer is 39 atoms and 44.2 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Page 77: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Homotetrafunctional: DBCO (Copper-Free Click)

Additional References can be found at the end of each category 71

Homotetrafunctional: DBCO (Copper-Free Click)

Tetra(-dPEG®x-DBCO)

Product # Description 25 mg 100 mg

11371 Tetra(-dPEG®₁₁-DBCO)pentaerythritol $1200 $2300

Mol. Wt.: 3736.396; single compound; dPEG® Spacer is 43 atoms and 47.4 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Page 78: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Homobifunctional: Thiol Reactive

Additional References can be found at the end of each category 72

Homobifunctional: Thiol Reactive

Bis-MAL-dPEG®x

Product # Description 50 mg 1000 mg

10215 Bis-MAL-dPEG®3 $125 $750

Mol. Wt.: 522.55; single compound; dPEG® Spacer is 28 atoms and 30 Å

10397 Bis-MAL-dPEG®11 $225 $1200

Mol. Wt.: 846.92; single compound; dPEG® Spacer is 49 atoms and 56 Å

.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Bis-Bromoacetamido-dPEG®x

Product # Description 50 mg 1000 mg

11338 Bis-Bromoacetamido-dPEG®₁₁ $225 $1200

Mol. Wt.: 786.54; single compound; dPEG® Spacer is 44 atoms and 47.5 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Page 79: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Homotetrafunctional: Thiol Reactive

Additional References can be found at the end of each category 73

Homotetrafunctional: Thiol Reactive

MAL-dPEG®12-Tris(-dPEG®

11-amido-MAL)3

Product # Description 100 mg 1000 mg

11433 MAL-dPEG®12-Tris(-dPEG®

11-amido-MAL)3 $400 $2400

Mol. Wt.: 3121.49; single compound; dPEG® Spacer is 90 atoms and 66.197 Å

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Tetra(-amido-dPEG®x-MAL)pentaerythritol

Product # Description 25 mg 100 mg

11435 Tetra(-amido-dPEG®11-MAL)pentaerythritol $950 $1800

Mol. Wt.: 3135.520; single compound; dPEG® Spacer data for each arm is 43 atoms and 47.4 Å

11414 Tetra(-amido-dPEG®24-MAL)pentaerythritol $1100 $2000

Mol. Wt.: 5250.04; single compound; dPEG® Spacer for each arm is 79 atoms and 89.8 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products

Bromoacetamido-dPEG®12-Tris

Page 80: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Homotetrafunctional: Thiol Reactive

Additional References can be found at the end of each category 74

(-dPEG®11-bromoacetamide)3

Product # Description 100 mg 1000 mg

11434 Bromoacetamido-dPEG®12-Tris(-dPEG®

11-bromoacetamide)3 $400 $2400

Mol. Wt.: 3000.75; single compound; dPEG® Spacer is 87 atoms and 66.76 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 81: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Homohexafunctional: Thiol Reactive

Additional References can be found at the end of each category 75

Homohexafunctional: Thiol Reactive

Hexa(-amido-dPEG®x-MAL)dipentaerythritol

Product # Description 25 mg 100 mg

11436 Hexa(-amido-dPEG®₁₁-MAL)dipentaerythritol $1100 $2000

Mol. Wt.: 4753.34; single compound; dPEG® Spacer is 43 atoms and 47.4 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products

Page 82: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Homohexafunctional: Thiol Reactive

Additional References can be found at the end of each category 76

t-boc-N-amido-dPEG®x-amine

+

= Small molecule; modified surface; peptide, oligo

NHS NH2-dPEG

®

x-NH

O

(Acid)

NH-dPEG®

x-NH

2

O

O

O

NH-dPEG®

x-NH O

O

Product # Description 100 mg 1000 mg

10225 t-boc-N-amido-dPEG®3-amine

upon request

$200

Mol. Wt.: 320.43; single compound; dPEG® Spacer is 15 atoms and 16.9 Å

10172 t-boc-N-amido-dPEG®11-amine $235 $1050

Mol. Wt.: 644.79; single compound; dPEG® Spacer is 37 atoms and 42.8 Å

10093 t-boc-N-amido-dPEG®23-amine $450 $1500

Mol. Wt.: 1173.42; single compound; dPEG® Spacer is 72 atoms and 86.8 Å

.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Diamido-dPEG®11-diamine

Product # Description 100 mg 1000 mg

10361 Diamido-dPEG®11-diamine $150 $800

Mol. Wt.: 742.94; single compound; dPEG® Spacer is 49 atoms and 57.1 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 83: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Homobifunctional: Diamine Monoprotected

For technical questions, please call 614-792-2958 or contact [email protected] 77

Homobifunctional: Diamine Monoprotected

CBZ-N-amido-dPEG®3-amine

Product # Description 1000 mg

10269 CBZ-N-amido-dPEG®3-amine $375

Mol. Wt.: 354.44; single compound; dPEG® Spacer is 15 atoms and 16.9 Å

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

.

t-boc-N-EDA

Product # Description 1000 mg

10226 t-boc-N-EDA $175

Mol. Wt.: 160.21; single compound; Spacer is 4 atoms and 3.8 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Page 84: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Homobifunctional: Diamine Monoprotected

For technical questions, please call 614-792-2958 or contact [email protected] 78

Acid-dPEG®x-NHS ester

Product # Description 100 mg 1000 mg

10109 Acid-dPEG®5-NHS ester $215 $1200

Mol. Wt.: 435.42; single compound; dPEG® Spacer is 19 atoms and 21.6 Å

10119 Acid-dPEG®9-NHS ester $230 $1250

Mol. Wt.: 611.64; single compound; dPEG® Spacer is 31 atoms and 35.7 Å

10127 Acid-dPEG®13-NHS ester $250 $1300

Mol. Wt.: 787.38; single compound; dPEG® Spacer is 43 atoms and 50 Å

10140 Acid-dPEG®25-NHS ester $300 $1450

Mol. Wt.: 1316.47; single compound; dPEG® Spacer is 79 atoms and 92.5 Å

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 85: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Homobifunctional: Diamine Monoprotected

Browse products by compound or category at www.quantabiodesign.com 79

Amino-dPEG®11-ONH-t-boc

Aldehydes (latent) are common in carbohydrates, carbohydrate containing proteins, and other oxidizable matrices;and can be incorporated using reagents like the 4-FB-dPEG

®x TFP esters (amine reactive).

Aminooxy-dPEG®s with a LABEL - Quanta has available a BIOTIN label; PN 11112 is perfect for making your own.

Product # Description 100 mg 1000 mg

11112 Amino-dPEG®11-ONH-t-boc $250 $1200

Mol. Wt.: 660.79; single compound; dPEG® Spacer is 38 atoms and 43.8 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 2nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0)., See pp. 276-335

for general description and use of heterobifunctional crosslinkers, and the specific sample protocol for SPDP and LC-SPDP on pp. 286-288. See Greg’s extensive index on pg. 1192-1193 for references to a number and range of applications and their respective protocols.

Bis-dPEG®5, half benzyl half NHS ester

Product # Description 100 mg 1000 mg

10237 Bis-dPEG®5, half benzyl half NHS ester $250 $1100

Mol. Wt.: 525.55; single compound; dPEG® Spacer is 19 atoms and 21.7 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 86: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Other Thiol Reactive

For quotes on bulk quantities, please contact [email protected] 80

Other Thiol Reactive

MPS (NHS-3-maleimidopropionate)

Product # Description 250 mg 1000 mg

10217 MPS (NHS-3-maleimidopropionate) $150 $200

Mol. Wt.: 266.21; single compound; Spacer is 6 atoms and 6 Å

MPS-Acid

Product # Description 100 mg 1000 mg

10323 MPS-Acid $80 $90

Mol. Wt.: 169.13; single compound; Spacer is 6 atoms and 6 Å

MPS-EDA.TFA

Product # Description 100 mg 1000 mg

10177 MPS-EDA.TFA $225 $750

Mol. Wt. 325.24; single compound; Spacer is 10 atoms and 10.7 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Page 87: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Other Thiol Reactive

Additional References can be found at the end of each category 81

Bis-Maleimide amine, TFA salt

Product # Description 100 mg 1000 mg

10232 Bis-Maleimide amine, TFA salt $225 $750

Mol. Wt.: 660.64; single compound; Spacers are 17 and 21 atoms, and 19.1 and 19.6 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 88: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Other Thiol Reactive

To place an order, call 614-792-2958 or visit www.quantabiodesign.com 82

Bis-MAL-Lysine-dPEG®4-acid

Product # Description 100 mg 1000 mg

10630 Bis-MAL-Lysine-dPEG®4-acid $225 $1050

Mol. Wt.: 695.71; single compound; dPEG® Spacers are 25 and 29 atoms and 17.5 and 27.9 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 89: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Other Thiol Reactive

For technical questions, please call 614-792-2958 or contact [email protected] 83

Bis-MAL-Lysine-dPEG®4-TFP ester

Product # Description 100 mg 1000 mg

10631 Bis-MAL-Lysine-dPEG®4-TFP ester $250 $1250

Mol. Wt.: 843.77; single compound; dPEG® Spacers are 25 and 29 atoms and 17.5 and 27.9 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 90: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Other Heterobifunctional

For custom synthesis please contact us at [email protected] 84

Other Heterobifunctional

Amino-dPEG®x-t-boc-hydrazide

Product # Description 100 mg 1000 mg

10041 Amino-dPEG®4-t-boc-hydrazide $150 $750

Mol. Wt.: 379.45; single compound; dPEG® Spacer is 18 atoms and 21.1 Å

10957 Amino-dPEG®8-t-boc-hydrazide $250 $950

Mol. Wt.: 555.66; single compound; dPEG® Spacers is 30 atoms and 35.9 Å

10958 Amino-dPEG®12-t-boc-hydrazide $300 $1050

Mol. Wt.: 731.87; single compound; dPEG® Spacers is 45 atoms and 50.1 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 91: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Crosslinking Reagents Other Heterobifunctional

Browse products by compound or category at www.quantabiodesign.com 85

Fmoc-N-amido-dPEG®4-t-boc-hydrazide

Product # Description 100 mg 1000 mg

10043 Fmoc-N-amido-dPEG®4-t-boc-hydrazide $175 $750

Mol. Wt.: 601.69; single compound; dPEG® Spacer is 18 atoms and 21.1 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 92: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Biotinylation Reagents

For quotes on bulk quantities, please contact [email protected] 86

dPEG® Biotinylation Reagents

NHS-dPEG®x-biotin

These are extremely useful for labeling proteins; especially on the available random lysines! Due to

the extreme solubility of the dPEG® linker, up to 35-40 biotins can be labeled onto an IgG with NO aggregation!

Product # Description 50 mg 1000 mg

10200 NHS-dPEG®4-biotin $100 $750

Mol. Wt.: 588.67; single compound; dPEG® Spacer is 16 atoms and 19.2 Å

10198 NHS-dPEG®12-biotin $150 $1250

Mol. Wt.: 941.09; single compound; dPEG® Spacer is 40 atoms and 47.6 Å

10774 NHS-dPEG®24-biotin $250 $1400

Mol. Wt.: 1469.72; single compound; dPEG® Spacer is 81 atoms and 97.7 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 2nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). Specifically see pp.

726-730 in his Chapter 18 on discrete PEG compounds for pegylation applications.

Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 93: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Biotinylation Reagents

Additional References can be found at the end of each category 87

dPEG®x-biotin acid

These are extremely useful for labeling proteins, especially on the available random lysines! Due to the extreme solubility of the dPEG® linker, up to 35-40 biotins can be labeled onto an IgG with NO aggregation!

Product # Description 100 mg 1000 mg

10199 dPEG®4-biotin acid $100 $600

Mol. Wt.: 491.60; single compound; dPEG® Spacer is 16 atoms and 19.2 Å

10197 dPEG®12-biotin acid $150 $975

Mol. Wt.: 844.02; single compound; dPEG® Spacer is 40 atoms and 47.6 Å

10773 dPEG®24-biotin acid $225 $1350

Mol. Wt.: 1372.65; single compound; dPEG® Spacer is 76 atoms and 95.7 Å

10776 dPEG®48-biotin acid $300 $1500

Mol. Wt.: 2500.99; single compound; dPEG® Spacer is 157 atoms and 187.8 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 94: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Biotinylation Reagents

To place an order, call 614-792-2958 or visit www.quantabiodesign.com 88

Biotin-dPEG®x-TFP ester

These are extremely useful for labeling proteins, especially on the available random lysines! Due to the extreme solubility of the dPEG® linker, up to 35-40 biotins can be labeled onto an IgG with NO aggregation!

Product # Description 100 mg 1000 mg

10009 Biotin-dPEG®4-TFP ester $100 $600

Mol. Wt.: 639.66; single compound; dPEG® Spacer is 16 atoms and 19.2 Å

10008 Biotin-dPEG®12-TFP ester $150 $975

Mol. Wt.: 992.08; single compound; dPEG® Spacer is 40 atoms and 47.6 Å

10007 Biotin-dPEG®24-TFP ester $250 $1400

Mol. Wt.: 1520.71; single compound; dPEG® Spacer is 76 atoms and 99.3 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 2nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). Specifically see pp.

726-729 in his Chapter 18 on discrete PEG compounds.

Greg T. Hermanson, Bioconjugate Techniques, 3rd

Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 95: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Biotinylation Reagents

For technical questions, please call 614-792-2958 or contact [email protected] 89

NHS-S-S-dPEG®4-biotin (cleavable)

Cleavable Biotinylation! This product can label, but can subsequently be cleaved with a reducing agent! See NHS-dPEG®

x biotin!

Product # Description 50 mg 500 mg

10194 NHS-S-S-dPEG®4-biotin (cleavable) $175 $875

Mol. Wt.: 751.94; single compound; dPEG® Spacer is 24 atoms and 28.7 Å

10409 TFP-dPEG®4-Lys-(dPEG®

4-biotin)2 $150 $1125

Mol. Wt.: 1488.70; single compound; dPEG® Spacers are 40 and 35 atoms and 43.4 and 41.7 Å

References:

Greg T. Hermanson, Bioconjugate Techniques, 2nd

Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). Specifically see pp.726-729 in his Chapter 18 on discrete PEG compounds for pegylation application.

Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 96: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Biotinylation Reagents

For custom synthesis please contact us at [email protected] 90

TFP/NHS-dPEG®x-biotinidase

resistant biotin

Biotinidase resistant: Biotinidase is ubiquitous in serum and any biotin amide bond will BE CLEAVED! This chemistry creates a stable linkage in the presence of BIOTINIDASE!

Product # Description 100 mg 1000 mg

10202 NHS-dPEG®4 -biotinidase resistant biotin $150 $1200

Mol. Wt.: 673.78; single compound; dPEG® Spacer is 19 atoms and 21.5 Å

10203 TFP-dPEG®4-biotinidase resistant biotin $150 $1200

Mol. Wt.: 724.77; single compound; dPEG® Spacers is 19 atoms and 21.5 Å

10204 TFP-dPEG®12-biotinidase resistant biotin $250 $1750

Mol. Wt.: 1077.19; single compound; dPEG® Spacers is 43 atoms and 50.1 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 97: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Biotinylation Reagents

Carbonyl Reactive

Browse products by compound or category at www.quantabiodesign.com 91

Biotin-dPEG®4-hydrazide

Carbonyl reactive dPEG® biotin reagent - reacts with carboxylic acids and aldehydes!

Product # Description 50 mg 1000 mg

10219 Biotin-dPEG®4-hydrazide $250 $1100

Mol. Wt.: 505.63; single compound; dPEG® Spacer is 18 atoms and 20.6 Å

References:

Greg T. Hermanson, Bioconjugate Techniques, 2nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). See pp. 733-736 for a general discussion of the chemistry and a general protocol for labeling of a glycoprotein is on pg. 736.

Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 98: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Biotinylation Reagents

Carbonyl Reactive

For quotes on bulk quantities, please contact [email protected] 92

Biotin-dPEG®x-NH2

Product # Description 100 mg 1000 mg

10193 Biotin-dPEG®3-NH3

+TFA- $100 $750

Mol. Wt.: 560.63; single compound; dPEG® Spacer is 15 atoms and 18.1 Å

10826 Biotin-dPEG®7-NH2 $250 $900

Mol. Wt.: 594.76; single compound; dPEG® Spacer is 25 atoms and 29.8 Å

10196 Biotin-dPEG®11-NH2 $275 $1000

Mol. Wt.: 770.97; single compound; dPEG® Spacer is 37 atoms and 44.1 Å

10786 Biotin-dPEG®23-NH2 $300 $1100

Mol. Wt.: 1299.60; single compound; dPEG® Spacer is 71 atoms and 87 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 2nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). See pages 529 and

530 for a general discussion in Greg’s book and on biotinylation as well, as well as pp. 737 and 738 for a protocol for a compound with just two oxygen. However, other than enhanced solubility and binding distances, the protocol is adaptable to our PN 10193.

Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 99: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Biotinylation Reagents

Carbonyl Reactive

Additional References can be found at the end of each category 93

Biotin-dPEG®x-oxyamine. HCl

Aldehydes (latent) are common in carbohydrates, carbohydrate containing proteins, an other oxidizable matrices;and can be incorporated using reagents like the 4-FB-dPEG

®x TFP esters (amine reactive)

Aminooxy-dPEG®s with a LABEL - Quanta has available a BIOTIN label; PN 11102 below is perfect for making your own

Product # Description 50 mg 1000 mg

11100 Biotin-dPEG®3-oxyamine. HCl $100 $750

Mol. Wt.: 471.01; single compound; dPEG® Spacer is 14 atoms and 16.6 Å

11102 Biotin-dPEG®11-oxyamine. HCl $150 $1250

Mol. Wt.: 823.43; single compound; dPEG® Spacer is 38 atoms and 44.9 Å

References:

Greg T. Hermanson, Bioconjugate Techniques, 2nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0)., See pp. 276-335for general description and use of heterobifunctional crosslinkers, and the specific sample protocol for SPDP and LC-SPDP on pp. 286-288. See Greg’s extensive index on pg. 1192-1193 for references to a number and range of applications and their respective protocols.

Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 100: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Biotinylation Reagents Thiol Reactive

To place an order, call 614-792-2958 or visit www.quantabiodesign.com 94

Thiol Reactive

Biotin-dPEG®x-MAL

Maleimide reacts VERY efficiently and rapidly with a thiol/sulfhydryl under very mild conditions (pH 5 to 7); and the dPEG®

x biotin gives the same solubility andavailability of the biotin as amine and carbonyl reactive dPEG® biotin reagents!

Product # Description 25 mg 50 mg 100 mg

10201 Biotin-dPEG®3-MAL N/A $175

upon request

Mol. Wt.: 597.73; single compound; dPEG® Spacer is 21 atoms and 24.9 Å

10195 Biotin-dPEG®11-MAL $225 N/A $450

Mol. Wt.: 922.09; single compound; dPEG® Spacer is 43 atoms and 50.5 Å

10785 Biotin-dPEG®23-MAL $250 N/A $500

Mol. Wt.: 1450.72; single compound; dPEG® Spacer is 77 atoms and 94.1 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 2nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). See pp. 732-733 in

Greg’s new edition for a summary of the reactions, plus a typical protocol.

Greg T. Hermanson, Bioconjugate Techniques, 3rd

Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 101: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Biotinylation Reagents Photoaffinity Biotinylation Reagents

For technical questions, please call 614-792-2958 or contact [email protected] 95

Photoaffinity Biotinylation Reagents

Biotin-dPEG®3-TFPA

A Non-specific dPEG® Photoaffinity Label

dPEG® Based Photoaffinity label: Inserts into some C-H bonds using SHORT UV wavelengths that are less protein friendly; useful for labeling surfaces!

Product # Description 25 mg 100 mg

10308 Biotin-dPEG®3-TFPA $125 $275

Mol. Wt.: 663.69; single compound; dPEG® Spacer is 15 atoms and 16.9 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 102: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Biotinylation Reagents Additional Biotinylation Reagents

Browse products by compound or category at www.quantabiodesign.com 96

Additional Biotinylation Reagents

Biotin-dPEG®x-azide

dPEG® Based Biotinylation Reagent useful for introducing biotin via a Cu catalyzed Click Reaction.

Product # Description 100 mg 1000 mg

10825 Biotin-dPEG®7-azide $200 $1350

Mol. Wt.: 620.32; single compound; dPEG® Spacer is 27 atoms and 30.7 Å

10784 Biotin-dPEG®11-azide $250 $1400

Mol. Wt.: 796.97; single compound; dPEG® Spacer is 40 atoms and 50.4 Å

10787 Biotin-dPEG®23-azide $300 $1600

Mol. Wt.: 1325.60; single compound; dPEG® Spacer is 73 atoms and 87.7 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 2nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0), and specifically see

pp. 722-724.

Greg T. Hermanson, Bioconjugate Techniques, 3rd

Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 103: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Biotinylation Reagents Additional Biotinylation Reagents

For quotes on bulk quantities, please contact [email protected] 97

NHS-biotin

Product # Description 100 mg 1000 mg

10205 NHS-biotin $50 $150

Mol. Wt.: 341.38; single compound

Bis-dPEG®3-biotin

Biotin-dPEG®3-cyanocobalamin

Product # Description 5 mg

10218 Biotin-dPEG®3-cyanocobalamin $125

Mol. Wt.: 1800.93; single compound; dPEG® Spacer is 15 atoms and 18.1 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Product # Description 50 mg 1000 mg

10325 Bis-dPEG®3-biotin $100 $750

Mol. Wt.: 672.90; single compound; dPEG® Spacer is 15 atoms and 18.1 Å

Page 104: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® based Fluorescent and other Dye Labels

Additional References can be found at the end of each category 98

dPEG® based Fluorescent and other Dye Labels

Lissamine Rhodamine B sulfonamide-dPEG®4-acid

A fluorescent dPEG® label (5- and 6- mixed isomers)

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

DNP-dPEG®x-NHS ester

Product # Description 100 mg 1000 mg

10347 DNP-dPEG®4-NHS ester $200 $1000

Mol. Wt.: 528.47; single compound; dPEG® Spacer is 16 atoms and 18 Å

10399 DNP-dPEG®12-NHS ester $250 $1250

Mol. Wt.: 880.89; single compound; dPEG® Spacer is 40 atoms and 46.4 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 2nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). See his Chapter 19 especially in hapten-carrier chemistry and applications, as well as Chapter 18 on Discrete PEG pegylation reagents, with much of the chapter featuring our reagents.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Product # Description 10 mg

10229 Lissamine Rhodamine B sulfonamide-dPEG®4-acid $175

Mol. Wt.: 805.96; single compound; dPEG® Spacer is 16 atoms and 18 Å

Page 105: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® based Fluorescent and other Dye Labels

To place an order, call 614-792-2958 or visit www.quantabiodesign.com 99

DNP-dPEG®x-acid

Product # Description 100 mg 1000 mg

10346 DNP-dPEG®4-acid $175 $900

Mol. Wt.: 431.39; single compound; dPEG® Spacer is 16 atoms and 18 Å

10398 DNP-dPEG®12-acid $225 $1125

Mol. Wt.: 783.82; single compound; dPEG® Spacer is 45 atoms and 50 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 2nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). See his Chapter 19

especially in hapten-carrier chemistry and applications, as well as Chapter 18 on Discrete PEG pegylation reagents, with much of the chapter featuring our reagents.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Carboxyfluorescein-dPEG®12-NHS ester

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Product # Description 5 mg 10 mg

10885 Carboxyfluorescein-dPEG®12-NHS ester $250 $450

Mol. Wt.: 1073.10; single compound; dPEG® Spacer is 40 atoms and 47.4 Å

Page 106: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Reagents for Peptide Modification

For technical questions, please call 614-792-2958 or contact [email protected] 100

dPEG® Based Reagents for Peptide Modification

Fmoc-N-amido-dPEG®x-acid

dPEG® can be used as a versatile tool in tailoring peptide struture or for modifying physical properties. It can also be used as a SPACER within sequence or as an end group SPACER/LINKER or modifier!

Product # Description 100 mg 1000 mg 5000 mg

10243 Fmoc-N-amido-dPEG®2-acid

upon request

$150 $400

Mol. Wt.: 399.44; single compound; dPEG® Spacer is 10 atoms and 10.9 Å

10033 Fmoc-N-amido-dPEG®3-acid

upon request

$250 $650

Mol. Wt.: 443.49; single compound; dPEG® Spacer is 13 atoms and 14.4 Å

10213 Fmoc-N-amido-dPEG®4-acid $100 $250 $650

Mol. Wt.: 487.54; single compound; dPEG® Spacer is 17 atoms and 18.1 Å

10053 Fmoc-N-amido-dPEG®5-acid

upon request

$300 $750

Mol. Wt.: 531.59; single compound; dPEG® Spacer is 19 atoms and 21.6 Å

10063 Fmoc-N-amido-dPEG®6-acid $125 $350 $950

Mol. Wt.: 575.65; single compound; dPEG® Spacer is 22 atoms and 25.1 Å

Series continued on next page

Page 107: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Reagents for Peptide Modification

For custom synthesis please contact us at [email protected] 101

Fmoc-N-amido-dPEG®x-acid (cont.)

Product # Description 100 mg 1000 mg 5000 mg

10273 Fmoc-N-amido-dPEG®8-acid $150 $425 $1050

Mol. Wt.: 663.75; single compound; dPEG® Spacer is 28 atoms and 32.2 Å

10283 Fmoc-N-amido-dPEG®12-acid $150 $600

upon request

Mol. Wt.: 839.96; single compound; dPEG® Spacer is 40 atoms and 46.5 Å

10313 Fmoc-N-amido-dPEG®24-acid $250 $850

upon request

Mol. Wt.: 1368.59; single compound; dPEG® Spacer is 76 atoms and 89 Å

10903 Fmoc-N-amido-dPEG®36-acid $300 $1000

upon request

Mol. Wt.: 1897.22; single compound; dPEG® Spacer is 111 atoms and 132.7 Å

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Fmoc-amido-dPEG®24-amido-

dPEG®24-acid

Product # Description 100 mg 1000 mg

11301 Fmoc-amido-dPEG®24-amido-dPEG®

24-acid $300 $1500

Mol. Wt.: 2496.96; single compound; dPEG® Spacer is 152 atoms and 178.7 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 108: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Reagents for Peptide Modification

Browse products by compound or category at www.quantabiodesign.com 102

Fmoc-N-amido-dPEG®x-NHS ester

dPEG® can be used as a versatile tool in tailoring peptide struture or for modifying physical properties.

It can also be used as a SPACER within sequence or as an end group SPACER/LINKER or modifier!

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Product # Description 100 mg 1000 mg

10994 Fmoc-N-amido-dPEG®4-NHS ester $125 $325

Mol. Wt.: 584.24; single compound; dPEG® Spacer is 17 atoms and 18.1 Å

10995 Fmoc-N-amido-dPEG®8-NHS ester $175 $675

Mol. Wt.: 760.82; single compound; dPEG® Spacer is 28 atoms and 32.2 Å

10996 Fmoc-N-amido-dPEG®12-NHS ester $185 $725

Mol. Wt.: 937.03; single compound; dPEG® Spacer is 40 atoms and 46.5 Å

Page 109: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Reagents for Peptide Modification

For quotes on bulk quantities, please contact [email protected] 103

Fmoc-N-amido-dPEG®x-TFP ester

dPEG® can be used as a versatile tool in tailoring peptide struture or for modifying physical properties.

It can also be used as a SPACER within sequence or as an end group SPACER/LINKER or modifier!

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Product # Description 100 mg 1000 mg

11000 Fmoc-N-amido-dPEG®4-TFP ester $125 $325

Mol. Wt.: 635.60; single compound; dPEG® Spacer is 17 atoms and 18.1 Å

11005 Fmoc-N-amido-dPEG®8-TFP ester $175 $675

Mol. Wt.: 811.82; single compound; dPEG® Spacer is 28 atoms and 32.2 Å

11006 Fmoc-N-amido-dPEG®12-TFP ester $185 $725

Mol. Wt.: 988.02; single compound; dPEG® Spacer is 40 atoms and 46.5 Å

11007 Fmoc-N-amido-dPEG®24-TFP ester $300 $1175

Mol. Wt.: 1516.67; single compound; dPEG® Spacer is 76 atoms and 89.0 Å

11008 Fmoc-N-amido-dPEG®36-TFP ester $375 $1450

Mol. Wt.: 2045.30; single compound; dPEG® Spacer is 111 atoms and 132.7 Å

Page 110: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Reagents for Peptide Modification

Additional References can be found at the end of each category 104

Fmoc-N-Lys-(dPEG®x-biotin)-OH-(acid)

Product # Description 100 mg 1000 mg

10613 Fmoc-N-Lys-(dPEG®4-biotin)-OH-(acid) $200 $1000

Mol. Wt.: 842.01; single compound; dPEG® Spacer is 19.1 atoms and 16 Å

10615 Fmoc-N-Lys-(dPEG®12-biotin)-OH-(acid) $300 $1350

Mol. Wt.: 1194.43; single compound; dPEG® Spacer is 60 atoms and 57.9 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 111: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Reagents for Peptide Modification

To place an order, call 614-792-2958 or visit www.quantabiodesign.com 105

t-boc-N-amido-dPEG®x-acid

dPEG® can be used as a versatile tool in tailoring peptide struture or for modifying physical properties. It can also be used as a SPACER within sequence or as a end group SPACER/LINKER or modifier!

Product # Description 100 mg 1000 mg 5000 mg

10220 t-boc-N-amido-dPEG®4-acid $100 $275 $775

Mol. Wt.: 365.42; single compound; dPEG® Spacer is 17 atoms and 19.2 Å

10760 t-boc-N-amido-dPEG®8-acid $150 $650

upon request

Mol. Wt.: 541.63; single compound; dPEG® Spacer is 28 atoms and 32.2 Å

10761 t-boc-N-amido-dPEG®12-acid $175 $650

upon request

Mol. Wt.: 717.84; single compound; dPEG® Spacer is 40 atoms and 46.4 Å

10763 t-boc-N-amido-dPEG®24-acid $250 $850

upon request

Mol. Wt.: 1246.47.; single compound; dPEG® Spacer is 76 atoms and 89.0 Å

10902 t-boc-N-amido-dPEG®36-acid $300 $1050

upon request

Mol. Wt.: 1775.10; single compound; dPEG® Spacer is 111 atoms and 132.7 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 112: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Reagents for Peptide Modification

For technical questions, please call 614-792-2958 or contact [email protected] 106

Fmoc-amidooxy-dPEG®12 acid

Aldehydes (latent) are common in carbohydrates, carbohydrate containing proteins, and other oxidizable matrices;

and can be incorporated using reagents like the 4-FB-dPEG®

x TFP esters (amine reactive).

Aminooxy-dPEG®s and peptide synthesis: These reagents can be incorporated as the final step to the N-terminus of

the peptide, which with simple deprotection will provide a selective linkage to an aldehyde of a ketone - Anilinecatalysis avails us to both of these; the ketone can be more stable, especially if going into an aqueous reactionmedium.

Product # Description 100 mg 1000 mg

10849 Fmoc-amidooxy-dPEG®12 acid $175 $850

Mol. Wt.: 855.96; single compound; dPEG® Spacer is 41 atoms and 47.6 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 2nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0)., See pp. 276-335

for general description and use of heterobifunctional crosslinkers, and the specific sample protocol for SPDP and LC-SPDP on pp. 286-288. See Greg’s extensive index on pg. 1192-1193 for references to a number and range of applications and their respective protocols.

Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 113: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Reagents for Peptide Modification

For quotes on bulk quantities, please contact [email protected] 107

CBZ-N-amido-dPEG®x-acid

Product # Description 100 mg 1000 mg

10268 CBZ-N-amido-dPEG®4-acid $125 $200

Mol. Wt.: 399.44; single compound; dPEG® Spacer is 17 atoms and 19.2 Å

10066 CBZ-N-amido-dPEG®6-acid $150 $300

Mol. Wt.: 487.54; single compound; dPEG® Spacer is 22 atoms and 25.1 Å

10276 CBZ-N-amido-dPEG®8-acid $150 $600

Mol. Wt.: 575.65; single compound; dPEG® Spacer is 28 atoms and 32.2 Å

10286 CBZ-N-amido-dPEG®12-acid $150 $650

Mol. Wt.: 751.86; single compound; dPEG® Spacer is 40 atoms and 46.5 Å

10316 CBZ-N-amido-dPEG®24-acid $250 $750

Mol. Wt.: 1280.49; single compound; dPEG® Spacer is 76 atoms and 88.5 Å

10906 CBZ-N-amido-dPEG®36-acid $300 $1000

Mol. Wt.: 1809.12; single compound; dPEG® Spacer is 111 atoms and 132.7 Å

CBZ-amido-dPEG®24-amido-

dPEG®24-acid

Product # Description 100 mg 1000 mg

11304 CBZ-amido-dPEG®24-amido-dPEG®

24-acid $350 $1400

Mol. Wt.: 2408.85; single compound; dPEG® Spacer is 152 atoms and 178.7 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3

rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full

overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 114: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Reagents for Peptide Modification

Additional References can be found at the end of each category 108

Methoxytrityl-S-dPEG®x acid

Tool to add a dPEG® with a terminal thiol to modify physical properties or introduce a SPACER end group!

Product # Description 100 mg 1000 mg

10301 Methoxytrityl-S-dPEG®4-acid $150 $550

Mol. Wt.: 554.70; single compound; dPEG® Spacer is 16 atoms and 18.3 Å

10166 Methoxytrityl-S-dPEG®8-acid $200 $900

Mol. Wt.: 730.91; single compound; dPEG® Spacer is 28 atoms and 32.5 Å

10846 Methoxytrityl-S-dPEG®12-acid $250 $1050

Mol. Wt.: 907.11; single compound; dPEG® Spacer is 39 atoms and 46.8 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG

® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 115: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Reagents for Nucleic Acids

To place an order, call 614-792-2958 or visit www.quantabiodesign.com 109

dPEG® Reagents for Nucleic Acids

Amino-dPEG®12-ODMT

Product # Description 100 mg 1000 mg

10342 Amino-dPEG®12-ODMT $225 $900

Mol. Wt.: 848.03; Single compound; dPEG® Spacer is 38 atoms and 43.9 Å

References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Products Protected under U.S. Patents # 7,888,536 & 8,637,711

Page 116: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Premier Offering of NEW Crosslinkers & Probes with our Exclusive dPEG® spacers

DOTA-tris(acid)-amido-dPEG®x-bromoacetamide

Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.

Payload Delivery dPEG® Reagents

m-dPEG®x-DSPE

Ligand-targeted liposome design: challenges and fundamental considerations. Gavin T. Noble, Jared F.Stefanick, Jonathan D. Ashley, Tanyel Kiziltepe, Basar Bilgicer. Trends in Biotechnology. 2014, 32 (1) pp 32-45. January 2014. DOI: 10.1016/j.tibtech.2013.09.007.

.

Ligand-targeted liposome design: challenges and fundamental considerations. Gavin T. Noble, Jared F. Stefanick, Jonathan D. Ashley, Tanyel Kiziltepe, Basar Bilgicer. Trends in Biotechnology. 2014, 32 (1) pp 32-45. January 2014. DOI: 10.1016/j.tibtech.2013.09.007.

.

Ligand-targeted liposome design: challenges and fundamental considerations. Gavin T. Noble, Jared F. Stefanick, Jonathan D. Ashley, Tanyel Kiziltepe, Basar Bilgicer. Trends in Biotechnology. 2014, 32 (1) pp 32-45. January 2014. DOI: 10.1016/j.tibtech.2013.09.007.

.

A Systematic Analysis of Peptide Linker Length and Liposomal Polyethylene Glycol Coating on Cellular Uptake of Peptide-Targeted Liposomes. Jared F. Stefanick, Jonathan D. Ashley, Tanyel Kiziltepe, and Basar Bilgicer. ACS Nano. 2013, 7 (4) pp 2935–2947. February 19, 2013. DOI: 10.1021/nn305663e.

.

Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length. Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer. ACS Nano. 2013, 7 (9) pp 8115–8127. August 29, 2013. DOI: 10.1021/nn4033954.

.

dPEG® Based Chemical Modification Reagents

Amino-dPEG®₄-(m-dPEG®x)₃

Design of cyclometalated iridium(III) polypyridine complexes as luminescent biological labels and probes. Kenneth Kam-Wing Lo, Kenneth Yin Zhang, and Steve Po-Yam Li. Pure Appl. Chem. 2011, 83, (4) pp 823–840. February 28, 2011. DOI:10.1351/PAC-CON-10-08-20.

.

Increasing pro-survival factors within whole brain tissue of Sprague Dawley rats via intracerebral administration of modified valproic acid. Ryan C. Bates, Bradley J. Stith, and Karen E. Stevens. Journal of Pharmacological Sciences. 2015, 128 (4) pp 193-201. August 1, 2015. DOI: 10.1016/j.jphs.2015.07.003.

.

Modification of Luminescent IridiumACHTUNGTRENUNG(III) Polypyridine Complexes with discrete Poly(ethylene glycol) (PEG) Pendants: Synthesis, Emissive behavior, Intracellular Uptake, and PEGylation Properties. Steve Po-Yam Li, Hua-Wei Liu, Kenneth Yin Zhang, and Kenneth Kam-Wing Lo. Chemistry A European Journal. 2010, 16 (28), 8329 – 8339. July 26, 2010 DOI: 10.1002/chem 201000474.

.

Amino-dPEG®x-acid

Improving Tumor Uptake and Pharmacokinetics of 64Cu-Labeled Cyclic RGD Peptide Dimers with Gly3 and PEG4 Linkers. Jiyun Shi, Young-Seung Kim, Shizhen Zhai, Zhaofei Liu, Xiaoyuan Chen and Shuang Liu. Bioconjugate Chemistry. 2009, 20 (4) pp 750–759. March 25, 2009. DOI: 10.1021/bc800455p.

.

Synthesis and Preliminary Biological Evaluation of High-Drug-Load Paclitaxel-Antibody Conjugates for Tumor-Targeted Chemotherapy. Sherly Quiles, Kevin P. Raisch, Leisa L. Sanford, James A. Bonner, and Ahmad Safavy, J Med. Chem. 2010, 53 (2), pp 586-594. Dec. 3, 2009. DOI: 10.1021/jm900899g.

.

PEG-Labeled Nucleotides and Nanopore Detection for Single Molecule DNA Sequencing by Synthesis. Shiv Kumar, Chuanjuan Tao, Minchen Chien, Brittney Hellner, Arvind Balijepalli, Joseph W. F. Robertson, Zengmin Li, James J. Russo, Joseph E. Reiner, John J. Kasianowicz & Jingyue Ju. Scientific Reports. 2012, 2 (684). September 21, 2012. DOI: 10.1038/srep00684.

.

Short PEG-Linkers Improve the Performance of Targeted, Activatable Monoclonal Antibody-Indocyanine Green Optical Imaging Probes. Kohei Sano, Takahito Nakajima, Kiminori Miyazaki, Yuya Ohuchi, Takashi Ikegami, Peter L. Choyke and Hisataka Kobayashi. Bioconjugate Chemistry. 2013, 24 (5) pp 811–816. April 22, 2013. DOI: 10.1021/bc400050k.

.

PEG-Labeled Nucleotides and Nanopore Detection for Single Molecule DNA Sequencing by Synthesis. Shiv Kumar, Chuanjuan Tao, Minchen Chien, Brittney Hellner, Arvind Balijepalli, Joseph W. F. Robertson, Zengmin Li, James J. Russo, Joseph E. Reiner3, John J. Kasianowicz & Jingyue Ju. Scientific Reports. 2012, 2 (684), September 21, 2012. DOI: 10.1038/srep00684.

.

Antistaphylococcal Nanocomposite Films Based on Enzyme-Nanotube Conjugates. Ravindra C. Pangule, Sarah J. Brooks, Cerasela Zoica Dinu, Shyam Sundhar Bale, Sharon L. Salmon, Guangyu Zhu, Dennis W. Metzgeter, Ravi S. Kane, and Jonathan S. Dordick. ACS Nano. 2010, 4 (7), pp 3993–4000. July 6, 2010. DOI: 10.1021/nn100932t.

.

Synthesis Strategies for Highly Functional Enzyme-based Conjugates. Alan S Campbell, Chenbo Dong, Fanke Meng, Jeremy Hardinger, Gabriela C Perhinschi, Nianqiang Wu, and Cerasela Zoica Dinu. ACS Applied Materials and Interfaces. 2014, 6 pp 5393-5403. March 25, 2014. DOI: dx.doi.org/10.1021/am500773g.

.

Bionanoconjugate-based composites for decontamination of nerve agents. Indrakant V.Borkar, Cerasela Zoica Dinu, Guangyu Zhu, Ravi S. Kane, and Jonathan S. Dordick. Biotechnology Progress. 2010, 26 (6) pp 1622-1628. September 21, 2010. DOI: 10.1002/btpr.498. 

.

Enzyme-Based Nanoscale Composites Composites for Use as Active Decontamination Surfaces. Cerasela Zoica Dinu, Guangyu Zhu, Shyam Sundhar Bale, Gaurav Anand, Philippa J. Reeder, Karl Sanford, Gregg Whited, Ravi S. Kane, and Jonathan S. Dordick. Advance Fuctional Materials. 2010, 20 (3), pp 392-398. February 8, 2010. DOI: 10.1002/adfm.200901388.

.

Immobilized molecular beacons: A new strategy using UV-activated poly(methyl methacrylate) surfaces to provide large fluorescence sensitivities for reporting on molecular association events. Catherine Situma, Amanda J. Moehring, Mohamed A.F. Noor, Steven A. Soper. Elsevier, Analytical Biochemistry. 2007, 363 (1), pp 35-45, April 1, 2007. DOI: 10.1016/j.ab.2006.12.029.

.

Sequence-Defined Oligoamide Drug Conjugates of Pretubulysin and Methotrexate for Folate Receptor Targeted Cancer Therapy. Ines Truebenbach, Jan Gorges, Jasmin Kuhn, Sarah Kern, Emanuele Baratti, Uli Kazmaier, Ernst Wagner, and Ulrich Lachelt. Macromolecular Bioscience. 2017, pp 1-12. March 30, 2017. DOI: 10.1002/mabi.201600520.

.

Proton-sponge activity and receptor-targeting of sequence-defined nucleic acid carriers. Ulrich Benjamin Lachelt. October 21, 2014.

.

Perhydrolase-nanotube paint composites with sporicidal and antiviral activity. Navdeep Grover, Marc P. Douaisi, Indrakant V. Borkar, Lillian Lee, Cerasela Zoica Dinu, Ravi S. Kane, Jonathan S. Dordick. Applied Microbiology and Biotechnology. 2013, 97 (19), pp 8813-8821. October 1, 2013. DOI: 10.1007/s00253-012-4573-3.

.

Development of a sensitive surface Plasmon resonance immunosensor for detection of 2, 4-dinitrotoluene with a novel oligo (ethylene glycol)-based sensor surface. Kazutaka Nagatomo, Toshikazu Kawaguchi, Norio Miura, Kiyoshi Toko, Kiyoshi Matsumoto. Elsevier, Talanta. 2009, 79 (4), pp 1142-1148. September 15, 2009. DOI: 10.1016/j.talanta.2009.02.018.

.

Microwave-Mediated Synthesis of Labeled Nucleotides with Utility in the Synthesis of DNA Probes. Mark Lefever, Jerome W. Kosmeder, II, Michael Farrell, and Christopher Bieniarz. Bioconjugate Chemistry. 2010, 21 (10) pp 1773–1778. September 2, 2010. DOI: 10.1021/bc100013b.

.

Carboxyl-Terminated Dendrimer-Coated Bioactive Interface for Protein Microarray: High-Sensitivity Detection of Antigen in Complex Biological Samples. Parayil Kumaran Ajikumar, Jin Kiat Ng, Yew Chung Tang, Jim Yang Lee, Gregory Stephanopoulos, and Heng-Phon Too. Langmuir. 2007, 23 (10) pp 5670–5677. March 28, 2007. DOI: 10.1021/la063717u.

.

Improving Tumor-Targeting Capability and Pharmacokinetics of 99mTc-Labeled Cyclic RGD Dimers with PEG4 Linkers. Lijun Wang, Jiyun Shi, Young-Seung Kim, Shizhen Zhai, Bing Jia, Huiyun Zhao, Zhaofei Liu, Fan Wang, Xiaoyuan Chen and Shuang Liu. Molecular Pharmaceutics. 2009, 6 (1) pp 231–245. December 9, 2008. DOI: 10.1021/mp800150r.

.

Influence of Different Spacers on the Biological Profile of a DOTA-Somatostatin Analogue. Patricia Antunes, Mihaela Ginj, Martin A. Walter, Jianhua Chen, Jean-Claude Reubi, and Helmut R. Maecke. Bioconjugate Chemistry. 2007, 18 (1) pp 84–92. December 15, 2006. DOI: 10.1021/bc0601673.

.

To place an order, call 614-792-2958 or visit www.quantabiodesign.com 110

Page 117: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Spacer length effects on in vitro imaging and surface accessibility of fluorescent inhibitors of prostate specific membrane antigen. Tiancheng Liu, Jessie R. Nedrow-Byers, Mark R. Hopkins, Clifford E. Berkman. Bioorganic & Medicinal Chemistry Letters. 2011, 21 (23), pp 7013–7016 October 4, 2011. DOI:10.1016/j.bmcl.2011.09.115.

.

Novel 3D LithographicallyPrepared Solid-Phase Surfaces Made from SU-8 for Next Generation Sequencing. Hong Wang, Makgorzata Witek, Daniel Park, Jianmin Huang,Francis Barany, Steven A. Soper. Miniaturized Systems for Chem and Life Sci. 2011, pp.73-75. October 6, 2011. DOI: www.rsc.org/images/LOC/2011/PDFs/Papers/026_0829.pdf

.

Short PEG-Linkers Improve the Performance of Targeted, Activatable Monoclonal Antibody-Indocyanine Green Optical Imaging Probes. Kohei Sano, Takahito Nakajima, Kiminori Miyazaki, Yuya Ohuchi, Takashi Ikegami, Peter L. Choyke and Hisataka Kobayashi. Bioconjugate Chem. 2013, 24 (5) pp 811–816. April 22, 2013. DOI: 10.1021/bc400050k.

.

Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. Elena Heister, Vera Neves, Constanze Lamprecht, S.Ravi P. Silva, Helen M. Coley, Johnjoe McFadden. Carbon. 2011, 50 (2) pp 622-632. August 31, 2011. DOI: 10.1016/j.carbon.2011.08.074.

.

Laccase-and chloroperoxidase-nanotube paint composites with bactericidal and sporicidal activity. Navdeep Grover, Indrakant V. Borkar, Cerasela Zoica Dinu, Ravi S. Kane, Jonathan S. Dordick. Enzyme and Microbial Technology. 2012, 50 (6-7) pp 271-279. May 10, 2012. DOI: 10.1016/j.enzmictec.2012.01.006.

.

Amino-dPEG®x-OH

Confocal imaging to quantify passive transport across biomimetic lipid membranes. Su Li, Peichi Hu, and Noah Malmstadt. Analytical Chemistry. 2010, 82 (18) pp 7766-7771. September 15, 2010. DOI: 10.1021/ac1016826.

.

Real-Time Video Imaging of Protease Expression In Vivo. Lei Zhu, Jin Xie, Magdalena Swierczewska, Fan Zhang, Qimeng Quan, Ying Ma, Xuexun Fang, Kwangmeyung Kim, Seulki Lee, Xiaoyuan Chen. Theranostics. 2011, (1) 2011. 1:18-27 c. http://www.thno.org/v01p0018.htm.

.

Confocal imaging to quantify passive transport across biomimetic lipid membranes. Su Li, Peichi Hu, and Noah Malmstadt. Analytical Chemistry. 2010, 82 (18) pp 7766-7771. September 15, 2010. DOI: 10.1021/ac1016826.

.

Confocal imaging to quantify passive transport across biomimetic lipid membranes. Su Li, Peichi Hu, and Noah Malmstadt. Analytical Chemistry. 2010, 82 (18) pp 7766-7771. September 15, 2010. DOI: 10.1021/ac1016826.

.

Label-free electrical detection of pyrophosphate generated from DNA polymerase reactions on field-effect devices. Grace M. Credo, Xing Su, Kai Wu, Oguz H. Elibol, David J. Liua, Bobby Reddy Jr., Ta-Wei Tsai, Brian R. Dorvel, Jonathan S. Daniels, Rashid Bashir, and Madoo Varma. Analyst. 2012 137 (6) pp 1351-1362. March 21, 2012. DOI:10.1039/c2an15930a.

.

Label-free electrical detection of pyrophosphate generated from DNA polymerase reactions on field-effect devices. Grace M. Credo, Xing Su, Kai Wu, Oguz H. Elibol, David J. Liua, Bobby Reddy Jr., Ta-Wei Tsai, Brian R. Dorvel, Jonathan S. Daniels, Rashid Bashir, and Madoo Varma. Analyst. 2012, 137 (6) pp 1351-1362. March 21, 2012. DOI:10.1039/c2an15930a.

.

Real-Time Video Imaging of Protease Expression In Vivo. Lei Zhu, Jin Xie, Magdalena Swierczewska, Fan Zhang, Qimeng Quan, Ying Ma, Xuexun Fang, Kwangmeyung Kim, Seulki Lee, Xiaoyuan Chen. Theranostics. 2011, (1) pp 18-27. January 12, 2011. http://www.thno.org/v01p0018.htm.

.

Synthesis of Biotinylated r-D-Mannoside or N-Acetyl _-D-Glucosaminoside Decorated Gold Nanoparticles: Study of Their Biomolecular Recognition with Con A and WGA Lectins. Xiaoze Jiang, Abdelghani Housni, Guillaume Gody, Paul Boullanger, Marie-The´re`se Charreyre, Thierry Delair, and Ravin Narain. Bioconjugate Chem. 2010, 21 pp 521–530. February 3, 2010. DOI: 10.1021/bc900431p.

.

Confocal imaging to quantify passive transport across biomimetic lipid membranes. Su Li, Peichi Hu, and Noah Malmstadt. Analytical Chemistry. 2010, 82 (18) pp 7766-7771 September 15, 2010. DOI: 10.1021/ac1016826.

.

Label-Free Detection of Proteins in Crude Cell Lysate with Antibody Arrays by a Surface Plasmon Resonance Imaging Technique. Motoki Kyo, Kazue Usui-Aoki, and Hisashi Koga. Analytical Chemistry. 2005, 77 (22), pp 7115–7121. October 18, 2005. DOI: 10.1021/ac050884a.

.

Surface Chemical Functionalization of Cylindrical Nanopores Derived from a Polystyrene−Poly(methylmethacrylate) Diblock Copolymer via Amidation. Yongxin Li and Takashi Ito. Langmuir. 2008, 24 (16) pp 8959–8963. July 1, 2008. DOI: 10.1021/la800992f.

.

Confocal imaging to quantify passive transport across biomimetic lipid membranes. Su Li, Peichi Hu, and Noah Malmstadt. Analytical Chemistry. 2010, 82 (18) pp 7766-7771 September 15, 2010. DOI: 10.1021/ac1016826.

.

How a grafting anchor tailors cellular uptake and in vivo fate of dendronized iron oxide nanoparticles. C. Bordeianu, A. Parat, C. Affolter-Zbaraszczuk, R. N. Muller, S. Boutry, S. Begin-Colin, F. Meyer, S. Laurent, and D. Felder-Flesch. Journal of Materials Chemistry B. 2017, 2013 (00) pp 1-3. May 26, 2017. DOI: 10.1039/x0xx00000x.

.

Development of an oligo (ethylene glycol)-based SPR immunosensor for TNT detection. Yutaka Mizuta, Takeshi Onodera, Praveen Singh, Kiyoshi Matsumoto, Norio Miura, Kiyoshi Toko. Biosensors and Bioelectronics. 2008, 24 (2), pp 191-197. October 15, 2008. DOI:10.1016/j.bios.2008.03.042.

.

Addition of Cleaved Tail Fragments during Lipid Oxidation Stabilizes Membrane Permeability Behavior. Kristina A. Runas, Shiv J. Acharya, Jacob J. Schmidt, and Noah Malmstadt. Langmuir. 2015, December 24, 2015. DOI: 10.1021/acs.langmuir.5b02980.

.

Label-free electrical detection of pyrophosphate generated from DNA polymerase reactions on field-effect devices. Grace M. Credo, Xing Su, Kai Wu, Oguz H. Elibol, David J. Liua, Bobby Reddy Jr., Ta-Wei Tsai, Brian R. Dorvel, Jonathan S. Daniels, Rashid Bashir, and Madoo Varma. Analyst. 2012 137 (6) p 1351-1362. March 21, 2012. DOI:10.1039/c2an15930a.

.

Real-Time Video Imaging of Protease Expression In Vivo. Lei Zhu, Jin Xie, Magdalena Swierczewska, Fan Zhang, Qimeng Quan, Ying Ma, Xuexun Fang, Kwangmeyung Kim, Seulki Lee, Xiaoyuan Chen.Theranostics. 2011, (1) pp. 18-27. January 12, 2011. http://www.thno.org/v01p0018.htm.

.

Quantum Dots with Multivalent and Compact Polymer Coatings for Efficient Fluorescence Resonance Energy Transfer and Self-Assembled Biotagging. Hongwei Duan , Min Kuang  and Y. Andrew Wang. Chemistry of Materials. 2010, 22 (15) pp 4372–4378. July 13, 2010. DOI: 10.1021/cm100442x.

.

Amino-dPEG®x-t-butyl ester

Surfactant-induced Polymer Sgregation to Produce Anti-fouling Surfaces via Dip-coating with an Amphiphilic Polymer. Shunsuke Yamamoto, Shigeru Kitahata, Ayane Shimomura, Kaya Tokuda, Takashi Nishino, and Tatsuo Maruyama. Langmuir. 2014. December 5, 2014. DOI: 10.1021/la5043712.

.

Use of a next generation maleimide in combination with THIOMAB™ antimbody technology delivers a highly stable, potent and near homogeneous THIOMAB™ antibody-drug conjugate (TDC). Joao P M Nunes, Vessela Vassileva, Eifion Robinson, Mauricio Morais, Mark E B Smith, R Barbara Pedley, Stephen Caddick, James R Baker, and Vijay Chudasama. RSC Advances. 2017, 7 pp 24828-24832. April 28, 2017. DOI: 10.1039/C7RA04606E.

.

High-purity discrete PEG-oligomer crystals allow structural insight. Alister C. French, Amber L. Thompson, and Benjamin G. Davis. Angew Chem Int Ed Engl.2009, 48 (7) pp 1248-52. January 13, 2009. DOI: 10.1002/anie.200804623.

.

Functional native disulfide bridging enables delivery of a potent, stable and targeted antibody–drug conjugate (ADC). João P. M. Nunes, Maurício Morais, Vessela Vassileva, Eifion Robinson, Vineeth S. Rajkumar, Mark E. B. Smith, R. Barbara Pedley, Stephen Caddick, James R. Baker, and Vijay Chudasama. Chemical Communications. 2015, 51 pp 10624-10627. June 1, 2015. DOI: 10.1039/C5CC03557K.

.

Evaluation of Nonpeptidic Ligand Conjugates for SPECT Imaging of Hypoxic and Carbonic Anhydrase IX-Expressing Cancers. Peng-Cheng Lv, Karson S. Putt, and Philip S. Low. Bioconjugate Chemistry. 2016, 27, pp 1762-1769. June 30, 2016. DOI: 10.1021/acs.bioconjchem.6b00271.

.

Evaluation of a Carbonic Anhydrase IX-Targeted Near-Infrared Dye for Fluorescence-Guided Surgery of Hypoxic Tumors. Peng-Cheng Lv, Jyoti Roy, Karson S. Putt, and Philip S. Low. Molecular Pharmaceutics. 2016, April 4, 2016. DOI: 10.1021/acs.molpharmaceut.6b00065.

.

Chemical Modification of Silicon Surfaces for Biological Applications. Michael P. Schwartz, Frédérique Cunin, Ronnie W. Cheung, Michael J. Sailor. physica status solidi. 2005, 202 (8) pp 1380-1384. May 23, 2005. DOI: 10.1002/pssa.200461106.

.

Unexpected reactivity of the 2'-carboxyl functionality in rhodamine dyes. Richard A Haack, Susan Gayda, Richard J Himmelsbach, and Sergey Y Tetin. Science Direct. 2017, pp 1-6. March 17, 2017. http://dx.doi.org/10.1016/j.tetlet.2017.03.054.

.

The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors. Sara D. Alvarez, Austin M. Derfus, Michael P. Schwartz, Sangeeta N. Bhatia, Michael J. Sailor. Biomaterials. 2009, 30(1) pp26-34. September 4, 2008. DOI: 10.1016/j.biomaterials.2008.09.005.

.

Aminooxy-dPEG®₁₂-amido- dPEG®₁₂-(m-dPEG®₁₁)₃

Simultaneous Dual Protein Labeling Using a Triorthogonal Reagent. Mohammad Rashidian, Sidath C. Kumarapperuma, Kari Gabrielse, Adrian Fegan, Carston R. Wagner, and Mark D. Distefano. J. Am. Chem. Soc., 2013. October 17, 2013. DOI: 10.1021/ja403813b.

.

Azido-dPEG®x-OH

High-Throughput Chemical Modification of Oligonucleotides for Systematic Structure-Activity Relationship Evaluation. Daniel Zewge, Francis Gosselin, David Matthew Tellers, Ian W. Davies, Vasant Jadhav, Sandhya S. Nerurkar, Yu Yuan, Jenny Li, W. Michael Flanagan, and Denise M. Kenski. Bioconjugate Chemistry. 2014, November 14, 2014. DOI: 10.1021/bc500453q.

.

dPEG®x-SATA (S-acetyl-dPEG®x-NHS ester)

Silica-Shelled Single Quantum Dot Micelles as Imaging Probes with Dual or Multimodality. Rumiana Bakalova, Zhivko Zhelev, Ichio Aoki, Hideki Ohba, Yusuke Imai, and Iwao Kanno. Anal. Chem. 2006, 78 (16) pp 5925–5932. July 14, 2006. DOI: 10.1021/ac060412b.

.

Silica-Shelled Single Quantum Dot Micelles as Imaging Probes with Dual or Multimodality. Rumiana Bakalova, Zhivko Zhelev, Ichio Aoki, Hideki Ohba, Yusuke Imai, and Iwao Kanno. Anal. Chem. 2006, 78 (16) pp 5925–5932. July 14, 2006. DOI: 10.1021/ac060412b.

.

Silica-Shelled Single Quantum Dot Micelles as Imaging Probes with Dual or Multimodality. Rumiana Bakalova, Zhivko Zhelev, Ichio Aoki, Hideki Ohba, Yusuke Imai, and Iwao Kanno. Analytical Chemistry. 2006, 78 (16) pp 5925–5932. July 14, 2006. DOI: 10.1021/ac060412b.

.

Silica-Shelled Single Quantum Dot Micelles as Imaging Probes with Dual or Multimodality. Rumiana Bakalova, Zhivko Zhelev, Ichio Aoki, Hideki Ohba, Yusuke Imai, and Iwao Kanno. Anal. Chem. 2006, 78 (16) pp 5925–5932. July 14, 2006. DOI: 10.1021/ac060412b.

.

Array-based fluorescence assay for serine/threonine kinases using specific chemical reaction. Shoji Akita, Naoki Umezawa, Nobuki Kato, Tsunehiko Higuchi. Bioorganic & Medicinal Chemistry. 2008, 16 (16) pp 7788-94. July 1, 2008. DOI: 10.1016/j.bmc.2008.07.007.

.

Immobilization of His-tagged endoglucanase on gold via various Ni-NTA self-assembled monolayers and its hydrolytic activity. Nakamura I, Makino A, Ohmae M, Kimura S. Macromolecular Bioscience. 2010, 10 (10) pp1265-1272. October 8, 2010. DOI: 10.1002/mabi.201000189.

.

Robust IgG responses to nanograms of antigen using a biomimetic lipid-coated particle vaccine. Anna Bershteyn, Melissa C. Hanson, Monica P. Crespo, James J. Moon, Adrienne V. Li, Heikyung Suh, Darrell J. Irvine. Journal of Controlled Release. 2011, 157 (3) pp 354-365. July 24, 2011. DOI: 10.1016/j.jconrel.2011.07.029.

.

In vitro and in vivo evaluation of a non-carbohydrate targeting platform for lysosomal proteins. James E. Stefano, Lihui Hou, Denise Honey, Josephine Kyazike, Anna Park, Qun Zhou, Clark Q. Pan, Tim Edmunds. Journal of Controlled Release. 2009, 2 (135), pp 113-118. April 17, 2009. DOI: 10.1016/j.jconrel.2008.12.006.

.

A new class of nontoxic nanoparticle tags based on surface enhanced Raman scattering. Qian, X.-M.; Ansari, D.; Nie, Shuming. Colloidal Quantum Dots for Biomedical Applications II. 2007, Proceedings of the SPIE, Volume 6448, article id. 64480O. February 1, 2007. DOI: 10.1117/12.718459.

.

Array-based fluorescence assay for serine/threonine kinases using specific chemical reaction. Shoji Akita, Naoki Umezawa, Nobuki Kato, Tsunehiko Higuchi. Bioorganic & Medicinal Chemistry. 2008, 16 (16) pp 7788-94. July 1, 2008. DOI: 10.1016/j.bmc.2008.07.007.

.

Elongated plant virus-based nanoparticles for enhanced delivery of thrombolytic therapies. Andrzej Stanislaw Pitek, Yunmei Wang, Sahil Gulati, Huiyun Gao, Phoebe L Stewart, Daniel I. Simon, and Nicole F Steinmetz. Molecular Pharmaceutics. 2017, pp 1-9. September 7, 2017. DOI: 10.1021/acs.molpharmaceut.7b00559.

.

111To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 118: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Synthesis and Function of Bioactive, Block Copolymer Surfactant Constructs as Relevant to the Preparation of Anticoagulant and Antibacterial Medical Implant Surfaces. Pranav R. Joshi. Doctor of Philosophy in Chemical Engineering. 2006, November 17, 2006.

.

Serum albumin ‘camouflage’ of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Andrzej S. Pitek, Slater A. Jameson, Frank A. Veliz, Sourabh Shukla, and Nicole F. Steinmetz. Biomaterials. 2016, 89 pp 89-97, February 23, 2016. DOI: 10.1016/j.biomaterials.2016.02.032.

.

Immobilization of His-tagged endoglucanase on gold via various Ni-NTA self-assembled monolayers and its hydrolytic activity. Nakamura I, Makino A, Ohmae M, Kimura S. Macromolecular Bioscience. 2010, 10 (10) pp1265-1272. October 8, 2010. DOI: 10.1002/mabi.201000189.

.

Biodegradable Polydisulfide Dendrimer Nanoclusters as MRI Contrast Agents. Ching-Hui Huang, Kido Nwe, Ajlan Al Zaki, Martin W. Brechbiel, and Andrew Tsourkas. ACS Nano. 2012, 6 (11) pp 9416–9424. October 25, 2012. DOI: 10.1021/nn304160p.

.

Mapping of Molecular Structure of the Nanoscale Surface in Bio-nanoparticles. Luciana M Herda, Delyan R Hristov, Maria Cristina Lo Giudice, Ester Polo, and Kenneth A Dawson. Journal of the American Chemical Society. 2016. December 22, 2016. DOI: 10.1021/jacs.6b12297.

.

Hydroxy-dPEG®x-t-butyl ester

How a grafting anchor tailors cellular uptake and in vivo fate of dendronized iron oxide nanoparticles. C. Bordeianu, A. Parat, C. Affolter-Zbaraszczuk, R. N. Muller, S. Boutry, S. Begin-Colin, F. Meyer, S. Laurent, and D. Felder-Flesch. Journal of Materials Chemistry B. 2017, 2013 (00) pp 1-3. May 26, 2017. DOI: 10.1039/x0xx00000x.

.

Lipoamido-dPEG®x-acid

Compact Biocompatible Quantum Dots Functionalized for Cellular Imaging. Wenhao Liu, Mark Howarth, Andrew B. Greytak, Yi Zheng, Daniel G. Nocera, Alice Y. Ting, and Moungi G. Bawendi. J. Am. Chem. Soc. 2008, 130 (4) pp 1274–1284. January 5, 2008. DOI: 10.1021/ja076069p.

.

PEGylated Luminescent Gold Nanoclusters: Synthesis, Characterization, Bioconjugation, and Application to Oneand Two-Photon Cellular Imaging. Eunkeu Oh, Fredrik Fatemi, Marc Currie, James B. Delehanty, Thomas Pons, Alexandra Fragola, Sandrine L´evˆeque-Fort, Ramasis Goswami, Kimihiro Susumu, Alan L. Huston, and Igor L. Medintz. Particle & Particle Systems Characterization 2013, (30), pp 1-13. February 5, 2013. DOI: 10.1002/ppsc.201200140.

.

Gastrointestinal Bioavailability of 2.0 nm Diameter Gold Nanoparticles. Candice A. Smith, Carrie A. Simpson, Ganghyeok Kim, Carly J. Carter, and Daniel L. Feldheim. ACS Nano. 2013, 7 (5) pp 3991–3996. April 21, 2013. DOI: 10.1021/nn305930e.

.

Compact Biocompatible Quantum Dots Functionalized for Cellular Imaging. Wenhao Liu, Mark Howarth, Andrew B. Greytak, Yi Zheng, Daniel G. Nocera, Alice Y. Ting, and Moungi G. Bawendi. J. Am. Chem. Soc. 2008, 130 (4) pp 1274–1284. January 5, 2008. DOI: 10.1021/ja076069p.

.

Directed self-assembly of proteins into discrete radial patterns. Garima Thakur, Kovur Prashanthi and Thomas Thundat. Science Reports. 2013, 1923 (3) May 30, 2013. DOI: 10.1038/srep01923.

.

Gold Coated Lanthanide Phosphate Nanoparticles for Targeted Alpha Generator Radiotherapy. Mark F. McLaughlin, Jonathan Woodward, Rose A. Boll, Jonathan S. Wall, Adam J. Rondinone, Stephen J. Kennel, Saed Mirzadeh, J. David Robertson. PLoS ONE 2012 8 (1) e54531January 18, 2013. DOI:10.1371/journal.pone.0054531.

.

Site-Specific Conjugation of Antibody on Gold Nanoparticle Surface for One-Step Diagnosis of Prostate Specific Antigen with Dynamic Light Scattering. Nur Mustafaoglu, Tanyel Kiziltepe, and Basar Bilgicer. Nanoscale. 2017, pp 1-32. May 18, 2017. DOI: 10.1039/C7NR03096G.

.

Site-Specific Conjugation of Antibody on Gold Nanoparticle Surface for One-Step Diagnosis of Prostate Specific Antigen with Dynamic Light Scattering. Nur Mustafaoglu, Tanyel Kiziltepe, and Basar Bilgicer. Nanoscale. 2017, pp 1-32. May 18, 2017. DOI: 10.1039/C7NR03096G.

.

Gastrointestinal Bioavailability of 2.0 nm Diameter Gold Nanoparticles. Candice A. Smith, Carrie A. Simpson, Ganghyeok Kim, Carly J. Carter, and Daniel L. Feldheim. ACS Nano. 2013, 7 (5) pp 3991–3996. April 21, 2013. DOI: 10.1021/nn305930e.

.

Lipoamido-dPEG®x-TFP ester

Surface-Assisted Affinity Purification Mass Spectrometry (SAAP-MS)for Determination of Enzyme Activities. Yang. Hyojik. UC Riverside Electronic Theses and Dissertations. 2016, pp 1-221. June 2016. http://escholarship.org/us/item/2qv796zz.

.

MAL and Biotin-dPEG®x-Lipoamide

Focal adhesion regulation through microcontact printing of protein nanoparticles on self-assembled monolayers for cell guidance. Albert Martinez Moreno. DUGiDocs. 2016, June 1, 2016. DOI: http://hdl.handle.net/10256/12960.

.

Focal adhesion regulation through microcontact printing of protein nanoparticles on self-assembled monolayers for cell guidance. Albert Martinez Moreno. DUGiDocs. 2016, June 1, 2016. DOI: http://hdl.handle.net/10256/12960.

.

Surface-Assisted Affinity Purification Mass Spectrometry (SAAP-MS)for Determination of Enzyme Activities. Yang. Hyojik. UC Riverside Electronic Theses and Dissertations. 2016, pp 1-221. June 2016. http://escholarship.org/us/item/2qv796zz.

.

MAL-dPEG®₁₂ or ₂₄-Tris(m-dPEG®x or-dPEG®y-acid)₃ and ₉

Site specific discrete PEGylation of 124I-labeled mCC49 Fab’ fragments improves tumor microPET/CT imaging in mice. Haiming Ding, Michelle M. Carleton, Stephen P. Povoski, Keisha Milum, Krishan Kumar, Kothandaraman Shankaran, George H. Hinkle, David Colcher, Rich Brody, Paul D. Davis, Alex Pokora, Mitchell Phelps, Edward W. Martin Jr., and Michael F. Tweedle. Bioconjugate Chemistry. 2013, 24 (11) pp 1945-1954. October 4, 2013. DOI: 10.1021/bc400375f.

.

Site specific discrete PEGylation of 124I-labeled mCC49 Fab’ fragments improves tumor microPET/CT imaging in mice. Haiming Ding, Michelle M. Carleton, Stephen P. Povoski, Keisha Milum, Krishan Kumar, Kothandaraman Shankaran, George H. Hinkle, David Colcher, Rich Brody, Paul D. Davis, Alex Pokora, Mitchell Phelps, Edward W. Martin Jr., and Michael F. Tweedle. Bioconjugate Chemistry. 2013, 24 (11) pp 1945-1954. October 4, 2013. DOI: 10.1021/bc400375f.

.

MAL-dPEG®₄-(m-dPEG®x)₃

Development of Raman Spectroscopy as a clinical Diagnostic Tool. Santa Borel. Tspace. 2016, pp 1-99. November 2016. http://hdl.handle.net/1807/74538.

.

Surface Location of Individual Residues of SlpA Provides Insight into the Lactobacillus brevis S-Layer. Heikki Vilen, Ulla Hynönen, Helga Badelt-Lichtblau, Nicola Ilk, Pentti Jääskeläinen, Mika Torkkeli and Airi Palva. J. Bacteriol. 2009, 191 (10) pp 3339-3351. March 20, 2009. DOI: 10.1128/JB.01782-08.

.

Dissecting Molecular Interactions Involved in Recognition of Target Disulfides by the Barley Thioredoxin System. Olof Bjornberg, Kenji Maeda, Birte Svensson, and Per Hagglund. Biochemistry. 2012, 51 (49) pp 9930-9939. November 19, 2012. DOI: 10.1021/bi301051b.

.

The Chloroplast Twin Arginine Transport (Tat) Component, Tha4, Undergoes Conformational Changes Leading to Tat Protein Transport. Cassie Aldridge, Amanda Storm, Kenneth Cline and Carole Dabney-Smith. J. Biol. Chem. 2012, 287 (1) pp 34752-34763. August 15, 2012. DOI: 10.1074/jbc.M112.385666.

.

Oxidation Status of Human OGG1-S326C Polymorphic Variant Determines Cellular DNA Repair Capacity. Anne Bravard, Monique Vacher, Eva Moritz,Laurence Vaslin, Janet Hall,Bernd Epe,and J. Pablo Radicella. Cancer Research.2009, 69 (8) pp 3642-3649.April 7, 2009. DOI: 10.1158/0008-5472.CAN-08-3943.

.

Type IV Pilus Secretins Have Extracellular C Termini. Joshua A. Lieberman, Courtney D. Petro, Stefani Thomas, Austin Yang and Michael S. Donnenberga. mBio. 2015, 6(2) pp 1-13. March 24, 2015. DOI: 10.1128/mBio.00322-15.

.

Inactivation by oxidation and recruitment into stress granules of hOGG1 but not APE1 in human cells exposed to sub-lethal concentrations of cadmium. Anne Bravard, Anna Campalans, Monique Vacher, Barbara Gouget, Céline Levalois, Sylvie Chevillard, J. Pablo Radicella. Mutation Research. 2010, 685 (1-2) pp 61-69. October 2, 2009. DOI: 10.1016/j.mrfmmm.2009.09.013.

.

The Regulatory Domain of Squalene Monooxygenase Contains a Re-entrant Loop and Senses Cholesterol via a Conformational Change. Vicky Howe, Ngee Kiat Chua, Julian Stevenson, and Andrew J. Brown. The Journal of Biological Chemistry. 2015, 290 (42). October 3, 2015. DOI: 10.1074/jbc.M115.675181.

.

Inhibition of fatty acid oxidation enhances oxidative protein folding and protects hepatocytes from endoplasmic reticulum stress. Heather M. Tyra, Douglas R. Spitz, and D. Thomas Rutkowski. Molecular Biology of the Cell. 2012, 23 (5) pp 811-819. March 1, 2012. DOI: 10.1091/mbc.E11-12-1011.

.

Enzymatic Deglutathionylation to Generate Interleukin-4 Cysteine Muteins with Free Thiol. Viswanadham Duppatla, Maja Gjorgjevikj, Werner Schmitz, Mathias Kottmair, Thomas D. Mueller, and Walter Sebald. Bioconjugate Chem., 2012, 23 (7), pp 1396–1405 June 9, 2012. DOI: 10.1021/bc2004389.

.

Tau protein assembles into isoform- and disulfide-dependent polymorphic fibrils with distinct structural properties. Furukawa Y, Kaneko K, Nukina N. . The Journal of Biological Chemistry. 2011, 286 (31) pp 27236-46. June 9, 2011. DOI: 10.1074/jbc.M111.248963.

.

m-dPEG®x-acid

Pharmacokinetics and Tumor Disposition of PEGylated Methotrexate Conjugated Poly-L-lysineDendrimers. Lisa M. Kaminskas, Brian D. Kelly, Victoria M. McLeod, Ben J. Boyd, Guy Y. Krippner, Elizabeth D. Williams, and Christopher J. H. Porter, Molecular Pharmaceutics, Vol. 6, No. 4, 2009, 6 (4), pp 1190-1204, May 19, 2009. DOI: 10.1021/mp900049a.

.

Protein-Functionalized Synthetic Antiferromagnetic Nanoparticles for Biomolecule Detection and Magnetic Manipulation. Aihua Fu, Wei Hu, Liang Xu, Robert J. Wilson, Heng Yu, Sebastian J. Osterfeld, Sanjiv S. Gambhir, and Shan X. Wang. Angewandte Chemie, International Edition 2009 48 (9) p 1620-1624. January 1, 2010. DOI:10.1002/anie.200803994.

.

New optical probes for the continuous monitoring of renal function. Richard B. Dorshow, Bethel Asmelash, Lori K. Chinen, Martin P. Debreczeny, Richard M. Fitch, John N. Freskos, Karen P. Galen, Kimberly R. Gaston, Timothy A. Marzan, Amruta R. Poreddy, Raghavan Rajagopalan, Jeng-Jong Shieh, William L. Neumann. Proc. SPIE 6867, Molecular Probes for Biomedical Applications II. 2008. 68670C.February 13,2008. DOI: 10.1117/12.763697.

.

New optical probes for the continuous monitoring of renal function. Richard B. Dorshow, Bethel Asmelash, Lori K. Chinen, Martin P. Debreczeny, Richard M. Fitch, John N. Freskos, Karen P. Galen, Kimberly R. Gaston, Timothy A. Marzan, Amruta R. Poreddy, Raghavan Rajagopalan, Jeng-Jong Shieh, William L. Neumann. Proc. SPIE 6867, Molecular Probes for Biomedical Applications II. 2008. 68670C.February 13,2008. DOI: 10.1117/12.763697.

.

Determination of bacterial viability by selective capture using surface-bound siderophores. Mark L.Wolfenden, Rama M. Sakamuri, Aaron S. Anderson, Lakshman Prasad, Jurgen G. Schmidt, Harshini Mukundan. Advances in Biological Chemistry. 2012, (2) pp 396-402. September 30, 2012. DOI: 10.4236/abc.2012.24049.

.

Tunable Resistive m-dPEG Acid Patterns on Polyelectrolyte Multilayers at Physiological Conditions: Template for Directed Deposition of Biomacromolecules. Srivatsan Kidambi, Christina Chan, and Ilsoon Lee. Langmuir. 2008, 24 (1), pp 224–230. December 1, 2007. DOI: 10.1021/la702925r.

.

Functional PEG-Modified Thin Films for Biological Detection. Aaron S. Anderson, Andrew M. Dattelbaum, Gabriel A. Montano, Dominique N. Price, Jurgen G. Schmidt, Jennifer S. Martinez, W. Kevin Grace, Karen M. Grace, and Basil I. Swanson. Langmuir. 2008, 24 (5), pp 2240–2247. January 30, 2008. DOI: 10.1021/la7033438.

.

Selective Depositions on Polyelectrolyte Multilayers: Self-Assembled Monolayers of m-dPEG Acid as Molecular Template. Srivatsan Kidambi, Christina Chan, and Ilsoon Lee. J. Am. Chem. Soc. 2004, 126 (14), pp 4697–4703. March 17, 2004. DOI: 10.1021/ja039359o.

.

Robust Sensing Films for Pathogen Detection and Medical Diagnostics. Aaron S. Anderson ; Andrew M. Dattelbaum ; Harshini Mukundan ;Dominique N. Price ; W. Kevin Grace ; Basil I. Swanson. Frontiers in Pathogen Detection: From Nanosensors to Systems., 2009, Proc. Of SPIE 7167. 71670q-1 February 18, 2009. 10.1117/12.809383.

.

Arrays of lipid bilayers and liposomes on patterned polyelectrolyte template. Neeraj Kohli, Sachin Vaidya, Robert Y. Ofoli, Robert M. Worden, Illsoon Lee. Journal of Colloid and Interface Science. 2006, 301 (2) pp 461-469. January 2006. DOI:10.1016/j.jcis.2006.05.048.

.

Polyelectrolyte Multilayer Stamping in Aqueous Phase and Non-Contact Mode. Sumit Mehrotra, Ilsoon Lee, Chun Liu, and Christina Chan. Industrial & Engineering Chemistry Research. 2011, 50 (15) pp 8851 - 8858. January 21, 2011. DOI:10.1021/ie102011m.

.

112

To place an order, call 614-792-2958 or visit www.quantabiodesign.com

To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 119: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

New optical probes for the continuous monitoring of renal function. Richard B. Dorshow, Bethel Asmelash, Lori K. Chinen, Martin P. Debreczeny, Richard M. Fitch, John N. Freskos, Karen P. Galen, Kimberly R. Gaston, Timothy A. Marzan, Amruta R. Poreddy, Raghavan Rajagopalan, Jeng-Jong Shieh, William L. Neumann. Proc. SPIE 6867, Molecular Probes for Biomedical Applications II. 2008. 68670C. February 13,2008. DOI: 10.1117/12.763697.

.

DPP-IV-resistant, long-acting oxyntomodulin derivatives. Alessia Santoprete, Elena Capito, Paul E. Carrington, Alessandro Pocai, Marco Finotto, Annunziata Langella, Paolo Ingallinella, Karolina Zytko, Simone Bufali, Simona Cianetti, Maria Veneziano, Fabio Bonelli, Lan Zhu, Edith Monteagudo, Donald J. Marsh, Ranabir SinhaRoy, Elisabetta Bianchia,and Antonello Pessi. Journal of Peptide Science. 2011, 4 (17), pp 270-280. February 3, 2011. DOI: 10.1002/psc.1328.

.

Surface functionalization of magnetic iron oxide nanoparticles for MRI applications –effect of anchoring group and ligand exchange protocol. Eric D. Smolensky, Hee-Yun E. Park, Thelma S. Berquo and Valerie C. Pierre. Contrast Media Mol. Imaging Journal. 2010 6 (4), pp 189-199. August 2010. DOI:10.1002/cmmi.417.

.

Analgesic Properties of a Peripherally-Acting and GalR2 Receptor-Preferring Galanin Analog in Inflammatory, Neuropathic and Acute Pain Models. Cameron S. Metcalf, Brian D. Klein, Daniel R. McDougle, Liuyin Zhang, Misty D. Smith, Grzegorz, Bulaj, H. Steve White. JPET Fast Forward. 2014. October 27, 2014. DOI: 10.1124/jpet.114.219063.

.

Incorporation of Monodisperse Oligoethyleneglycol Amino Acids into Anticonvulsant Analogs of Galanin and Neuropeptide Y Provides Peripherally-Acting Analgesics. Liuyin Zhang, Brian D Klein, Cameron S Metcalf, Misty D Smith, Daniel R McDougle, Hee-Kyoung Lee, H. Steve White, and Grzegorz Bulaj. Molecular Pharmaceutics, 2012, 10 (2), pp 574-585, December 21, 2012. DOI: 10.1021/mp300236v.

.

m-dPEG®x-amine

Surface functionalization of magnetic iron oxide nanoparticles for MRI applications –effect of anchoringgroup and ligand exchange protocol. Eric D. Smolensky, Hee-Yun E. Park, Thelma S. Berquo and Valerie C.Pierre. Contrast Media Mol. Imaging. 2010, 6 (4), pp 189-199. August 2010. DOI:10.1002/cmmi.417.

.

Compact Biocompatible Quantum Dots via RAFT-Mediated Synthesis of Imidazole-Based Random Copolymer Ligand. Wenhao Liu, Andrew B. Greytak, Jungmin Lee, Cliff R. Wong, Jongnam Park, Lisa F.Marshall, Wen Jiang, Peter N. Curtin, Alice Y. Ting, Daniel G. Nocera, Dai Fukumura, Rakesh K. Jain and Moungi G. Bawendi. J. Am. Chem. Soc. 2010, 132 (2) pp 472–483. December 21, 2009. DOI: 10.1021/ja908137d.

.

New optical probes for the continuous monitoring of renal function. Richard B. Dorshow, Bethel Asmelash, Lori K. Chinen, Martin P. Debreczeny, Richard M. Fitch, John N. Freskos, Karen P. Galen, Kimberly R. Gaston, Timothy A. Marzan, Amruta R. Poreddy, Raghavan Rajagopalan, Jeng-Jong Shieh, William L. Neumann. Proc. SPIE 6867, Molecular Probes for Biomedical Applications II. 2008. 68670C.February 13,2008. DOI: 10.1117/12.763697.

.

Molecular Pincers: Antibody-Based Homogeneous Protein Sensors. Ewa Heyduk, Benjamin Dummit, Yie-Hwa Chang, and Tomasz Heyduk. Analytical Chemistry. 2008, 80 (13) pp 5152-5159. May 21, 2008. DOI: 10.1021/ac8004154.

.

New optical probes for the continuous monitoring of renal function. Richard B. Dorshow, Bethel Asmelash, Lori K. Chinen, Martin P. Debreczeny, Richard M. Fitch, John N. Freskos, Karen P. Galen, Kimberly R. Gaston, Timothy A. Marzan, Amruta R. Poreddy, Raghavan Rajagopalan, Jeng-Jong Shieh, William L. Neumann. Proc. SPIE 6867, Molecular Probes for Biomedical Applications II. 2008. 68670C.February 13,2008. DOI:10.1117/12.763697.

.

Luminescent Iridium(III) Polypyridine PEG Complexes: Synthesis, Photophysical, and Biological Properties.Steve Po-Yam Li, Johnson Lui-Lui Tsai, and Kenneth Kam-Wing Lo. NANOMED. 2010, pp 66-71. December 5, 2010. http://dx.doi.org/10.1109/NANOMED.2010.5749807.

.

A new reagent for stable thiol specific conjugation. Stephen Brocchini , George Badescu , Penny Bryant , Julia Swierkosz , Farzad Khayrzad , Estera Pawlisz , Monika Farys , Yuehua Cong , Norbert Rumpf , and Antony Godwin. Bioconjugate Chemistry. 2013. December 23, 2013. DOI: 10.1021/bc400245v.

.

Effects of PEGylation and Acetylation of PAMAM Dendrimers on DNA Binding, Cytotoxicity and in Vitro Transfection Efficiency. Kristina Fant, Elin K. Esbjörner, Alan Jenkins, Martin C. Grossel, Per Lincoln, and Bengt Nordén. Mol. Pharmaceutics. 2010, 7 (5) pp 1734–1746. August 9, 2010. DOI: 10.1021/mp1001312.

.

FePt Nanoparticles as an Fe Reservoir for Controlled Fe Release and Tumor Inhibition. Chenjie Xu, Zhenglong Yuan, Nathan Kohler, Jaemin Kim, Maureen A. Chung and Shouheng Sun. J. Am. Chem. Soc.2009, 131 (42) pp 15346–15351. October 1, 2009. DOI: 10.1021/ja905938a.

.

Size-Exclusion Properties of Nanoporous Films Derived from Polystyrene−Poly(methylmethacrylate) Diblock Copolymers Assessed Using Direct Electrochemistry of Ferritin. Yongxin Li and Takashi Ito. Anal.Chem. 2009, 81 (2) pp 851–855. December 10, 2008. DOI: 10.1021/ac802201w.

.

De Novo Synthesis and Cellular Uptake of Organic Nanocapsules with Tunable Surface Chemistry. Kun Huang, Amy Jacobs, and Javid Rzayev. Biomacromolecules. 2011, 12 (6), pp 2327–2334. May 12, 2011.DOI: 10.1021/bm200394t.

.

Antifouling and tunable amino functionalized porous membranes for filtration Applications. Bijay P.Tripathi, Nidhi C. Dubey, S. Choudhury and M. Stamm. Journal of Materials Chemistry. 2012, 22 (1) pp 19981-19992. August 1, 2012. DOI: 10.1039/c2jm34172g.

.

Soft Nanotubes Derivatized with Short PEG Chains for Thermally Controllable Extraction and Seperation of Peptides. Naohiro Kameta, Wuxiao Ding, and Jiuchao Dong. ACS Omega. 2017, 2, pp 6143-6150.September 26, 2017. DOI: 10.1021/acsomega.7b00838.

.

Near-Infrared Fluorescent Labeled Peptosome for Application to Cancer Imaging. Hiroki Tanisaka, ShinaeKizaka-Kondoh, Akira Makino, Shotaro Tanaka, masahiro Hiraoka, and Shunsaku Kimura. BioconjugateChem. 2008, 19 (1), pp 109–117. December 29, 2007. DOI: 10.1021/bc7001665.

.

Streptavidin in Antibody Pretargeting. 5. Chemical Modification of Recombinant Streptavidin for Labelingwith the α-Particle Emitting Radionuclides 213Bi and 211At. D. Scott Wilbur, Donald K. Hamlin, Ming-Kuan Chyan, and Martin W. Brechbiel. Bioconjugate Chemistry. 2008, 19 (1) pp 158-170. January 19, 2008. DOI:10.1021/bc7002428.

.

Noncompetitive On-Chip Immunoassays for Detection of Nonlabeled Antibodies Based on the Excluded Volume Effect of the Target Itself. Kin-ya Tomizaki, Masaki Obi, and Hisakazu Mihara. The Chemical Society of Japan Bull Chem. Soc. Jpn, 2011, 1 (85), pp 69-78, December 23, 2011. DOI: 10.1246/bcsj.20110239.

.

Combined Multimodal Optimal Imaging and Targeted Gene Silencing Using Stimuli-Transforming Nanotheragnostics. Min Suk Shim, Chang Soo Kim, Yeh-Chan Ahn, Zhongping Chen, and Young Jik Kwon. Journal of the American Chemical Society. 2010, 132 (24), pp 8316-8324, June 2, 2010. DOI: 10.1021/ja100580y.

.

Modification of Luminescent Iridium (III) Polypyridine Complexes with discrete Poly(ethylene glycol) (PEG) Pendants: Synthesis, Emissive behavior, Intracellular Uptake, and PEGylation Properties. Steve Po-Yam Li, Hua-Wei Liu, Kenneth Yin Zhang, and Kenneth Kam-Wing Lo. Chemistry A European Journal. 2010, 16 (28), pp. 8329 – 8339. July 26, 2010. DOI: 10.1002/chem.201000474.

.

Design of cyclometalated iridium(III) polypyridine complexes as luminescent biological labels and probes. Kenneth Kam-Wing Lo, Kenneth Yin Zhang, and Steve Po-Yam Li. Pure Appl. Chem. 2011, 83, (4) pp 823–840. February 28, 2011. DOI: 10.1351/PAC-CON-10-08-20.

.

m-dPEG®x-Azide (Azido-m-dPEG®x)

Clickable Poly(ethylene glycol)-Microsphere-Based Cell Scaffolds. Peter K. Nguyen, Christopher G Snyder, Jason D. Shields, Amanda W. Smith, Donald L. Elbert. Macromolecular Journals. 2013, 214 (8) pp 948-956.March 4, 2013. DOI: 10.1002/macp.201300023.

.

m-dPEG®x-Lipoamide

Gastrointestinal Bioavailability of 2.0 nm Diameter Gold Nanoparticles. Candice A. Smith, Carrie A.Simpson, Ganghyeok Kim, Carly J. Carter, and Daniel L. Feldheim. ACS Nano. 2013, 7 (5) pp 3991–3996.April 21, 2013. DOI: 10.1021/nn305930e.

.

Gastrointestinal Bioavailability of 2.0 nm Diameter Gold Nanoparticles. Candice A. Smith, Carrie A.Simpson, Ganghyeok Kim, Carly J. Carter, and Daniel L. Feldheim. ACS Nano. 2013, 7 (5) pp 3991–3996.April 21, 2013. DOI: 10.1021/nn305930e.

.

Gastrointestinal Bioavailability of 2.0 nm Diameter Gold Nanoparticles. Candice A. Smith, Carrie A.Simpson, Ganghyeok Kim, Carly J. Carter, and Daniel L. Feldheim. ACS Nano. 2013, 7 (5) pp 3991–3996.April 21, 2013. DOI: 10.1021/nn305930e.

.

Self-Assembled Quantum Dot-Sensitized Multivalent DNA Photonic Wires. Kelly Boeneman, Duane E.Prasuhn, Juan B. Blanco-Canosa, Philip E. Dawson, Joseph S. Melinger, Mario Ancona, Michael H.Stewart, Kimihiro Susumu, Alan Huston, and Igor L. Medintz. J. Am. Chem. Soc., 2010, 132 (51), pp 18177–18190 December 8, 2010. DOI: 10.1021/ja106465x.

.

PEGylated Luminescent Gold Nanoclusters: Synthesis, Characterization, Bioconjugation, and Application to Oneand Two-Photon Cellular Imaging. Eunkeu Oh, Fredrik Fatemi, Marc Currie, James B. Delehanty, Thomas Pons, Alexandra Fragola, Sandrine L´evˆeque-Fort, Ramasis Goswami, Kimihiro Susumu, Alan L.Huston, and Igor L. Medintz. Particle & Particle Systems Characterization 2013, (30), pp 1-13. February 5, 2013. DOI: 10.1002/ppsc.201200140.

.

m-dPEG®x-MAL

Redox-regulated dynamic interplay between Cox19 and the copper-binding protein Cox11 in theintermembrane space of mitochondria facilitates biogenesis of cytochrome c oxidase. Manuela Bode, Michael W. Woellhaf, Maria Bohnert, Martin van der Laan, Frederik Sommer, Martin Jung, Richard Zimmermann, Michael Schroda, Johannes M. Herrmann. Molecular Biology of the Cell. April 29, 2015.DOI: 10.1091/mbc.E14-11-1526

.

Interleukin-2 signalling is modulated by a labile disulfide bond in the CD132 chain of its receptor. CliveMetcalfe, Peter Cresswell and A. Neil Barclay. Open Biology. 2012, 2 (1). January 11, 2012. DOI: 10.1098/rsob.110036.

.

Complement Activation and Cell Uptake Responses Toward Polymer-Functionalized Protein Nanocapsules. Nicholas M. Molino, Kateryna Bilotkach, Deborah A. Fraser, Dongmei Ren, and Szu-Wen Wang. Biomacromolecules, 2012, 13 (4), pp 974–981. March 14, 2012. DOI: 10.1021/bm300083e.

.

Rapid ratiometric biomarker detection with topically applied SERS nanoparticles. Yu “Winston” Wang, Altaz Khan, Madhura Som, Danni Wang, Ye Chen, Steven Y. Leigh, Daphne Meza, Patrick Z. McVeigh, Brian C. Wilson and Jonathan T.C. Liu. Technology. 2014, 2 (2) pp 1-15. May 19, 2014. DOI: 10.1142/S2339547814500125.

.

Modulation of Cell Surface Protein Free Thiols: A Potential Novel Mechanism of Action of theSesquiterpene Lactone Parthenolide. Jolanta Skalska, Paul S. Brookes, Sergiy M. Nadtochiy, Shannon P.Hilchey, Craig T. Jordan, Monica L. Guzman, Sanjay B. Maggirwar, Margaret M. Briehl, Steven H.Bernstein. PLoS ONE. 4 (12), e8115. December 2, 2009. DOI: 10.1371 /journal.pone.0008115.

.

Complement Activation and Cell Uptake Responses Toward Polymer-Functionalized Protein Nanocapsules. Nicholas M. Molino, Kateryna Bilotkach, Deborah A. Fraser, Dongmei Ren, and Szu-Wen Wang. Biomacromolecules, 2012, 13 (4), pp 974–981. March 14, 2012. DOI: 10.1021/bm300083e.

.

DksA2, a zinc-independent structural analog of the transcription factor DksA. Ran Furman, Tapan Biswas, Eric M. Danhart, Mark P. Foster, Oleg V. Tsodikov, Irina Artsimovitch. FEBS Letters. 2013, 587 (6) pp 614–619. January 31, 2013. DOI: 10.1016/j.febslet.2013.01.073.

.

Homodimerisation of the Lymph Vessel Endothelial Receptor LYVE-1 through a Redox-Labile Disulfide isCritical for Hyaluronan Binding in Lymphatic Endothelium. Suneale Banerji, William Lawrance, CliveMetcalfe, David C. Briggs, Akira Yamauchi, Omer Dushek, P. Anton van der Merwe, Anthony J. Day, and David G. Jackson. The Journal of Biological Chemistry. 2016, October 12, 2016. DOI: 10.1074/jbc.M116.736926.

.

Redox-regulated dynamic interplay between Cox19 and the copper-binding protein Cox11 in theintermembrane space of mitochondria facilitates biogenesis of cytochrome c oxidase. Manuela Bode, Michael W. Woellhaf, Maria Bohnert, Martin van der Laan, Frederik Sommer, Martin Jung, Richard Zimmermann, Michael Schroda, Johannes M. Herrmann. Molecular Biology of the Cell. April 29, 2015.DOI: 10.1091/mbc.E14-11-1526

.

A glutaredoxin in the mitochondrial intermembrane space has stage-specific functions in the thermo-tolerance and proliferation of African trypanosomes. Samantha Ebersoll, Blessing Musunda, Torsten Schmenger, Natalie Dirdjaja, Marian Bonilla, Bruno Manta, Kathrin Ulrich, Marcelo A. Comini, and R. LuiseKrauth-Siegel. Redox Biology. 2018, 15, pp 532-547. January 31, 2018. DOI: 10.1016/j.redox.2018.01.011.

.

NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Juan Manuel Pérez-Ruiz, Belén Naranjo, Valle Ojeda, Manuel Guinea, and Francisco Javier Cejudo. Proceedings of the National Academy of Sciences of the United States of America. 2017, 114 (45) pp 12069-12074. 9/26/2017. DOI: 10.1073/pnas.1706003114.

.

113To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 120: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Going through the barrier: coupled disulfide exchange reactions promote efficient catalysis in Quiescin sulfhydryl oxidase. Benjamin A. Israel, Vamsi K. Kodali, and Colin Thorpe. The Journal of Biological Chemistry. 2013, December 30, 2013. DOI: 10.1074/jbc.M113.536219.

.

Cell-Specific Delivery of Diverse Cargos by BacteriophageMS2 Virus-like Particles. Carlee E. Ashley Eric C. Carnes, Genevieve K. Phillips, Paul N. Durfee, Mekensey D. Buley, Christopher A. Lino, David P. Padilla, Brandy Phillips, Mark B. Carter, Cheryl L. Willman, C. Jeffrey Brinker, Jerri do Carmo Caldeira, Bryce Chackerian, Walker Wharton, and David S. Peabody.ACS Nano, 2011, 5 (7), pp 5729–5745, May 26, 2011. DOI: 10.1021/nn201397z.

.

m-dPEG®x-NHS ester

Improved pharmacokinetics and immunogenicity profile of organophosphorus hydrolase by chemical modification with polyethylene glycol. Boris N. Novikov, Janet K. Grimsley, Rory J. Kern, James R. Wild, Melinda E. Wales. Journal of Controlled Release. 2010, 146 (3) pp 318-325. September 15, 2010. DOI: 10.1016/j.jconrel.2010.06.003.

.

Antibacterial activity and cytotoxicity of PEGylated poly(amidoamine) dendrimers. Analette I. Lopez, Rose Y. Reins, Alison M. McDermott, Barbara W. Trautner and Chengzhi Cai. Molecular BioSystems. 2009, 10 (5) pp 1148–1156. May 26, 2009. DOI: 10.1039/b904746h.

.

Silica-Shelled Single Quantum Dot Micelles as Imaging Probes with Dual or Multimodality. Rumiana Bakalova, Zhivko Zhelev, Ichio Aoki, Hideki Ohba, Yusuke Imai, and Iwao Kanno. Anal. Chem. 2006, 78 (16) pp 5925–5932. July 14, 2006. DOI: 10.1021/ac060412b.

.

Antibacterial activity and cytotoxicity of PEGylated poly(amidoamine) dendrimers. Analette I. Lopez, Rose Y. Reins, Alison M. McDermott, Barbara W. Trautner and Chengzhi Cai. Molecular BioSystems. 2009, 10 (5), pp 1148-1156. May 28, 2009. DOI: 10.1039/b904746h.

.

Large-scale Biophysical Evaluation of Protein PEGylation Effects: In Vitro Properties of 61 Protein Entities. Erik Vernet, Gina Popa, Irina Pozdnyakova, Jakob E. Rasmussen, Holger Grohganz, Lise Giehm, Malene H. Jensen, Huabing Wang, Bitten Plesner, Hanne M. Nielsen, Knud J. Jensen, Jens Berthelsen, Michael Sundstrom, and Marco van de Weert. Molecular Pharmaceutics. 2016, April 4, 2016. DOI: 10.1021/acs.molpharmaceut.6b00049.

.

Hairpin Structure of a Biarsenical- Tetracysteine Motif Determined by NMR Spectroscopy. Fatemeh Madani, Jesper Lind, Peter Damberg, Stephen R. Adams, Roger Y. Tsien, and Astrid O. Graslund. Journal of the American Chemical Society. 2009, 131 (13), pp 4613–4615. March 12, 2009. DOI: 10.1021/ja809315x.

.

Short polyethylene glycol chains densely bound to soft nanotube channels for inhibition of protein aggregation. N. Kameta, T. Matsuzawa, K. Yaoi, and M. Masuda. RSC Advances. 2016, 6 (43) pp 36744-36750. April 7, 2016. DOI: 10.1039/C6RA06793J.

.

Potent D-peptide inhibitors of HIV-1 entry. Brett D. Welch, Andrew P. VanDemark, Annie Heroux, Christopher P. Hill, and Michael S. Kay. PNAS. 2007, 43 (104), pp 16828-16833. October 23, 2007. DOI: 10.1073/pnas.0708109104.

.

Silica-Shelled Single Quantum Dot Micelles as Imaging Probes with Dual or Multimodality. Rumiana Bakalova, Zhivko Zhelev, Ichio Aoki, Hideki Ohba, Yusuke Imai, and Iwao Kanno. Anal. Chem. 2006, 78 (16) pp 5925–5932. July 14, 2006. DOI: 10.1021/ac060412b.

.

Silica-Shelled Single Quantum Dot Micelles as Imaging Probes with Dual or Multimodality. Rumiana Bakalova, Zhivko Zhelev, Ichio Aoki, Hideki Ohba, Yusuke Imai, and Iwao Kanno. Analytical Chemistry. 2006, 78 (16) pp 5925–5932. July 14, 2006. DOI: 10.1021/ac060412b.

.

Short polyethylene glycol chains densely bound to soft nanotube channels for inhibition of protein aggregation. N. Kameta, T. Matsuzawa, K. Yaoi, and M. Masuda. RSC Advances. 2016, 6 (43) pp 36744-36750. April 7, 2016. DOI: 10.1039/C6RA06793J.

.

The impact of molecular Weight and PEG Chain Length on the Systemic Pharmacokinetics of PEGylated Poly L-Lysine Dendrimers. Lisa M. Kaminskas, Ben J. Boyd, Peter Karellas, Guy Y. Krippner, Romina Lessene, Brian Kelly, and Christopher J. H. Porter. Mol. Pharmaceutics. 2008, 5 (3), pp 449–463. April 5, 2008. DOI: 10.1021/mp7001208.

.

Surface Functionalization and Analysis Thereof for an Ovarian Cancer Diagnostic Biosensor. Asad Ali Ahmad. USF Scholor Commons. 2011, 1 (1) pp 297-416. June 21, 2011. DOI: scholarcommons.usf.edu/etd/2977.

.

Improved pharmacokinetics and immunogenicity profile of organophosphorus hydrolase by chemical modification with polyethylene glycol. Boris N. Novikov, Janet K. Grimsley, Rory J. Kern, James R. Wild, Melinda E. Wales. Journal of Controlled Release. 2010, 146 (3) pp 318-325. September 15, 2010. DOI: 10.1016/j.jconrel.2010.06.003.

.

Silica-Shelled Single Quantum Dot Micelles as Imaging Probes with Dual or Multimodality. Rumiana Bakalova, Zhivko Zhelev, Ichio Aoki, Hideki Ohba, Yusuke Imai, and Iwao Kanno. Analytical Chemistry. 2006, 78 (16) pp 5925–5932. July 14, 2006. DOI: 10.1021/ac060412b.

.

Pharmacokinetics and Tumor Disposition of PEGylated Methotrexate Conjugated Poly-L-lysine Dendrimers. Lisa M. Kaminskas, Brian D. Kelly, Victoria M. McLeod, Ben J. Boyd, Guy Y. Krippner, Elizabeth D. Williams, and Christopher J. H. Porter, Molecular Pharmaceutics, Vol. 6, No. 4, 2009, 6 (4), pp 1190-1204, May 19, 2009. DOI: 10.1021/mp900049a.

.

Hairpin Structure of a Biarsenical- Tetracysteine Motif Determined by NMR Spectroscopy. Fatemeh Madani, Jesper Lind, Peter Damberg, Stephen R. Adams, Roger Y. Tsien, and Astrid O. Graslund. Journal of the American Chemical Society. 2009, 131 (13), pp 4613–4615. March 12, 2009. DOI: 10.1021/ja809315x.

.

Characterization of Particle Translocation through Mucin Hydrogels. Oliver Lieleg,  Ioana Vladescu, and Katharina Ribbeck. Biophysical Journal. 2010, 98 (9) pp 1782–1789. May 5, 2010. DOI: 10.1016/j.bpj.2010.01.012.

.

Hairpin Structure of a Biarsenical- Tetracysteine Motif Determined by NMR Spectroscopy. Fatemeh Madani, Jesper Lind, Peter Damberg, Stephen R. Adams, Roger Y. Tsien, and Astrid O. Graslund. Journal of the American Chemical Society. 2009, 131 (13), pp 4613–4615. March 12, 2009. DOI: 10.1021/ja809315x.

.

Optimized polyethylenimine (PEI)-based nanoparticles for siRNA delivery, analyzed in vitro and in an ex vivo tumor tissue slice culture model. Alexander Ewe, Sabrina Hobel, Claudia Heine, Lea Merz, Sonja Kallendrusch, Ingo Bechmann, Felicitas Merz, Heike Franke, Achim Aigner. Drug Delivery and Translational Research. 2016, pp 1-11. June 22, 2016. DOI: 10.1007/s13346-016-0306-y.

.

Multifunctional Separation Mechanism on Poly(oxyethylene) Stationary Phases in Capillary Liquid Chromatography. Toyohide Takeuchi and Lee Wah Lim. Analytical Sciences. 2010, 26 (9) pp 937-941. September 10, 2010. DOI: 10.2116/analsci.26.937

.

Robust Sensing Films for Pathogen Detection and Medical Diagnostics. Aaron S. Anderson ; Andrew M. Dattelbaum ; Harshini Mukundan ;Dominique N. Price ; W. Kevin Grace ; Basil I. Swanson. Frontiers in Pathogen Detection: From Nanosensors to Systems., 2009, Proc. Of SPIE 7167. 71670q-1 February 18, 2009. 10.1117/12.809383.

.

An adsorption chromatography assay to probe bulk particle transport through hydrogels. I. Vladescu, O. Lieleg, S. Jang, and Katharina Ribbeck. Journal of Pharmaceutical Sciences. 2012, 101 (1) pp 436-442. September 8, 2011. DOI: 10.1002/jps.2273.

.

Silica-Shelled Single Quantum Dot Micelles as Imaging Probes with Dual or Multimodality. Rumiana Bakalova, Zhivko Zhelev, Ichio Aoki, Hideki Ohba, Yusuke Imai, and Iwao Kanno. Analytical Chemistry. 2006, 78 (16) pp 5925–5932. July 14, 2006. DOI: 10.1021/ac060412b.

.

Pharmacokinetics and Tumor Disposition of PEGylated Methotrexate Conjugated Poly-L-lysine Dendrimers. Lisa M. Kaminskas, Brian D. Kelly, Victoria M. McLeod, Ben J. Boyd, Guy Y. Krippner, Elizabeth D. Williams, and Christopher J. H. Porter, Molecular Pharmaceutics, Vol. 6, No. 4, 2009, 6 (4), pp 1190-1204, May 19, 2009. DOI: 10.1021/mp900049a.

.

Biomolecular strategies for cell surface engineering. John Tanner Wilson. Smartech. 2008, December 5, 2008.

.

Short polyethylene glycol chains densely bound to soft nanotube channels for inhibition of protein aggregation. N. Kameta, T. Matsuzawa, K. Yaoi, and M. Masuda. RSC Advances. 2016, 6 (43) pp 36744-36750. April 7, 2016. DOI: 10.1039/C6RA06793J.

.

Biomolecular strategies for cell surface engineering. John Tanner Wilson. Smartech. 2008, December 5, 2008.

.

Development of a widefield SERS imaging endoscope. Patrick Z. McVeigh, Rupananda J. Mallia, Israel Veilleux, Brian C. Wilson. SPIE Proceedings. 2012, 8217 (1) pp 1-6. February 13, 2012. DOI: 10.1117/12.907304.

.

Self-Assembly of Solid-Supported Membranes Using a Triggered Fusion of Phospholipid-Enriched Proteoliposomes Prepared from the Inner Mitochondrial Membrane. Ce´line Elie-Caille, Ophe´lie Fliniaux, Jacques Pantigny,Jean-Claude Mazie`re, and Christian Bourdillon. Langmuir. 2005, 21 (10) pp 4661–4668. April 7, 2005. DOI: 10.1021/la046973k.

.

Prevention of benzyl alcohol-induced aggregation of chymotrypsinogen by PEGylation. José A. Rodríguez-Martínez, Izarys Rivera-Rivera and Kai Griebenow. Journal of Pharmacy and Pharmacology. 2011, 63 (6), pp 800–805. January 6, 2011. DOI: 10.1111/j.2042-7158.2011.01288.

.

Antibacterial Activities of Poly (amidoamine) Dendrimers Terminated with Amino and Poly(ethylene glycol) Groups. Michelle K. Calabretta, Amit Kumar, Alison M. McDermott, and Chengzhi Cai. Biomacromolecules. 2007, 8 (6) pp 1807-1811. May 19, 2007. DOI: 10.1021/bm0701088.

.

The impact of molecular Weight and PEG Chain Length on the Systemic Pharmacokinetics of PEGylated Poly L-Lysine Dendrimers. Lisa M. Kaminskas, Ben J. Boyd, Peter Karellas, Guy Y. Krippner, Romina Lessene, Brian Kelly, and Christopher J. H. Porter. Molecular Pharmaceutics. 2008, 5 (3), pp 449–463. April 5, 2008. DOI: 10.1021/mp7001208.

.

Electrostatic readout of DNA microarrays with charged microspheres. Nathan G Clack, Khalid Salaita, and Jay T Groves. Nature Biotechnology. 2008, 26 (7) pp 825-830. June 29, 2008. DOI: 10.1038/nbt1416.

.

Improved pharmacokinetics and immunogenicity profile of organophosphorus hydrolase by chemical modification with polyethylene glycol. Boris N. Novikov, Janet K. Grimsley, Rory J. Kern, James R. Wild, Melinda E. Wales. Journal of Controlled Release. 2010, 146 (3) pp 318-325. September 15, 2010. DOI: 10.1016/j.jconrel.2010.06.003.

.

Hairpin Structure of a Biarsenical- Tetracysteine Motif Determined by NMR Spectroscopy. Fatemeh Madani, Jesper Lind, Peter Damberg, Stephen R. Adams, Roger Y. Tsien, and Astrid O. Graslund. Journal of the American Chemical Society. 2009, 131 (13), pp 4613–4615. March 12, 2009. DOI: 10.1021/ja809315x.

.

Modified Epidermal Growth Factor Receptor (EGFR)-Bearing Liposomes (MRBLs) Are Sensitive to EGF in Solution. Albert Wong. PloS One.2009, 4 (10) e7391. September 14, 2009. DOI: 10.1371/journal.pone.0007391.

.

Noncovalent Cell Surface Engineering with Cationic Graft Copolymers. John T. Wilson, Venkata R. Krishnamurthy, Wanxing Cui, Zheng Qu, and Elliot L. Chaikof. J. Am. Chem. Soc. 2009, 131 (51), pp 18228–18229. December 4, 2009. DOI: 10.1021/ja908887v.

.

Synthesis and Characterization of a New class of Cationic Protein Polymers for Multivalent Display and Biomaterial Applications. Nicolynn E. Davis, Lindsay S. Karfield-Sulzer, Sheng Ding, and Annelise E. Barron. Biomacromolecules. 2009, 10 (5), pp 1125–1134. April 10, 2009. DOI: 10.1021/bm801348g.

.

Bacteriophage T4 Nanoparticles as Materials in Sensor Applications: Variables That Influence Their Organization and Assembly on Surfaces. Marie J. Archer and Jinny L. Liu. Sensors. 2009, 9 (8) pp 6298-6311. August 12, 2009. DOI: 10.3390/s90806298

.

Bioconjugation of Ln3+-Doped LaF3 Nanoparticles to Avidin. Peter R. Diamente, Robert D. Burke, and Frank C. J. M. van Veggel. Langmuir. 2006, 22 (4) pp 1782–1788. December 30, 2005. DOI: 10.1021/la052589r.

.

Transport of biomolecules to binding partners displayed on the surface of microbeads arrayed in traps in a microfluidic cell. Xiaoxiao Chen, Thomas F Leary, and Charles Maldarelli. Biomicrofluidics. 2017, 11 (1) pp 014101. January 4, 2017. DOI: 10.1063/1.4973247.

.

Molecular Dendritic Transporter Nanoparticle Vectors Provide Efficient Intracellular Delivery of Peptides. Sharon K. Hamilton and Eva Harth. ACS Nano. 2009, 3 (2), pp 402–410. February 5, 2009. DOI: 10.1021/nn800679z.

.

Acid-degradable cationic methacrylamide polymerized in the presence of plasmid DNA as tunable non-viral gene carrier. In Kap Ko, Assem Ziady, Shiwei Lu, Young Jik Kwon. Biomaterials. 2008, 29 (28) pp 3872–3881. June 27, 2008. DOI: 10.1016/j.biomaterials.2008.06.003.

.

A brain-sparing diphtheria toxin for chemical genetic ablation of peripheral cell lineages. Mafalda M.A. Pereira, Ines Mahu, Elsa Seixas, Noelia Martinez-Sanchez, Nadiya Kubasova, Roksana M. Pirzgalska, Paul Cohen, Marcelo O. Dietrich, Miguel Lopez, Goncalo J.L. Bernardes, and Ana I. Domingos. Nature Communications. 2017, 8 (14967) pp 1-10. April 3, 2017. DOI: 10.1038/ncomms14967.

.

114To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 121: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Production of microporous aluminum oxide electrodes as supports for tethered lipid bilayers of large surface area. Ophélie Fliniaux, Céline Elie-Caille, Jacques Pantigny, Christian Bourdillon. Electrochemistry Communications. 2005, 7(7) pp 697-702. April 19, 2005. DOI: 10.1016/j.elecom.2005.04.023

.

Short polyethylene glycol chains densely bound to soft nanotube channels for inhibition of protein aggregation. N. Kameta, T. Matsuzawa, K. Yaoi, and M. Masuda. RSC Advances. 2016, 6 (43) pp 36744-36750. April 7, 2016. DOI: 10.1039/C6RA06793J.

.

Development of polyethylene glycol-conjugated alendronate, a novel nitrogen-containing bisphosphonate derivative: Evaluation of absorption, safety, and effects after intrapulmonary administration in rats. Hidemasa Katsumi, Miki Takashima, Jun-Ichi Sano, Kazushi Nishiyama, Noriko Kitamura, Toshiyasu Sakane, Toru Hibi, and Akira Yamamoto. Journal of Pharmaceutical Sciences. 2011, 100 (9) pp 3783-3792. May 12, 2011. DOI: 10.1002/jps.22620.

.

Laser-Activated Gene Silencing via Gold Nanoshell-siRNA Conjugates. Gary B. Braun, Alessia Pallaoro, Guohui Wu, Dimitris Missirlis, Joseph A. Zasadzinski, Matthew Tirrell, and Norbert O. Reich. ACS Nano. 2009, 3 (7), pp 2007–2015. June 15, 2009. DOI:10.1021/nn900469q.

.

Novel Comb-Shaped PEGModification Enhances the Osteoclastic Inhibitory Effect and Bone Delivery of Osteoprotegerin After Intravenous Administration in Ovariectomized Rats. Yoshihiro Miyaji, Yuji Kasuya, Yoshitake Furuta, Atsushi Kurihara, Masayuki Takahashi, Ken-ichi Ogawara, Takashi Izumi & Osamu Okazaki & Kazutaka Higaki. Pharmaceutical Research. 2012, 29 (11) pp 3143-3155. June 23, 2012. DOI: 10.1007/s11095-012-0807-4.

.

Site directed Pegylation: Role of pH and temperature, to increase the productivity of insulin oligomer conjugate. Ashutosh Sudhir Naik, Koduru srivatsa, Krishnappa Mane, Phanichand Kodali, Laxmi Adhikary. Journal of Pharmaceutical and Biological Sciences. 2017, 5(4) pp 155-160. 2017. https://innovativepublication.com/admin/uploaded_files/JPBS_5(4)_155-160.pdf

.

Surface Modification on Acoustic Wave Biosensors for Enhanced Specificity. Onursal Onen, Asad A. Ahmad, Rasim Guldiken and Nathan D. Gallant. Sensors. 2012, 12 pp 12317-12328. September 10, 2012. DOI: 10.3390/s120912317.

.

Biomolecular strategies for cell surface engineering. John Tanner Wilson. Smartech. 2008, December 5, 2008.

.

Stabilization of α-chymotrypsin upon PEGylation correlates with reduced structural dynamics. Jose A. Rodriguez-Martinez, Ricardo J. Sola, Betzaida Castillo, Hector R. Cintron-Colon, Izarys Rivera-Rivera, Gabriel Barletta, Kai Griebenow. Biotechnology and Bioengineering. 2008, 101 (6) pp 1142-1149. December 15, 2008. DOI: 10.1002/bit.22014.

.

Multifunctional Separation Mechanism on Poly(oxyethylene) Stationary Phases in Capillary Liquid Chromatography. Toyohide Takeuchi and Lee Wah Lim. Analytical Sciences. 2010, 26 (9) pp 937-941. September 10, 2010. DOI: 10.2116/analsci.26.937.

.

Enhancement of the CD8+ T cell response to a subdominant epitope of respiratory syncytial virus by deletion of an immunodominant epitope. Hoyin Mok, Sujin Lee, David W. Wright, and James E. Crowe Jr. Vaccine. 2008, 26 (37) pp 4775-4782. September 2, 2008. DOI: 10.1016/j.vaccine.2008.07.012.

.

Characterization of the Reversed-Phase Chromatographic Behavior of PEGylated Peptides Based on the Poly(ethylene glycol) Dispersity. Eun Ji Park and Dong Hee Na. Analytical Chemistry. 2016, October 25, 2016. DOI: 10.1021/acs.analchem.6b03577.

.

Engineering PEGylated Antibody Fragments for Enhanced Properties and Cancer Detection. Shubham Mangla. Knowledge Bank. 2016, May 2016.

.

Temperature Dependence of the Rotation and Hydrolysis Activities of F1-ATPase. Furuike, Shou; Adachi, Kengo; Sakaki, Naoyoshi; Shimo-Kon, Rieko; Itoh, Hiroyasu; Muneyuki, Eiro; Yoshida, Masasuke; Kinosita, Kazuhiko, Jr. Biophysical Journal. 2008, 95 (2) pp 761-770 July 15, 2008. DOI:10.1529/biophysj.107.123307.

.

Stimulation of F1-ATPase activity by sodium dodecyl sulfate. Muhammad Delawar Hossain, Shou Furuike, Yasuhiro Onoue, Keng Adachi, Masasuke Yoshida, Kazuhiko Kinosita Jr. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2010, 1797 (4) pp 435-442. April 2010. DOI: 10.1016/j.bbabio.2009.12.018.

.

Methotrexate-Conjugated PEGylated Dendrimers Show Differential Patterns of Deposition and Activity in Tumor-Burdened Lymph Nodes after Intravenous and Subcutaneous Administration in Rats. Lisa M. Kaminsksa, Victoria M. McLeod, David B. Ascher, Gemma M. Ryan, Seth Jones, John M. Haynes, Natalie L. Trevaskis, Linda J. Chan, Erica K. Sloan, Benjamin A. Finnin, Mark Williamson, Tony Velkov, Elizabeth D. Williams, Brian D. Kelly, David J. Owen, and Christopher J.H. Porter. Molecular Pharmeceutics. 2015, 12 (2) pp 432-443. Decmber 8, 2014. DOI: 10.1021/mp500531e.

.

Torque Generation in F1-ATPase Devoid of the Entire Amino-Terminal Helix of the Rotor That Fills Half of the Stator Orifice. Ayako Kohori, Ryohei Chiwata, Mohammad Delawar Hossain, Shou Furuike, Katsuyuki Shiroguchi, Kengo Adachi, Masasuke Yoshida, and Kazuhiko Kinosita, Jr. Biophysical Journal. 2011, 101 (1) pp 188–195. July 6, 2011. DOI: 10.1016/j.bpj.2011.05.008.

.

Capping Methotrexate a-Carboxyl Groups Enhances Systemic Exposure and Retains the Cytotoxicity of Drug Conjugated PEGylated Polylysine Dendrimers. Lisa M. Kaminskas, Brian D. Kelly, Victoria M. McLeod, Gian Sberna, Ben J. Boyd, David J. Owen, and Christopher J. H. Porter. Molecular Pharmaceutics. 2011, 8 (2) pp 338–349. December 20, 2010. DOI: 10.1021/mp1001872.

.

Silica-Shelled Single Quantum Dot Micelles as Imaging Probes with Dual or Multimodality. Rumiana Bakalova, Zhivko Zhelev, Ichio Aoki, Hideki Ohba, Yusuke Imai, and Iwao Kanno. Analytical Chemistry. 2006, 78 (16) pp 5925–5932. July 14, 2006. DOI: 10.1021/ac060412b.

.

Poly(ethylene oxide)-bonded stationary phase for capillary ion chromatography. Toyohide Takeuchi, Budhi Oktavia, Lee Wah Lim. Anal Bioanal Chem. 2009, 393(4) pp 1267-1272. November 30, 2008. DOI: 10.1007/s00216-008-2533-7.

.

Reconstitution of the M13 Major Coat Protein and Its Transmembrane Peptide Segment on a DNA Template. Weijun Li, Itai Suez and Francis C. Szoka, Jr. ACS Biochemistry. 2007, 46 (29) pp 8579–8591. June 27, 2007. DOI: 10.1021/bi700165m.

.

N-Alkylated aminopyrazines for use as hydrophilic optical agents. Amruta R. Poreddy, Bethel Asmelash, Karen P. Galen, Richard M. Fitch, Jeng-Jong Shieh, James M. Wilcox, Tasha M. Schoenstein, Jolette K.Wojdyla, Kimberly R. Gaston, John N. Freskos, William L. Neumann, Raghavan Rajagopalan, Hyo-YangAhn, James G. Kostelc, Martin P. Debreczeny, Kevin D. Belfield, and Richard B. Dorshow. SPIE. Digital Library, Optical Molecular Probes and Industry. 2009. 7190. January 24, 2009. DOI: 10.1117/12.809287.

.

Investigations into Improving the Separation of PEGylated Proteins. Vita Knudson, Tividar Farkas, and Michael McGinley. Phenomenex, (TN-1034).

.

Biological and Structural Basis for Aha1 Regulation of Hsp90 ATPase Activity in Maintaining Proteostasis in the Human Disease Cystic Fibrosis. Atanas V. Koulov, Paul LaPointe, Bingwen Lu, Abbas Razvi, Judith Coppinger,_ Meng-Qiu Dong, Jeanne Matteson, Rob Laister, Cheryl Arrowsmith, John R. Yates III, and William E. Balch. Molecular Biology of the Cell. 2010, 21 pp 871–884. March 15, 2010. DOI: 10.1091/mbc.E09–12–1017.

.

Protease-triggered siRNA delivery vehicles. David B. Rozema, Andrei V. Blokhin, Darren H. Wakefield, Jonathan D. Benson, Jeffrey C. Carlson, Jason J. Klein, Lauren J. Almeida, Anthony L. Nicholas, Holly L. Hamilton, Qili Chu, Julia O. Hegge, So C. Wong, Vladimir S. Trubetskoy, Collin M. Hagen, Eric Kitas, Jon A. Wolff, and David L. Lewis. Journal of Controlled Release. 2017, 209 pp 57-66. 7/10/2015. DOI: 10.1016/j.jconrel.2015.04.012.

.

Development and Application of a Multimodal Contrast Agent for SPECT/CT Hybrid Imaging. Jason M. Criscione, Lawrence W. Dobrucki, Zhen W. Zhuang, Xenophon Papademetris, Michael Simons, Albert J. Sinusas and Tarek M. Fahmy. Bioconjugate Chemistry. 2011, 22 (9), pp 1784–1792. August 18, 2011. DOI: 10.1021/bc200162r.

.

Stability, Antimicrobial Activity, and Cytotoxicity of Poly(amidoamine) Dendrimers on Titanium Substrates. Lin Wang, Uriel J. Erasquin, Meirong Zhao, Li Ren, Martin Yi Zhang, Gary J. Cheng, Yingjun Wang, and Chengzhi Cai. ACS Applied Materials & Interfaces. 2011, 3 (8), pp 2885-2894. July 20, 2011. DOI: 10.1021/am2004398.

.

m-dPEG®x-Thiol

Biomarker-Mediated Disruption of Coffee-Ring Formation as a Low Resource Diagnostic Indicator. JoshuaR. Trantum, David W. Wright, and Frederick R. Haselton, Langmuir. 2012, 28 (4), pp 2187–2193 December 9, 2011. DOI: org/10.1021/la203903a.

.

Near-Infrared-Activated Fluorescence Resonance Energy Transfer-Based Nanocomposite to Sense MMP2-Overexpressing Oral Cancer Cells. Yung-Chieh Chan, Ming-Hsien Chan, Chieh-Wei Chen, Ru-Shi Liu, Michael Hsiao, and Din Ping Tsai. ACS Omega. 2018,3 (2) pp. 1627-1634. February 8, 2018. DOI: 10.1021/acsomega.7b01494.

.

Gold nanoparticle-based fluorescence quenching via metal coordination for assaying protease activity. Se Yeon Park, So Min Lee, Gae Baik, Kim and Young-Pil Kim. Gold Bull. 2012, 45 pp 213–219. October 25, 2012. DOI: 10.1007/s13404-012-0070-9.

.

Polymerase Chain Reaction-Free Variable-Number Tandem Repeat Typing Using Gold Nanoparticle–DNA Monoconjugates. Jong Young Choi , Yong Tae Kim , and Tae Seok Seo. ACS Nano 2013, 7 (3) pp 2627–2633. February 12, 2013. DOI: 10.1021/nn400004d.

.

NHS/TFP-dPEG®₄-(m-dPEG®x)₃-ester

Improved pharmacokinetics and immunogenicity profile of organophosphorus hydrolase by chemical modification with polyethylene glycol. Boris N. Novikov, Janet K. Grimsley, Rory J. Kern, James R. Wild, Melinda E. Wales. Elsevier. 2010 146 (3) Pages 318-325 September 15, 2010. DOI: 10.1016/j.jconrel.2010.06.003.

.

Rapid Raman Imaging of Stable, Functionalized Nanoshells in Mammalian Cell Cultures. Yiming Huang, Vimal P. Swarup, Sandra Whaley Bishnoi. Nano Letters. 2009, 9 (8) pp 2914-2920. May 23, 2009. DOI: 10.1021/nl901234x.

.

TIRF microscopy as a screening method for non-specific binding on surfaces. Christy Charlton, Vladimir Gubala, Ram Prasad Gandhiraman, Julie Wiechecki, Nam Cao Hoai Le, Conor Coyle, Stephen Daniels, Brian D. MacCraith, David E. Williams. Journal of Colloid and Interface Science. 2011, 354 (1) pp 405-409. February 1, 2011. DOI: 10.1016/j.jcis.2010.10.029.

.

The influence of polyethylence glycol structure on the conjugation of recombinant human interferon a2b overproduced using synthetic gene in E. coli. Heni Rachmawati, Prima L. Febrina, Ratih A, Ningrum, Debbie S. Retnoningrum. International Journal of Research in Pharmaceutical Sciences. 2012, 3(2) pp 228-233. March 20, 2012. ISSN: 0975-7538.

.

New Assay for Quantification of PEGylated Proteins During in Vitro Permeability Studies.Spela Jalen,, Vanja Smilovic, Katarina Fidler, Barbara Podobnik, Maja Marusic, Radovan Komel, Vladka Gaberc-Porekar and Simona Jevsevar. Acta Chimica Slovenica. 2014, 61 (3) pp 615-622. January 15, 2014.

.

Monitoring Protein PEGylation with Ion Exchange Chromatography. Peter Yu, Deanna Hurum, Leo Wang, Terry Zhang,and Jeffrey Rohrer. ThermoFisher Scientific Poster Note. 2013, PN70510_E01/3s.

.

Nanometer size silicon particles for hyperpolarized MRI. Grzegorz Kwiatkowski, Fabian Jahnig, Jonas Steinhauser, Patrick Wespi, Matthias Ernst, and Sebastian Kozerke. Scientific Reports. 2017, 7 (7946) pp 1-9. August 11, 2017. DOI: 10.1038/s41598-017-08709-0.

.

Different radiolabelling methods alter the pharmacokinetic and biodistribution properties of Plasminogen Activator Inhibitor Type 2 (PAI-2) forms. Marie Ranson, Paula Berghofer, Kara L. Vine, Ivan Greguric, Rachael Shepherd, Andrew Katsifis. Nuclear Medicine and Biology. 2012, 39 (6) pp 833-839. January 17, 2012. DOI: 10.1016/j.nucmedbio.2012.01.006.

.

Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes. in mice probed by Raman spectroscopy. Zhuang Liu, Corrine Davis, Weibo Cai, Lina He, Xiaoyuan Chen, and Hongjie Dai. PNAS. 2008, 105 (5) pp 1410-1415. February 5, 2008. DOI: 10.1073_pnas.0707654105.

.

Visualizing Systemic Clearance and Cellular Level Biodistribution of Gold Nanorods by Intrinsic Two-Photon Luminescence. Ling Tong, Wei He, Yanshu Zhang, Wei Zheng, and Ji-Xin Cheng, Langmuir 2009, 25 (21), pp 12454-12459. DOI: 10.1021/la902992w.

.

Towards the Development of Hemerythrin-Based Blood Substitutes. Augustin C. Mot, Alina Roman, Iulia Lupan , Donald M. Kurtz Jr , Radu Silaghi-Dumitrescu. Protein J. 2010, 29 (6) pp 87-393. June 27, 2010. DOI: 10.1007/s10930-010-9264-2.

.

Differential patterning of neuronal, glial and neural progenitor cells on phosphorus-doped and UV irradiated diamond-like carbon. Edward M. Regan, James B. Uney, Andrew D. Dick, Yiwei Zhang, Jose Nunez-Yanez, Joseph P. McGeehan, Frederik Claeyssens, Stephen Kelly. Biomaterials. 2010, 31 (2) pp 207-215. October 14, 2009. DOI: 10.1016/j.biomaterials.2009.09.042.

.

A New Polyethyleneglycol-Derivatized Hemoglobin Derivative with Decreased Oxygen Affinity and Limited Toxicity. Oana Zolog, Augustin Mot, Florina Deac, Alina Roman, Eva Fischer-Fodor, Radu Silaghi-Dumitrescu. The Protein Journal. 2010 1 (30), pp 27-31. December 16, 2012 DOI: 10.1007/s10930-010-9298-5.

.

115To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 122: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Synthesis and Preliminary Biological Evaluation of High-Drug-Load Paclitaxel-Antibody Conjugates for Tumor-Targeted Chemotherapy. Sherly Quiles, Kevin P. Raisch, Leisa L. Sanford, James A. Bonner, and Ahmad Safavy, J Med. Chem., 2010, 53 (2), pp 586-594, December 3, 2009. DOI: 10.1021/jm900899g.

.

Influence of PEGylation with linear and branched PEG chains on the adsorption of glucagon to hydrophobic surfaces. Charlotte Pinholt , Jens Thostrup Bukrinsky, Susanne Hostrup, Sven Frokjaer, Willem Norde, Lene Jorgensen. European Journal of Pharmaceutics and Biopharmaceutics. 2010, 77 (1) pp 139–147. November 3, 2010. DOI: 10.1016/j.ejpb.2010.11.001.

.

S-acetyl-dPEG®x-OH

5’-Sulfhydryl-Modified RNA: Initiator Synthesis, in Vitro Transcription, and Enzymatic Incorporation. Lei Zhang, Lele Sun, Zhiyong Cui, Robert L. Gottlieb and Biliang Zhang. Bioconjugate Chem.2001, 12 (6) pp 939–948. October 16, 2001. DOI: 10.1021/bc015504g.

.

t-boc-N-amido-dPEG®x-OH

Effects of linker variation on the in vitro and in vivo characteristics of an In-labeled RGD peptide. Ingrid Dijkgraaf, Shuang Liu, John A.W. Kruijtzer, Annemieke C. Soede, Wim J.G. Oyen, Rob M.J. Liskamp, FransH.M. Corstens, Otto C. Boerman. Nuclear Medicine and Biology. 2007, 1 (34), pp 29-35, January 2007.DOI: 10.1016/j.nucmedbio.2006.10.006.

.

Thiol-dPEG®x-acid

CdSe nano-particles coated with thiol-terminated oligo(ethylene oxide) for protein targeting reagent. Yukari Ito and Hiromori Tsutsumi. NSTI-Nanotech. 2009, 2. 2009.

.

Gold nanoparticle-based fluorescence quenching via metal coordination for assaying protease activity. Se Yeon Park, So Min Lee, Gae Baik, Kim and Young-Pil Kim. Gold Bull. 2012, 45 pp 213–219. October 25, 2012. DOI 10.1007/s13404-012-0070-9.

.

Spectroscopy Based Approaches for Detection of Ions, Alpha-L-Fucosidase, and Singlet Oxygen. Eric Waidely. University of Miami Scholarly Repository. 2017, pp 1-113. May 3, 2017. http://scholarlyrepository.miami.edu/oa_dissertations/1842.

.

Near-Infrared-Activated Fluorescence Resonance Energy Transfer-Based Nanocomposite to Sense MMP2-Overexpressing Oral Cancer Cells. Yung-Chieh Chan, Ming-Hsien Chan, Chieh-Wei Chen, Ru-Shi Liu, Michael Hsiao, and Din Ping Tsai. ACS Omega. 2018,3 (2) pp. 1627-1634. February 8, 2018. DOI: 10.1021/acsomega.7b01494.

.

Use of semiconductor nanocrystals to encode microbeads for multiplexed analysis of biological samples. Mikhail A Berestovoy, Regina S Bilan, Victor Krivenkov, Igor Nabiev, and Alyona Sukhanova. IOP Science. 2017, 784 (1) pp 1742-6596. March 15, 2017. DOI: 10.1088/1742-6596/784/1/012012.

.

Modulating the Glucose Transport by Engineering Gold Nanoparticles. Sanjib Bhattacharyya, Krishna Kattel, and Franklin Kim. Journal of Nanomedicine and Biotherapeutic Discovery. 2016, 6 (1) pp 1-5. April 30, 2016. DOI: 10.4172/2155-983X.1000141.

.

Systemically probing the bottom-up synthesis of AuPAMAM conjugates for enhanced transfection efficiency. Elizabeth R. Figueroa, Stephen Yan, Nicolette K. Chamberlain-Simon, Adam Y. Lin, Aaron E. Foster, and Rebekah A. Drezek. Journal of Nanobiotechnology. 2016, 14 (24). March 31, 2016. DOI: 10.1186/s12951-016-0178-9.

.

The combination of computational and biosensing technologies for selecting aptamer against prostate specific antigen. Pi-Chou Hsieh, Hui-Ting Lin, Wen-Yih Chen, Jeffrey J.P. Tsai, and Wen-Pin hu. 2017, pp 1-36.

.

Biomarker-Mediated Disruption of Coffee-Ring Formation as a Low Resource Diagnostic Indicator. Joshua R. Trantum, David W. Wright, and Frederick R. Haselton. Langmuir. 2012, 28 (4), pp 2187–2193.December 9, 2011. DOI: org/10.1021/la203903a.

.

Cyclic RGD Functionalized Gold Nanoparticles for Tumor Targeting. Daniela Arosio, Leonardo Manzoni, Elena M. V. Araldi, and Carlo Scolastico. Bioconjugate Chem. 2011, 22 (4), pp 664–672. March 24, 2011. DOI: 10.1021/bc100448r.

.

CdSe nano-particles coated with thiol-terminated oligo(ethylene oxide) for protein targeting reagent. Yukari Ito and Hiromori Tsutsumi. NSTI-Nanotech. 2009, 2. 2009.

.

A Simple Method for Ion Channel Recordings Using Fine Gold Electrode. Daichi Okuno, Minako Hirano, Hiroaki Yokota, Yukiko Onishi, Junya Ichinose, and Toru Ide. Analytical Sciences. 2016, 32 (12) pp 1353-1357. December 10, 2016. http://doi.org.10.2116/analsci.32.1353.

.

Novel 18F labeling strategy for polyester-basedNPs for in vivo PET-CT imaging. Primiano Pio Di Mauro, Vanessa Gómez-Vallejo, Zurine Baz, Jordi Llop, and Salvador Borros. Bioconjugate Chemistry. 2015. February 24, 2015. DOI: 10.1021/acs.bioconjchem.5b00040.

.

Short-Chain PEG Mixed Monolayer Protected Gold Clusters Increase Clearance and Red Blood Cell Counts. Carrie A. Simpson, Amanda C. Agrawal, Andrzej Balinski, Kellen M. Harkness, and David E. Cliffel. ACS Nano. 2011, 5 (5), pp 3577-3584. April 7, 2011. DOI: 10.1021/nn103148x.

.

Enantioselective analysis of melagatran via a LSPR biosensor integrated with microfluidic chip. Longhua Guo, Yuechun Yin, Rong Huang, Bin Qiu, Zhenyu Lin, HH Yang, Jianrong Li and Guo Nan Chen. Lab on a Chip. 2012, 20 (12), pp 3901-3906. June 15, 2012. DOI: 10.1039/C2LC40388A.

.

dPEG® Based Crosslinking Reagents

4-formyl-benzamido-dPEG®x-TFP ester

Single-Step Conjugation of Antibodies to Quantum Dots for Labeling Cell Surface Receptors in Mammalian Cells. Gopal Iyer, Jianmin Xu, and Shimon Weiss. Bioconjugation Protocols. 2011, 751 pp 553-563. January 2, 2011. DOI: 10.1007/978-1-61779-151-2_34.

.

Strategies for Neoglycan Conjugation to Human Acid r-Glucosidase. Qun Zhou, James E. Stefano, John Harrahy, Patrick Finn, Luis Avila, Josephine Kyazike, Ronnie Wei, Scott M. Van Patten, Russell Gotschall, Xiaoyang Zheng, Yunxiang Zhu, Tim Edmunds, and Clark Q. Pan. Bioconjugate Chem. 2011, 22 pp 741–751. March 18, 2011. DOI: org/10.1021/bc1005416.

.

Azido-dPEG®x-acid

“Click” Immobilization of a VEGF-Mimetic Peptide on Decellularized Endothelial Extracellular Matrix to Enhance Angiogenesis. Lin Wang, Meirong Zhao, Siheng Li, Uriel J. Erasquin, Hao Wang, Li Ren, Changyi Chen, Yingjun Wang, and Chengzhi Cai. ACS Applied Materials and Interfaces. 2014, 6 (11) pp 8401-8406. April 21, 2014. DOI: 10.1021/am501309d.

.

“Click” Immobilization of a VEGF-Mimetic Peptide on Decellularized Endothelial Extracellular Matrix to Enhance Angiogenesis. Lin Wang, Meirong Zhao, Siheng Li, Uriel J. Erasquin, Hao Wang, Li Ren, Changyi Chen, Yingjun Wang, and Chengzhi Cai. ACS Applied Materials and Interfaces. 2014, 6(11) pp 8401-8406. April 21, 2014. DOI: 10.1021/am501309d.

.

The carbohydrate-linked phosphorylcholine of the parasitic nematode product ES-62 modulates complement activation. Umul Kulthum Ahmed, N. Claire Maller, Asif J. Iqbal, Lamyaa Al-Riyami, William Harnett, and John G. Raynes. The Journal of Biological Chemistry. 2016, April 4, 2016. DOI: 10.1074/jbc.M115.702746.

.

Click Chemistry on Solution-Dispersed Graphene and Monolayer CVD Graphene. Zhong Jin, Thomas P. McNicholas, Chih-Jen Shih, Qing Hua Wang, Geraldine L. C. Paulus, Andrew J. Hilmer, Steven Shimizu and Michael S. Strano. Chemistry of Materials. 2011, 23(1) pp 3362-3370. June 30, 2011. DOI: 10.1021/cm201131v.

.

Azido-dPEG®x-amine

Detection of SK2 Channels on Hippocampal Neurons. Jamie L. Maciaszek University of Connecticut (2012) DigitalCommons@Uconn Master's Theses Paper 237 April 20, 2012. http://digitalcommons.uconn.edu/gs_theses/237.

.

Detection of SK2 Channels on Hippocampal Neurons. Jamie L. Maciaszek University of Connecticut (2012) DigitalCommons@Uconn Master's Theses Paper 237 April 20, 2012. http://digitalcommons.uconn.edu/gs_theses/237.

.

Detection of SK2 Channels on Hippocampal Neurons. Jamie L. Maciaszek University of Connecticut (2012) DigitalCommons@Uconn Master's Theses Paper 237 April 20, 2012. http://digitalcommons.uconn.edu/gs_theses/237.

.

Detection of SK2 Channels on Hippocampal Neurons. Jamie L. Maciaszek University of Connecticut (2012) DigitalCommons@Uconn Master's Theses Paper 237 April 20, 2012. http://digitalcommons.uconn.edu/gs_theses/237.

.

Epinephrine Modulates BCAM/Lu and ICAM-4 Expression on the Sickle Cell Trait Red Blood Cell Membrane. Jamie L. Maciaszek, Biree Andemariam, Greg Huber, and George Lykotrafitis. Biophysical Journal. 2012, 102 pp 1137–1143. January 27, 2012. DOI: 10.1016/j.bpj.2012.01.050.

.

The proteomic profiling of calenduloside E targets in HUVEC: design, synthesis and application of biotinylated probe BCEA. Yu Tian, Shan Wang, Hai Shang, Min Wang, Guibo Sun, Xudong Xu, and Xiaobo Sun. Royal Society of Chemistry. 2017, 7, pp 6259-6265. January 18, 2017. DOI: 10.1039/c6ra25572h.

.

Subcutaneously Administered Self-Cleaving Hydrogel-Octreotide Conjugates Provide Very Long-Acting Octreotide. Eric L. Schneider, Jeff Henise, Ralph Reid, Gary W. Ashley, and Daniel V. Santi. Bioconjugate Chemistry. 2016, June 2, 2016. DOI: 10.1021/acs.bioconjchem.6b00188.

.

Detection of SK2 Channels on Hippocampal Neurons. Jamie L. Maciaszek University of Connecticut (2012) DigitalCommons@Uconn Master's Theses Paper 237 April 20, 2012. http://digitalcommons.uconn.edu/gs_theses/237.

.

Tuning the Properties of Layer-by-Layer Assembled Poly(acrylic acid) Click Films and Capsules. Cameron R. Kinnane, Georgina K. Such, and Frank Caruso. Macromolecules, 2011, 44 (5), pp 1194–1202 February 4, 2010. DOI: 10.1021/ma102593k.

.

Structure-Based Design of a Heptavalent Anthrax Toxin Inhibitor. Amit Joshi, Sandesh Kate, Vincent Poon, Dhananjoy Mondal, Mohan B. Boggara, Arundhati Saraph, Jacob T. Martin, Ryan McAlpine, Ryan Day, Angel E. Garcia, Jeremy Mogridge, and Ravi S. Kane. Biomacromolecules, 2011, 12 (3), pp 791–796 February 8, 2011. DOI: 10.1021/bm101396u.

.

Azido-dPEG®x-NHS ester

Chemoselective Immobilization of Peptides on Abiotic and Cell Surfaces at Controlled Densities. Venkata R. Krishnamurthy, John T. Wilson, Wanxing Cui, XueZheng Song, Yi Lasanajak, Richard D. Cummings, and Elliot L. Chaikof,Langmuir, 2010, 26 (11), pp 7675–7678, May 7, 2010. DOI: 10.1021/la101192v.

.

Ballistic energy transport along PEG chains: distance dependence of the transport efficiency. Zhiwei Lin , Nan Zhang , Janarthanan Jayawickramarajah and Igor V. Rubtsov. Physical Chemistry Chemical Physics. 2012, 30 (14), pp 10445-10454. April 12, 2012. DOI: 10.1039/C2CP40187H.

.

Constant-speed vibrational signaling along polyethylene glycol chain up to 60-Å distance. Zhiwei Lin and Igor V. Rubtsov. PNAS, 2012, 5 (109), pp 1413-1418, January 31, 2012. DOI:10.1073/pnas.1116289109.

.

Ballistic energy transport along PEG chains: distance dependence of the transport efficiency. Zhiwei Lin , Nan Zhang , Janarthanan Jayawickramarajah and Igor V. Rubtsov. Physical Chemistry Chemical Physics. 2012, 30 (14), pp 10445-10454. April 12, 2012. DOI: 10.1039/C2CP40187H.

.

Constant-speed vibrational signaling along polyethylene glycol chain up to 60-Å distance. Zhiwei Lin and Igor V. Rubtsov. PNAS, 2012, 5 (109), pp 1413-1418, January 31, 2012. DOI: 10.1073/pnas.1116289109.

.

Bio-Inspired Liposomal Thrombomodulin Conjugate through Bio-Orthogonal Chemistry. Hailong Zhang, Jacob Weingart, Rui Jiang, Jianhao Peng, Qingyu Wu, and Xue-Long Sun. Bioconjugate Chemistry. 2013, 24 (4) pp 550–559. March 4, 2013. DOI: 10.1021/bc300399f.

.

116To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 123: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

An Effective Targeted Nanoglobular Manganese(II) Chelate Conjugate for Magnetic Resonance Molecular Imaging of Tumor Extracellular Matrix. Mingqian Tan, Xueming Wu, Eun-Kee Jeong, Qianjin Chen, Dennis L. Parker, and Zheng-Rong Lu,Mol. Pharmaceutics, 2010, 7 (4), pp 936–943 May 19, 2010. DOI: 10.1021/mp100054m.

.

A Mild and Reliable Method to Label Enveloped Virus with Quantum Dots by Copper-Free Click Chemistry. Jian Hao, Li-Li Huang, Rui Zhang, Han-Zhong Wang and Hai-Yan Xie. Analytical Chemistry. 2012, 84 (19) pp 8364−8370. September 4, 2012. DOI: org/10.1021/ac301918t.

.

A Method for Determining Small Anharmonicity Values from 2DIR Spectra Using Thermally Induced Shifts of Frequencies of High-Frequency Modes. Zhiwei Lin , Patrick Keiffer , and Igor V. Rubtsov. Journal of Physical ChemistryB. 2011, 115 (18) pp 5347-5353. December 28, 2010. DOI: 10.1021/jp1094189.

.

Nano-Scale Alignment of Proteins on a Flexible DNA Backbone. Tatsuya Nojima1, Hiroki Konno, Noriyuki Kodera, Kohji Seio, Hideki Taguchi, Masasuke Yoshida. PLoS ONE. 2012, 7(12): e52534. December 26, 2012. DOI:10.1371/journal.pone.0052534.

.

A Modular Platform for the Rapid Site-Specific Radiolabeling of Proteins with F Exemplified by Quantitative Positron Emission Tomography of Human Epidermal Growth Factor Receptor 2. Herman S. Gill, Jeff N. Tinianow, Annie Pgasawara, Judith E. Flores, Alexander N. Vanderbilt, Helga Raab, Justin M. Scheer, Richard Vandlen, Simon-P. Williams, and Jan Marik, J. Med. Chem., 2009, 52 (19), pp 5816–5825 September 9, 2009. DOI: 10.1021/jm900420c.

.

Clickable Poly(ethylene glycol)-Microsphere-Based Cell Scaffolds. Peter K. Nguyen, Christopher G Snyder, Jason D. Shields, Amanda W. Smith, Donald L. Elbert. Macromolecular Journals. 2013, 214 (8) pp 948-956. March 4, 2013. DOI: 10.1002/macp.201300023.

.

Streptavidin-hydrogel prepared by sortase A-assisted click chemistry for enzyme immobilization on an electrode. Takuya Matsumoto, Yuki Isogawa, Tsutomu Tanaka, and Akihiko Kondo. Biosensors and Bioelectronics. 2017, 99 (2018) pp 56-61. July 17, 2017. DOI: http://dx.doi.org/10.1016/j.bios.2017.07.044.

.

Protein addressing on patterned microchip by coupling chitosan electrodeposition and ‘electro-click’ chemistry. Xiao-Wen Shi,, Ling Qiu, Zhen Nie, Ling Xiao, Gregory F Payne and Yumin Du. Biofabrication. 2013, (5) 041001 pp 7. September 23, 2013. DOI:10.1088/1758-5082/5/4/041001.

.

Click Chemistry Applied to the Synthesis of Salmonella Typhimurium O-Antigen Glycoconjugate Vaccine on Solid Phase with Sugar Recycling. Giuseppe Stefanetti, Allan Saul, Calman A. MacLennan and Francesca Micoli. Bioconjugate Chemistry. 2015. November 9, 2015. DOI: 10.1021/acs.bioconjchem.5b00521.

.

Chemoselective Immobilization of Peptides on Abiotic and Cell Surfaces at Controlled Densities. Venkata R. Krishnamurthy, John T. Wilson, Wanxing Cui, XueZheng Song, Yi Lasanajak, Richard D. Cummings, and Elliot L. Chaikof. Langmuir. 2010, 26 (11) pp 7675-7678. May 7, 2010. DOI: 10.1021/la101192v.

.

Shape-Encoded Chitosan-Polyacrylamide Hybrid Hydrogel Microparticles with Controlled Macroporous Structures via Replica Molding for Programmable Biomacromolecular Conjugation. Eunae Kang, Sukwon Jung, John H. Abel, Allison Pine, and Hyunmin Yi. Langmuir. 2016, 32 (21) pp 5394-5402. May 18, 2016. DOI: 10.1021/acs.langmuir.5b04653.

.

3D Tumor tissue analogs and their orthotopic implants for understanding tumor-targeting of microenvironment-responsive nanosized chemotherapy and raditation. Pallavi Sethi, PhD., Amar Jyoti, PhD, Elden P. Swindell, PhD, Ryan Chan, PharmD, Ulrich W. Langner, DABR, PhD, Jonathan M. Feddock, MD, Radhakrishnan Nagarajan, PhD, Thomas V. O'Halloran, PhD, Meenakshi Upreti, PhD. Nanomedicine. 2015, 11 (8) pp 2013-2023. July 22,2015. DOI: 10.1016/j.nano.2015.07.013.

.

An Intein-Mediated Site-Specific Click Conjugation Strategy for Improved Tumor Targeting of Nanoparticle Systems. Drew R. Elias, Dr. Zhiliang Cheng, and Prof. Andrew Tsourkas. Small. 2010, 6 (21) pp 2460–2468 November 5, 2010. DOI:10.1002/smll.201001095.

.

Constant-speed vibrational signaling along polyethylene glycol chain up to 60-Å distance. Zhiwei Lin and Igor V. Rubtsov. PNAS. 2012, 109 (5) pp 1413-1418. January 31, 2012. DOI:10.1073/pnas.1116289109.

.

Streptavidin-hydrogel prepared by sortase A-assisted click chemistry for enzyme immobilization on an electrode. Takuya Matsumoto, Yuki Isogawa, Tsutomu Tanaka, and Akihiko Kondo. Biosensors and Bioelectronics. 2018, 99 pp 56-61. 1/15/2018. DOI: 10.1016/j.bios.2017.07.044.

.

Modular Assembly of Cell-targeting Devices Based on an Uncommon G-quadruplex Aptamer. Felipe Opazo, Laura Eiden, Line Hansen, Falk Rohrbach, Jesper Wengel, Jørgen Kjems, and Günter Mayer. Molecular Therapy Nucleic Acids. 2015, 4 pp e251. 9/1/2015. DOI: 10.1038/mtna.2015.25.

.

Enzymatic Ligation of Large Biomolecules to DNA. Rasmus Schøler Sørensen, Anders Hauge Okholm, David Schaffert, Anne Louise Bank Kodal, Kurt V. Gothelf, and Jørgen Kjems. ACS Nano. 2013, 7 (9) pp 8098–8104. August 8, 2013. DOI: 10.1021/nn403386f.

.

Click Chemistry Immobilization of Antibodies on Polymer Coated Gold Nanoparticles. Chiara Finetti, Laura Sola, Margherita Pezzullo, Davide Prosperi, Miriam Colombo, Benedetta Riva, Svetlana Avvakumova, Carlo Morasso, Silvia Picciolini, and Marcella Chiari. Langmuir. 2016, 32, pp 7435-7441. July 1, 2016. DOI: 10.1021/acs.langmuir.6b01142.

.

Towards personalized peptide-based cancer nanovaccines: a facile and versatile synthetic approach. Hamilton Kakwere, Elizabeth S Ingham, Riley Allen, Lisa M Mahakian, Sarah M Tam, Hua Zhang, Matthew Thomas Silvestrini, Jamal S Lewis, and Katherine W. Ferrara. Bioconjugate Chemistry. 2017, pp 1-27. September 28, 2017. DOI: 10.1021/acs.bioconjchem.7b00502.

.

Energy Transport in PEG Oligomers: Contributions of Different Optical Bands. Layla N Qasim, Arkady A Kurnosov, Yuankai Yue, Zhiwei Lin, Alexander L Burin, and Igor V Rubtsov. The Journal of Physical Chemistry. 2016, October 31, 2016. DOI: 10.1021/acs.jpcc.6b09389.

.

Peptide-Targeted Nanoglobular Gd-DOTA Monoamide Conjugates for Magnetic Resonance Cancer Molecular Imaging. Mingqian Tan, Xueming Wu, Eun-Kee Jeong, Qianjin Chen, and Zheng-Rong Lu. Biomacromolecules. 2010, 11 (3) pp 754–761. March 8, 2010. DOI:10.1021/bm901352v.

.

ADIBO-Based ”Click” Chemistry for Diagnostic Peptide Micro-Array Fabrication: Physicochemical and Assay Characteristics. Denis Prim, Fabien Rebeaud, Vincent Cosandey, Roger Marti, Philippe Passeraub and Marc E. Pfeifer. ADIBO-Based ”Click” Chemistry for Diagnostic Peptide Micro-Array Fabrication: Physicochemical and Assay Characteristics. Denis Prim, Fabien Rebeaud, Vincent Cosandey, Roger Marti, Philippe Passeraub and Marc E. Pfeifer. Molecules. 2013, 18 pp 9833-9849. August 16, 2013. DOI: 10.3390/molecules18089833.

.

Ballistic energy transport along PEG chains: distance dependence of the transport efficiency. Zhiwei Lin , Nan Zhang , Janarthanan Jayawickramarajah and Igor V. Rubtsov. Physical Chemistry Chemical Physics. 2012, 30 (14) pp 10445-10454. April 12, 2012. DOI: 10.1039/C2CP40187H.

.

Design and synthesis of glycoprotein-based multivalent glyco-ligands for influenza hemagglutinin and human galectin-3. Helen Wanga, Wei Huang, Jared Orwenyo, Aditi Banerjee, Gerardo R. Vasta, Lai-Xi Wang. Bioorganic & Medicinal Chemistry. 2013, 21 (7) pp 2037–2044. April 1, 2013. DOI: 10.1016/j.bmc.2013.01.028.

.

Azido-dPEG®x-TFP ester

Thermally reversible nanoparticle gels with tuneable porosity showing structural coulour. Z. Ruff, P. Cloetens, T. O'Neill, C.P. Grey, and E. Eiser. Physical Chemistry Chemical Physics (PCCP). 2018, 20, pp 467-477. 11/28/2017. DOI: 10.1039/C7CP04835A.

.

Towards Colloidal Self-Assembly for Functional Materials. Zachary M. Ruff. University of Cambridge Department of Phyics, Cavendish Lab, Darwin College Thesis for the Degree of Doctor of Philosophy. 2017, pp 1-135. September 29, 2017.

.

Bis-dPEG®x-acid

Controlled PEGylation of Monodisperse Fe3O4 Nanoparticles for Reduced Non-Specific Uptake by Macrophage Cells. Jin Xie, Chenjie Xu, Nathan Kohler, Yanglong Hou, and Shouheng Sun. Advanced Materials. 2007, 19 (20) pp 3163-3166. October 17, 2007. DOI: 10.1002/adma.200701975.

.

Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in celiac disease. Jiang Xia, Elin Bergseng, Burkhard Fleckenstein, Matthew Siegel, Chu-Young Kim, Chaitan Khosla and Ludvig M. Sollid. Bioorganic & Medicinal Chemistry. 2007, 15 (20), pp 6565-6573. October 15, 2007. DOI: 10.1016/j.bmc.2007.07.001.

.

50-O-Aliphatic and amino acid ester prodrugs of (_)-b-D-(2R,4R)-dioxolane-thymine (DOT): Synthesis, anti-HIV activity, cytotoxicity and stability studies. Yuzeng Liang, Ashoke Sharon , Jason P. Grier, Kimberly L.Rapp , Raymond F. Schinazi, Chung K. Chu. Bioorganic & Medicinal Chemistry. 2009, 17 (3) pp 1404–1409 February 1, 2009. DOI: 10.1016/j.bmc.2008.10.078.

.

Dimeric analogs of immunosuppressive decapeptide fragment of ubiquitin. Alicja Kluczyk, Marzena Cydzik, Monika Biernat, Remigiusz Bąchor,Paweł Pasikowski, Piotr Stefanowicz, Jolanta Artym, Michał Zimecki and Zbigniew Szewczuka. Journal of Peptide Science. 2012, 18 (7) pp 456-465. May 25, 2012. DOI: 10.1002/psc.2416.

.

Controlled PEGylation of Monodisperse Fe3O4 Nanoparticles for Reduced Non-Specific Uptake by Macrophage Cells. Jin Xie, Chenjie Xu, Nathan Kohler, Yanglong Hou, and Shouheng Sun. Advanced Materials. 2007, 19 (20) pp 3163-3166. October 17, 2007. DOI: 10.1002/adma.200701975.

.

Protein-Functionalized Synthetic Antiferromagnetic Nanoparticles for Biomolecule Detection and Magnetic Manipulation. Aihua Fu, Wei Hu, Liang Xu, Robert J. Wilson, Heng Yu, Sebastian J. Osterfeld, Sanjiv S. Gambhir, and Shan X. Wang. Angewandte Chemie, International Edition 2009 48 (9) p 1620-1624. January 1, 2010. DOI:10.1002/anie.200803994.

.

Bis-dPEG®x-NHS ester

Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in celiac disease. Jiang Xia, Elin Bergseng, Burkhard Fleckenstein, Matthew Siegel, Chu-Young Kim, Chaitan Khosla and Ludvig M. Sollid. Bioorganic & Medicinal Chemistry. 2007, 15 (20) pp 6565–6573. October 15, 2007. DOI: 10.1016/j.bmc.2007.07.001.

.

Serum albumin ‘camouflage’ of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Andrzej S. Pitek, Slater A. Jameson, Frank A. Veliz, Sourabh Shukla, and Nicole F. Steinmetz. Biomaterials. 2016, 89 pp 89-97, February 23, 2016. DOI: 10.1016/j.biomaterials.2016.02.032.

.

Surface Modification on Acoustic Wave Biosensors for Enhanced Specificity. Onursal Onen, Asad A. Ahmad, Rasim Guldiken and Nathan D. Gallant. Sensors. 2012, 12 pp 12317-12328. September 10, 2012. DOI: 10.3390/s120912317.

.

Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in celiac disease. Jiang Xia, Elin Bergseng, Burkhard Fleckenstein, Matthew Siegel, Chu-Young Kim, Chaitan Khosla and Ludvig M. Sollid. Bioorganic & Medicinal Chemistry. 15 (2007) pp 6565–6573. July 25, 2007. DOI: 10.1016/j.bmc.2007.07.001.

.

Ligand-regulated oligomerization of b2-adrenoceptors in a model lipid bilayer. Juan Jose´ Fung, Xavier Deupi, Leonardo Pardo, Xiao Jie Yao, Gisselle A Velez-Ruiz, Brian T DeVree, Roger K Sunahara and Brian K Kobilka. The EMBO Journal, 2009, 28, pp 3315–3328. September 17, 2009. DOI: 10.1038/emboj.2009.267.

.

Design of a Potent D-Peptide HIV-1 Entry Inhibitor with a Strong Barrier to Resistance. Brett D. Welch, J. Nicholas Francis, Joseph S. Redman, Suparna Paul, Matthew T. Weinstock, Jacqueline D. Reeves, Yolanda S. Lie, Frank G. Whitby, Debra M. Eckert, Christopher P. Hill, Michael J. Root, and Michael S. Kay. Journal of Virology. 2010, 84 (21) pp 11235–11244. November 2010. DOI: 10.1128/JVI.01339-10.

.

Monitoring the switching of single BSA-ATTO 488 molecules covalently end-attached to a pH responsive PAA brush. Namik Akkilic, Robert Molenaar, Mireille M.A.E. Claessens, Christian Blum, and Wiebe M. de Vos. Langmuir. 2016, pp 1-10. August 15, 2016. DOI: 10.1021/acs.langmuir.6b01064.

.

Surface Functionalization and Analysis Thereof for an Ovarian Cancer Diagnostic Biosensor. Asad Ali Ahmad. USF Scholor Commons. 2011, 1 (1) pp 297 416. June 21, 2011. DOI: scholarcommons.usf.edu/etd/2977.

.

Interdomain regulation of the ATPase activity of the ABC transporter hemolysin B from E. coli. Sven Reimann, Gereon Poschmann, Kerstin Kanonenbera, Kai Stuhler, Sander H.J. Smits, and Lutz Schmitt. Biochemical Journal. 2016, June 8, 2016. DOI: 10.1042/BCJ20160154.

.

Redox-Responsive Self-Assembly of Amphiphilic Multiblock Rod–Coil Polymers. Taek-Gyoung Kim, Chingu Kim, and Ji-Woong Park. Macromolecules. 2017, 50 (20) pp 8185–8191. 10/4/2017. DOI: 10.1021/acs.macromol.7b01650.

.

Dynamic electromagnetophoretic force analysis of a single binding interaction between lectin and mannan polysaccharide on yeast cell surface. Yoshinori Iigunia and Hitoshi Watarai. Analyst. 2010, 135 (6) pp 1426–1432. March 16, 2010. DOI: 10.1039/b924339a.

.

117To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 124: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Phosphoramidate and phosphate prodrugs of (_)-b-D-(2R,4R)-dioxolane-thymine: Synthesis, anti-HIV activity and stability studies. Yuzeng Liang, Janarthanan Narayanasamy, Raymond F. Schinazib and Chung K. Chua. Bioorganic & Medicinal Chemistry. 2006, 14 (7) pp 2178–2189. April 1, 2006. DOI: 10.1016/j.bmc.2005.11.008.

.

Orientation-regulated immobilization of Jagged1 on glass substrates for ex vivo proliferation of a bone marrow cell population containing hematopoietic stem cells. Hiroyuki Toda, Masaya Yamamoto, Hiroshi Kohara, Yasuhiko Tabata. Biomaterials. 2011, 32 (29) pp 6920-6928. October 2011. DOI: 10.1016/j.biomaterials.2011.05.093.

.

Potent D-peptide inhibitors of HIV-1 entry. Brett D. Welch, Andrew P. VanDemark, Annie Heroux, Christopher P. Hill, and Michael S. Kay. PNAS. 2007, 104 (43) pp 16828-16833. October 23, 2007. DOI: 10.1073/pnas.0708109104.

.

Redox-Responsive Self-Assembly of Amphiphilic Multiblock Rod–Coil Polymers. Taek-Gyoung Kim, Chingu Kim, and Ji-Woong Park. Macromolecules. 2017, 50 (20) pp 8185–8191. 10/4/2017. DOI: 10.1021/acs.macromol.7b01650.

.

Redox-Responsive Self-Assembly of Amphiphilic Multiblock Rod–Coil Polymers. Taek-Gyoung Kim, Chingu Kim, and Ji-Woong Park. Macromolecules. 2017, 50 (20) pp 8185–8191. 10/4/2017. DOI: 10.1021/acs.macromol.7b01650.

.

Redox-Responsive Self-Assembly of Amphiphilic Multiblock Rod–Coil Polymers. Taek-Gyoung Kim, Chingu Kim, and Ji-Woong Park. Macromolecules. 2017, 50 (20) pp 8185–8191. 10/4/2017. DOI: 10.1021/acs.macromol.7b01650.

.

Inhibition of HLA-DQ2 Mediated Antigen Presentation by Analogues of a High Affinity 33-Residue Peptide from α2-Gliadin. Jiang Xia, Matthew Siegel, Elin Bergseng, Ludvig M. Sollid, and Chaitan Khosla. Journal of the American Chemical Society 2006 128 (6) pp 1859-1867 February 15, 2006. DOI: 10.1021/ja056423o.

.

Bis-dPEG®x-PFP & TFP esters

Holistic Assessment of Covalently Labeled Core–Shell Polymeric Nanoparticles with Fluorescent Contrast Agents for Theranostic Applications. Tiffany P. Gustafson, Young H. Lim, Jeniree A. Flores, Gyu Seong Heo, Fuwu Zhang, Shiyi Zhang, Sandani Samarajeewa, Jeffery E. Raymond, and Karen L. Wooley. Langmuir. 2014, January 6, 2014. DOI: 10.1021/la403943w.

.

Inhibiting complex IL-17A and IL-17RA interactions with a linear peptide. Shenping Liu, Joel Desharnais, Parag V. Sahasrabudhe, Ping Jin, Wei Li, Bryan D. Oates, Suman Shanker, Mary Ellen Banker, Boris A. Chrunyk, Xi Song, Xidong Feng, Matt Griffor, Judith Jimenez, Gang Chen, David Tumelty, Abhijit Bhat, Curt W. Bradshaw, Gary Woodnutt, Rodney W. Lappe, Atli Thorarensen, Xiayang Qiu, Jane M. Withka, and Lauren D. Wood. Scientific Reports. 2016, 6 (26071). May 17, 2016. DOI: 10.1038/srep26071.

.

Bis-MAL-dPEG®x

Enhanced Fluorescence resonance energy transfer immunoassay with improved sensitivity based on the Fab’-based immunoconjugates. Yoshiyuki Ohiro, Hiroshi Ueda, Norio Shibata, Teruyuki Nagamune. Analytical Biochemistry. 2007, 360 (2) pp 266-272. January 15, 2007. DOI: 10.1016/j.ab.2006.10.025.

.

X-ray Photoelectron Spectroscopy and Differential Capacitance Study of Thiol-Functional PolysiloxaneFilms on Gold Supports. Patrick A. Johnson and Rastislav Levicky. Langmuir. 2004, 20 (22) pp 9621-9627.September 28, 2004. DOI: 10.1021/la048458s.

.

Polymercaptosiloxane Anchor Films for Robust Immobilization of Biomolecules to Gold Supports. Patrick A. Johnson and  Rastislav Levicky. Langmuir . 2003, 19 (24) pp10288-10294. October 30, 2003. DOI: 10.1021/la035102s.

.

A Divalent Immunotoxin Formed by the Disulfide Bond between Hinge Regions of Fab Domain. SeongHyeok Choi, JiEun Kim, YongChan Lee, Young-Ju Jang, Ira Pastan, MuHyeon Choe. Bull Korean Chem.Soc. 2001, 22 (12) pp 1361-1365. September 3, 2001. DOI: www.pdf.lookchem.com/pdf/32/77fb36ea-eea2-4741-a825-b3234cd24299.pdf.

.

Enhanced Fluorescence resonance energy transfer immunoassay with improved sensitivity based on the Fab’-based immunoconjugates. Yoshiyuki Ohiro, Hiroshi Ueda, Norio Shibata, Teruyuki Nagamune. Analytical Biochemistry. 2007, 360 (2) pp 266-272. January 15, 2007. DOI:10.1016/j.ab.2006.10.025.

.

Quantitative evaluation of the lengths of homobifunctional protein cross-linking reagents used as molecular rulers. NORA S. GREEN, EMIL REISLER, K.N. HOUK. Protein Science. 2001, 10 (7) pp 1293-1304. March 23, 2010. DOI: 10.1101/ps.51201.

.

In vivo mapping of a dynamic ribonucleoprotein granule interactome in early Drosophila embryos. Jimiao Zheng, Ming Gao, Nhan Huynh, Samuel J. Tindell, Hieu D. L. Vo, W. Hayes McDonald, and Alexey L. Arkov. Febs Open Bio. 2016, pp 1-9. October 3, 2016. DOI: 10.1002/2211-5463.12144.

.

Effects of modification at the fifth residue of l-conotoxin GIIIA with bulky tags on the electrically stimulated contraction of the rat diaphragm. M. Nakamura, Y. Oba, H. Nakamura, Y. Ishida, T. Kohno, K. Sato. Journal Peptide Res. 2004, 64 (3) pp 110-117. May 30, 2004. DOI: 10.1111/j.1399-3011.2004.00175.x.

.

Backbone Degradable Multiblock N-(2-Hydroxypropyl)methacrylamide Copolymer Conjugates via Reversible Addition Fragmentation Chain Transfer Polymerization and Thiol-ene Coupling Reaction. Huaizhong Pan, Jiyuan Yang, Pavla Kopečková, and Jindřich Kopeček. Biomacromolecules. 2011, 12 (1) pp 247–252. January 10, 2011. DOI:10.1021/bm101254e.

.

X-ray photoelectron spectroscopy and infrared spectroscopy study of maleimide-activated supports for immobilization of oligodeoxyribonucleotides. Gang Shen, Maria Francis G. Anand and Rastislav Levicky.Nucleic Acids Research. 2004, 32 (20) pp 5973-5980. November 10, 2004. DOI: 10.1093/nar/gkh932.

.

Chemical Trapping of the Dynamic MutS-MutL Complex Formed in DNA Mismatch Repair in Escherichia coli. Ines Winkler, Andreas D. Marx, Damien Lariviere, Roger J. Heinze, Michele Cristovao, Annet Reumer, Ute Curth, Titia K. Sixma, and Peter Friedhoff. JBC. 2011, 286 (19) pp 17326–17337. May 13, 2011. DOI:10.1074/jbc.M110.187641.

.

Disulfide Sensitivity in the Env Protein Underlies Lytic Inactivation of HIV-1 by Peptide Triazole Thiols. Lauren D. Bailey, Ramalingam Venkat Kalyana Sundaram, Huiyuan Li, Caitlin Duffy, Rachna Aneja, Arangassery Rosemary Bastian, Andrew P. Holmes, Kantharaju Kamanna, Adel A. Rashad and Irwin Chaiken. ACS Chemical Biology. 2015, October 12, 2015. DOI: 10.1021/acschembio.5b00381.

.

Mitotic Spindle Assembly around RCC1-Coated Beads in Xenopus Egg Extracts. David Halpin, Petr Kalab, Jay Wang, Karsten Weis, Rebecca Heald. PLoS Bio. 2011, 9 (12) pp e1001225. December 27, 2011. DOI: 10.1371/journal.pbio.1001225.

.

SWI/SNF- and RSC-Catalyzed Nucleosome Mobilization Requires Internal DNA Loop Translocation within Nucleosomes. Ning Liu, Craig L. Peterson and Jeffrey J. Hayes. Molecular and Cellular Biology. 2011, 31 (20), pp 4165-4177. August 22, 2011. DOI: 10.1128/MCB.05605-11.

.

Functional Characterization of Rhodopsin Monomers and Dimers in Detergents. Beata Jastrzebska, Tadao Maeda, Li Zhu, Dimitrios Fotiadis, Slawomir Filipek, Andreas Engel, Ronald E. Stenkamp, and Krzysztof Palczewskia. JBC. 2004, 279 (52) pp 54663-54675. December 24, 2004. DOI: 10.1074/jbc.M408691200.

.

Purification, characterization and cloning of a ricin B-like lectin from mushroom Clitocybe nebularis with antiproliferative activity against human leukemic T cells. Jure Pohleven, Nataša Obermajer, Jerica Sabotič, Sabina Anžlovar, Kristina Sepčić, Janko Kos , Bogdan Kralj, Borut Štrukelj, Jože Brzin. Biochimica et Biophysica Acta (BBA) - General Subjects. 2009, 1790 (3) pp 173-181. December 8, 2008. DOI: 10.1016/j.bbagen.2008.11.006.

.

Analysis of the Quaternary Structure of the MutL C-terminal Domain. Jan Kosinski, Ina Steindorf, Janusz M. Bujnicki, Luis Giron-Monzon and Peter Friedhoff. Journal of Molecular Biology. 2005, 351 (4) pp 895-909. August 26, 2005. DOI: 10.1016/j.jmb.2005.06.044.

.

Development of a homogeneous competitive immunoassay for phosphorylated protein antigen based on the enhanced fluorescence resonance energy transfer technology. Yoshiyuki Ohiro,1,⁎ Hiroshi Ueda,2,3 Norio Shibata,1 and Teruyuki Nagamune. Journal of Bioscience and Bioengineering. 2010, 109 (1), pp 15–19. July 29, 2009. DOI: 10.1016/j.jbiosc.2009.07.004.

.

Polymercaptosiloxane Anchor Films for Robust Immobilization of Biomolecules to Gold Supports. Patrick A. Johnson and  Rastislav Levicky. Langmuir . 2003, 19 (24) pp10288-10294. October 30, 2003. DOI: 10.1021/la035102s.

.

Kinetics of endophilin N-BAR domain dimerization and membrane interactions. Benjamin R. Capraro, Zheng Shi, Tingting Wu, Zhiming Chen, Joanna M. Dunn, Elizabeth Rhoades, Tobias Baumgart. Journal of Biological Chemistry. 2013, 288 (11) March 12, 2013. DOI: 10.1074/jbc.M112.435511.

.

X-ray Photoelectron Spectroscopy and Differential Capacitance Study of Thiol-Functional Polysiloxane Films on Gold Supports. Patrick A. Johnson and Rastislav Levicky. Langmuir. 2004, 20 (22) pp 9621-9627.September 28, 2004. DOI: 10.1021/la048458s.

.

Mapping Protein-Protein Interactions between MutL and MutH by crosslinking. Luis Giron-Monzon, Laura Manelyte, Robert Ahrends, Dieter Kirsch, Bernhard Spengler, and Peter Friedhoff. J. Biol. Chem. 2004, 279 ( 47) pp 49338-49345. September 14, 2004. DOI: 10.1074/jbc.M409307200.

.

Bis-Maleimide amine, TFA salt

Mono-PEGylated Dimeric Exendin-4 as High Receptor Binding and Long-Acting Conjugates for Type 2 Anti-Diabetes Therapeutics.Tae Hyung Kim, Hai Hua Jiang, Seulki Lee, Yu Seok Youn, Chan Woong Park,Youngro Byun, Xiaoyuan Chen, and Kang Choon Lee. Bioconjugate Chem. 2011, 22 (4), pp 625–632. March 14, 2011. DOI: 10.1021/bc100404x.

.

Reorienting the Fab Domains of Trastuzumab Results in Potent HER2 Activators. Justin M. Scheer, Wendy Sandoval, J. Michael Elliott, Lily Shao, Elizabeth Luis, Sock-Cheng Lewin-Koh, Gabriele Schaefer, Richard Vandlen. PLOS ONE. 2012, 7 (12) e51817. December 20, 2012. DOI: 10.1371/journal.pone.0051817.

.

Bis-MAL-Lysine-dPEG®₄-acid

Mono-PEGylated Dimeric Exendin-4 as High Receptor Binding and Long-Acting Conjugates for Type 2 Anti-Diabetes Therapeutics. Tae Hyung Kim, Hai Hua Jiang, Seulki Lee, Yu Seok Youn, Chan Woong Park,Youngro Byun, Xiaoyuan Chen, and Kang Choon Lee. Bioconjugate Chemistry. 2011, 22 (4), pp 625–632. March 14, 2011. DOI: 10.1021/bc100404x.

.

Bis-MAL-Lysine-dPEG®₄-TFP ester

Mono-PEGylated Dimeric Exendin-4 as High Receptor Binding and Long-Acting Conjugates for Type 2 Anti-Diabetes Therapeutics.Tae Hyung Kim, Hai Hua Jiang, Seulki Lee, Yu Seok Youn, Chan Woong Park,Youngro Byun, Xiaoyuan Chen, and Kang Choon Lee, Bioconjugate Chem., 2011, 22 (4), pp 625–632 March 14, 2011. DOI: 10.1021/bc100404x.

.

Diamido-dPEG®₁₁-diamine

Visualizing Active Enzyme Complexes Using a Photoreactive Inhibitor for Proximity Ligation – Application on y-Secretase. Sophia Schedin-Weiss, Mitsuhiro Inoue, Yasuhiro Teranishi, Natsuko Goto Yamamoto, Helena Karlstrom, Bengt Winblad, Lars O. Tjernberg. PLoS ONE 2013, 8 (5) e63962. May 24, 2013. DOI:10.1371/journal.pone.0063962.

.

MAL-dPEG®x-acid

Synthesis and anti-HIV activity of trivalent CD4-mimetic miniproteins. Hengguang Li, Yongjun Guan, Agnieszka Szczepanska, Antonio J. Moreno-Vargas, Ana T. Carmona, Inmaculada Robina, George K. Lewis and Lai-Xi Wang. Bioorganic & Medicinal Chemistry. 2007, 15 (12) pp 4220–4228. June 15, 2007. doi.org/10.1016/j.bmc.2007.03.064.

.

New Perspectives in the Renin-Angiotensin-Aldosterone System (RAAS) II: Albumin Suppresses Angiotensin Converting Enzyme (ACE) Activity in Human. Miklos Fagyas, Katalin Uri, Ivetta M. Siket, Gabor A. Fulop, Viktoria Csato, Andrea Darago, Judit Boczan, Emese Banyai, Istvan Elek Szentkiralyi, Tamas Miklos Maros, Tamas Szerafin, Istvan Edes, Zoltan Papp, Attila Toth. PLoS ONE. 2014, 9 (4) e87844. April, 1 2014. DOI: 10.1371/journal.pone.0087844.

.

Design and synthesis of tesirine, a clinical antibody-drug conjugate pyrrolobenzodiazepine dimer payload. Arnaud Charles Tiberghien, Jean-Noel Levy, Luke A. Masterson, Neki V. Patel, Lauren R. Adams, Simon Corbett, David G. Williams, John A. Hartley, and Philip W. Howard. ACS Medicinal Chemistry Letters. 2016, May 24, 2016. DOI: 10.1021/acsmedchemlett.6b00062.

.

New Perspectives in the Renin-Angiotensin-Aldosterone System (RAAS) II: Albumin Suppresses Angiotensin Converting Enzyme (ACE) Activity in Human. Miklos Fagyas, Katalin Uri, Ivetta M. Siket, Gabor A. Fulop, Viktoria Csato, Andrea Darago, Judit Boczan, Emese Banyai, Istvan Elek Szentkiralyi, Tamas Miklos Maros, Tamas Szerafin, Istvan Edes, Zoltan Papp, Attila Toth. PLoS ONE. 2014, 9 (4) e87844. April, 1 2014. DOI: 10.1371/journal.pone.0087844.

.

Synthesis and anti-HIV activity of trivalent CD4-mimetic miniproteins. Hengguang Li, Yongjun Guan, Agnieszka Szczepanska, Antonio J. Moreno-Vargas, Ana T. Carmona, Inmaculada Robina, George K. Lewis and Lai-Xi Wang. Bioorganic & Medicinal Chemistry. 2007, 15 (12) pp 4220–4228. June 15, 2007. DOI: org/10.1016/j.bmc.2007.03.064.

.

118To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 125: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

MAL-dPEG®x-NHS ester

Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in celiac disease. Jiang Xia, Elin Bergseng, Burkhard Fleckenstein, Matthew Siegel, Chu-Young Kim, Chaitan Khosla and Ludvig M. Sollid. Bioorganic & Medicinal Chemistry. 2007, 15 (20), pp 6565–6573. October 15, 2007. DOI:10.1016/j.bmc.2007.07.001.

.

Biomimetic Ligands for Immunoglobulin-M Purification. Satyen Gautam. National University of Singapore. 2010, April 12, 2010. DOI: www.scholarbank.nus.edu.sg/handle/10635/22872.

.

Device for continuous extracorporeal blood purification using target-specific metal nanomagnets. Inge K. Herrmann, Riccardo E. Bernabei, Martin Urner, Robert N. Grass, Beatrice Beck-Schimmer and Wendelin J. Stark. Nephrol Dial Transplant. 2011, 26 (9) pp 2948-2954. February 10, 2011. DOI: 10.1093/ndt/gfq846.

.

A sandwich-type DNA array platform for detection of GM targets in multiplex assay. Sena Cansız, Can Ozen, Ceren Bayrac, A. Tahir Bayrac, Fatma Gul, Murat Kavruk, Remziye Yılmaz, Fusun Eyidogan, Huseyin, Avni Oktem. European Food Research and Technology. 2012, 235 (3) pp 429-437. July 6, 2012. DOI: 10.1007/s00217-012-1767-y.

.

Serum albumin ‘camouflage’ of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Andrzej S. Pitek, Slater A. Jameson, Frank A. Veliz, Sourabh Shukla, and Nicole F. Steinmetz. Biomaterials. 2016, 89 pp 89-97, February 23, 2016. DOI: 10.1016/j.biomaterials.2016.02.032.

.

A virus-like particle vaccine platform elicits heightened and hastened local lung mucosal antibody production after a single dose. Laura E. Richert, Amy E. Servidb, Ann L. Harmsen, Agnieszka Rynda-Apple, Soo Han, James A. Wiley, Trevor Douglas, Allen G. Harmsen. Vaccine. 2012, 30 (24) pp 3653-3665. May 21, 2012. DOI: 10.1016/j.vaccine.2012.03.035.

.

Attachment of hydrogel microstructures and proteins to glass via thiol-terminated silanes. Jeong Hyun Seo, Dong-Sik Shin, Priam Mukundan, Alexander Revzin. Colloids and Surfaces B: Biointerfaces. 2012, 98 pp 1–6. October 1, 2012. DOI: org/10.1016/j.colsurfb.2012.03.025.

.

Optimization, Production and Characterization of a CpG-Oligonucleotide-Ficoll Conjugate Nanoparticle Adjuvant for Enhanced Immunogenicity of Anthrax Protective Antigen. Bob Milley, Radwan Kiwan, Gary S. Ott, Carlo Calacsan, Melissa Kachura, John D Campbell, Holger Kanzler, and Robert L. Coffman.Bioconjugate Chemistry. 2016, April 13, 2016. DOI: 10.1021/acs.bioconjchem.6b00107.

.

Extracellular Antibody Drug Conjugates Exploiting the Proximity of Two Proteins. David J Marshall, Scott S Harried, John L Murphy, Chad A Hall, Mohammed S Shekhani, Christophe Pain, Conner A Lyons, Antonella Chillemi, Fabio Malavsi, Homer L Pearce, Jon S Thorson, and James R Prudent. MT Open. 2016. July 19, 2016. DOI: 10.1038/mt.2016.119.

.

Sensitive detection of small molecule–protein interactions on a metal-insulator-metal label-free biosensing platform. Amir Syahir, Kotaro Kajikawa and Hisakazu Mihara. Europe PubMed Central. 2012, 7 (8) pp 1867-1874. May 25, 2012. DOI: 10.1002/asia.201200138.

.

Mapping of Molecular Structure of the Nanoscale Surface in Bio-nanoparticles. Luciana M Herda, Delyan R Hristov, Maria Cristina Lo Giudice, Ester Polo, and Kenneth A Dawson. Journal of the American Chemical Society. 2016. December 22, 2016. DOI: 10.1021/jacs.6b12297.

.

Molecular Pincers: Antibody-Based Homogeneous Protein Sensors. Ewa Heyduk, Benjamin Dummit, Yie-Hwa Chang, and Tomasz Heyduk. Analytical Chemistry. 2008, 80 (13) pp 5152-5159. May 21, 2008. DOI: 10.1021/ac8004154.

.

Immune Response Modulation of Conjugated Agonists with Changing Linker Length. Keun Ah Ryu, Katarzyna Slowinska, Troy Moore, and Aaron Esser-Kahn. ACS Chemical Biology. 2016, October 17, 2016. DOI: 10.1021/acschembio.6b00895.

.

Development of a widefield SERS imaging endoscope. Patrick Z .McVeigh, Rupananda J. Mallia, Israel Veilleux, Brian C. Wilson. SPIE Proceedings. 2012, 8217 (1) pp 1-6. February 13, 2012. DOI: 10.1117/12.907304.

.

Small-Animal SPECT/CT of HER2 and HER3 Expression in Tumor Xenografts in Athymic Mice Using Trastuzumab Fab–Heregulin Bispecific Radioimmunoconjugates. Eva J. Razumienko, Deborah A. Scollard, and Raymond M. Reilly. Journal of Nuclear Medicine. 2012, 53 (12) pp 1943–1950. October 24, 2012. DOI: 10.2967/jnumed.112.106906.

.

Chlorotoxin Labeled Magnetic Nanovectors for Targeted Gene Delivery to Glioma. Forrest M. Kievit, Omid Veiseh, Chen Fang, Narayan Bhattarai, Donghoon Lee, Richard G. Ellenbogen and Miqin Zhang. ACS Nano. 2010, 4 (8) pp 4587–4594. July 20, 2010. DOI: 10.1021/nn1008512.

.

Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in celiac disease. Jiang Xia, Elin Bergseng, Burkhard Fleckenstein, Matthew Siegel, Chu-Young Kim, Chaitan Khosla and Ludvig M. Sollid. Bioorganic & Medicinal Chemistry. 2007, 20 (15), pp 6565–6573. July 25, 2007. DOI: 10.1016/j.bmc.2007.07.001.

.

Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in celiac disease. Jiang Xia, Elin Bergseng, Burkhard Fleckenstein, Matthew Siegel, Chu-Young Kim, Chaitan Khosla and Ludvig M. Sollid. Bioorganic & Medicinal Chemistry. 2007, 15 (20), pp 6565-6573. October 15, 2007. DOI: 10.1016/j.bmc.2007.07.001.

.

A sandwich-type DNA array platform for detection of GM targets in multiplex assay. Sena Cansız, Can Ozen, Ceren Bayrac, A. Tahir Bayrac, Fatma Gul, Murat Kavruk, Remziye Yılmaz, Fusun Eyidogan, Huseyin, Avni Oktem. European Food Research and Technology. 2012, 235 (3) pp 429-437. July 6, 2012. DOI: 10.1007/s00217-012-1767-y.

.

Attaching Antibodies to AFM Probes with the Sulfhydryl Reactive PEG Tether, NHS-PEG18-PDP. W. Travis Johnson, Ph.D. Agilent Technologies, Inc. 2007, 5989-7702EN. December 18, 2007.

.

Direct Cell Surface Modification withDNAfor the Capture of Primary Cells and the Investigation of Myotube Formation on Defined Patterns. Sonny C. Hsiao, Betty J. Shum, Hiroaki Onoe, Erik S. Douglas, Zev J. Gartner, Richard A. Mathie, Carolyn R. Bertozzi and Matthew B. Francis. Langmuir. 2009, 25 (12), 6985–6991. April 29, 2009. DOI: 10.1021/la900150n.

.

A virus-like particle vaccine platform elicits heightened and hastened local lung mucosal antibody production after a single dose. Laura E. Richert, Amy E. Servidb, Ann L. Harmsen, Agnieszka Rynda-Apple, Soo Han, James A. Wiley, Trevor Douglas, Allen G. Harmsen. Vaccine. 2012, 30 (24) pp 3653-3665. May 21, 2012. DOI: 10.1016/j.vaccine.2012.03.035.

.

New Assay for Quantification of PEGylated Proteins During in Vitro Permeability Studies.Spela Jalen,, Vanja Smilovic, Katarina Fidler, Barbara Podobnik, Maja Marusic, Radovan Komel, Vladka Gaberc-Porekar and Simona Jevsevar. Acta Chimica Slovenica. 2014, 61 (3) pp 615-622. January 15, 2014.

.

Immune Response Modulation of Conjugated Agonists with Changing Linker Length. Keun Ah Ryu, Katarzyna Slowinska, Troy Moore, and Aaron Esser-Kahn. ACS Chemical Biology. 2016, October 17, 2016. DOI: 10.1021/acschembio.6b00895.

.

Extracellular Antibody Drug Conjugates Exploiting the Proximity of Two Proteins. David J Marshall, Scott S Harried, John L Murphy, Chad A Hall, Mohammed S Shekhani, Christophe Pain, Conner A Lyons, Antonella Chillemi, Fabio Malavsi, Homer L Pearce, Jon S Thorson, and James R Prudent. MT Open. 2016. July 19, 2016. DOI: 10.1038/mt.2016.119.

.

Serum albumin ‘camouflage’ of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Andrzej S. Pitek, Slater A. Jameson, Frank A. Veliz, Sourabh Shukla, and Nicole F. Steinmetz. Biomaterials. 2016, 89 pp 89-97, February 23, 2016. DOI: 10.1016/j.biomaterials.2016.02.032.

.

Mapping of Molecular Structure of the Nanoscale Surface in Bio-nanoparticles. Luciana M Herda, Delyan R Hristov, Maria Cristina Lo Giudice, Ester Polo, and Kenneth A Dawson. Journal of the American Chemical Society. 2016. December 22, 2016. DOI: 10.1021/jacs.6b12297.

.

Biocompatible and biodegradable fibrinogen microshperes for tumor-targeted doxorubicin delivery. Jae Yeon Joo, GilYong Park, and Seong Soo A An. International Journal of Nanomedicine. 2015, 10 pp 101-111. September 1, 2015. DOI: 10.2147/IJN.S88381.

.

Enhanced transfection of tumor cells in vivo using “Smart” pH-sensitive TAT-modified pegylated liposomes. Amit A. Kale and Vladimir P. Torchilin. Journal of Drug Targeting. 2007, 15 (7-8) pp 538-545. September 13, 2007. DOI:10.1080/10611860701498203.

.

Specific Binding at the Cellulose Binding Module-Cellulose Interface Observed By Force Spectroscopy. Jason R King, Carleen M. Bowers and Eric J Toone. Langmuir. 2015, 31 (11) March 4, 2015. DOI: 10.1021/la504836u.

.

Attaching Antibodies to AFM Probes with the Sulfhydryl Reactive PEG Tether, NHS-PEG18-PDP. W. Travis Johnson, Ph.D. Agilent Technologies, Inc. 2007, 5989-7702EN. December 18, 2007.

.

Targeting of Primary Breast Cancers and Metastases in a Transgenic Mouse Model Using Rationally Designed Multifunctional SPIONs. Forrest M. Kievit, Zachary R. Stephen, Omid Veiseh, Hamed Arami, Tingzhong Wang, Vy P. Lai, James O. Park, Richard G. Ellenbogen, Mary L. Disis, and Miqin Zhang. ACS Nano. 2012, 6 (3) pp 2591–2601. February 10, 2012. DOI: 10.1021/nn205070h.

.

Protein purification to analyze AAA+ proteolytic machine in vitro. Diego Rojas. Columbia University Academic Commons. 2011.

.

Properties of PEI-based Polyplex Nanoparticles That Correlate With Their Transfection Efficacy. Alexey V Ulasov, Yuri V Khramtsov, Georgiy A Trusov, Andrey A Rosenkranz, Eugene D Sverdlov and Alexander S Sobolev. Molecular Therapy. 2011, 19 (1) pp 103-112. November 2, 2010. DOI:10.1038/mt.2010.233.

.

Antibody-Unfolding and Metastable-State Binding in Force Spectroscopy and Recognition Imaging. Parminder Kaur, Qiang-Fu, Alexander Fuhrmann, Robert Ros, Linda Obenauer Kutner, Lumelle A. Schneeweis, Ryman Navoa,Kirby Steger, Lei Xie, Christopher Yonan, Ralph Abraham, Michael J. Grace, and Stuart Lindsay. Biophysical Journal. 2011, 100 (1) pp 243-250. January 5, 2011. DOI:10.1016/j.bpj.2010.11.050.

.

Device for continuous extracorporeal blood purification using target-specific metal nanomagnets. Inge K. Herrmann, Riccardo E. Bernabei, Martin Urner, Robert N. Grass, Beatrice Beck-Schimmer and Wendelin J. Stark. Nephrol Dial Transplant. 2011, 26 (9), pp 2948-2954. February 10, 2011. DOI: 10.1093/ndt/gfq846.

.

Multifunctional nanoagent for thrombus-targeted fibrinolytic Therapy. Jason R. McCarthy, Irina Y. Sazonova, S. Sibel Erdem, Tetsuya Hara, Brian D. Thompson, Purvish Patel, Ion Botnaru, Charles P. Lin, Guy L. Reed, Ralph Weissleder, and Farouc A. Jaffer. Nanomedicine 2012 7 (7) pp 1017–1028. February 21, 2012. DOI:10.2217/nnm.11.179.

.

Characterization and tumour targeting of PEGylated polylysine dendrimersbearing doxorubicin via a pH labile linker. Lisa M. Kaminskas, Brian D. Kelly, Victoria M. McLeod, Gian Sberna, David J. Owen, Ben J. Boyd, Christopher J.H. Porter. Journal of Controlled Release. 2011, 152 (2) Pages 241-248. June 10, 2011. DOI: 10.1016/j.jconrel.2011.02.005.

.

Mass Spectrometry-Guided Optimization and Characterization of a Biologically Active Transferrin−Lysozyme Model Drug Conjugate. Son N. Nguyen, Cedric E. Bobst, and Igor A. Kaltashov. Molecular Pharmaceutics. 2013, 10 (5) pp 1998−2007. March 27, 2013. DOI: org/10.1021/mp400026y.

.

Application of vasoactive and matrix-modifying drugs can improve polypex delivery to tumors upon intravenous administration. Mikhail O. Durymanov, Alexey V. Yarutkin, Dmitry V. Bagrov, Dmitry V. Klinov, Alexander V. Kedrov, Nikolay K. Chemeris, Andrey A. Rosenkranz, and Alexander S. Sobolev. Journal of Controlled Release. 2016, 232 pp 20-28. April 6, 2016. DOI: 10.1016/j.jconrel.2016.04.011.

.

Optimization, Production and Characterization of a CpG-Oligonucleotide-Ficoll Conjugate Nanoparticle Adjuvant for Enhanced Immunogenicity of Anthrax Protective Antigen. Bob Milley, Radwan Kiwan, Gary S. Ott, Carlo Calacsan, Melissa Kachura, John D Campbell, Holger Kanzler, and Robert L. Coffman.Bioconjugate Chemistry. 2016, April 13, 2016. DOI: 10.1021/acs.bioconjchem.6b00107.

.

A sandwich-type DNA array platformfor detection of GM targets in multiplex assay.Sena Cansız, Can Ozen, Ceren Bayrac, A. Tahir Bayrac, Fatma Gul, Murat Kavruk, Remziye Yılmaz, Fusun Eyidogan, Huseyin, Avni Oktem. European Food Research and Technology. 2012, 235 (3) pp 429-437. July 6, 2012. DOI 10.1007/s00217-012-1767-y.

.

Intercellular and extracellular adhesion signals control cardiac myocyte structural and functional remodeling: mechanosensing mediated by cadherin and hyaluronan receptors. Anant Chopra. iDEA: Drexel E-repository and Archives. 2012, May 2012. http://hdl.handle.net/1860/3777.

.

Fluorescent homogeneous immunosensors for detecting pathogenic bacteria. Ewa Heyduk, Tomasz Heyduk. Analytical Biochemistry. 2010, 396 (2) pp 298–303. September 24, 2009. DOI:10.1016/j.ab.2009.09.039.

.

Enhanced Systemic Anti-Angiogenic siVEGF Delivery using PEGylated Oligo-D-Arginine. Jee Young Chung, Qurrat Ul Ain, Hyun-Lin Lee, So-Mi Kim, and Yong-Hee Kim. Molecular Pharmaceutics. 2017, pp 1-36. July 13, 2017. DOI: 10.1021/acs.molpharmaceut.7b00282.

.

119To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 126: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Reprogramming cardiomyocyte mechanosensing by crosstalk between integrins and hyaluronic acid receptors. Anant Chopra, Victor Lin, Amanda McCollough, Sarah Atzet, Glenn D. Prestwich, Andrew S. Wechsler, Maria E. Murray, Shaina A. Oake, J. Yasha Kresh, Paul A. Janmey. Journal of Biomechanics. 2012, 45 (5), pp 824-831. October 4, 2011. DOI:10.1016/j.jbiomech.2011.11.023.

.

Design and synthesis of tesirine, a clinical antibody-drug conjugate pyrrolobenzodiazepine dimer payload. Arnaud Charles Tiberghien, Jean-Noel Levy, Luke A. Masterson, Neki V. Patel, Lauren R. Adams, Simon Corbett, David G. Williams, John A. Hartley, and Philip W. Howard. ACS Medicinal Chemistry Letters. 2016, May 24, 2016. DOI: 10.1021/acsmedchemlett.6b00062.

.

Photounbinding of Calmodulin from a Family of CaM Binding Peptides. Klaus G. Neumu ller, Kareem Elsayad, Johannes M. Reisecker, M. Neal Waxham, Katrin G. Heinze. PLoS ONE. 2010, 5 (11) pp e14050. November 18, 2010. DOI: 10.1371/journal.pone.0014050.

.

Imaging of Hsp70-positive tumors with cmHsp70.1 antibody-conjugated gold nanoparticles. Mathias K Gehrmann, Melanie A Kimm, Stefan Stangl, Thomas E Schmid, Peter B Noel, Ernst J Runneny, and Gabriele Multhoff. International Journal of Nanomedicine. 2015, 10, pp 5687-5700. September 8, 2015. DOI: 10.2147/IJN.S87174.

.

Chemical cross-linking of HIV-1 Env for direct TLR7/8 ligand conjugation compromises recognition of conserved antigenic determinants. Yu Feng, Mattias N.E. Forsell, Barbara Flynn, William Adams, Karin Loré, Robert Seder, Richard T. Wyatt, Gunilla B. Karlsson Hedestam. Virology. 2013, 446 (1-2) pp 56-65. August 15, 2013. DOI: 10.1016/j.virol.2013.07.028.

.

Detection Methodology Based on Target Molecule-Induced Sequence-Specific Binding to a Single-Stranded Oligonucleotide. Agnieszka Lass-Napiorkowska, Ewa Heyduk, Ling Tian, and Tomasz Heyduk. Analytical Chemistry. 2012, 84 (7), pp 3382–3389. March 7, 2012. DOI: 10.1021/ac3001034.

.

Peptide ligands that use a novel binding site to target both TGF-B receptors. Lingyin Li, Brendan P. Orner, Tao Huang,b Andrew P. Hinck and Laura L. Kiessling. Molecular BioSystems. 2010. 6 (12) pp 2341-2576. September 3, 2010. DOI: 10.1039/c0mb00115e.

.

Immune Response Modulation of Conjugated Agonists with Changing Linker Length. Keun Ah Ryu, Katarzyna Slowinska, Troy Moore, and Aaron Esser-Kahn. ACS Chemical Biology. 2016, October 17, 2016. DOI: 10.1021/acschembio.6b00895.

.

Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Omid Veiseh, Forrest M. Kievit, Chen Fang, Ni Mu, Soumen Jana, Matthew C. Leung, Hyejung Mok, Richard G. Ellenbogen, James O. Park, Miqin Zhang. Biomaterials. 2010, 31 (31) pp 8032-8042. November 2010. DOI: 10.1016/j.biomaterials.2010.07.016.

.

Modular and Orthogonal Post-PEGylation Surface Modifications by Insertion Enabling Penta-functional Ultrasmall Organic-Silica Hybrid Nanoparticles. Kai Ma and Ulrich Wiesner. Chemistry of Materials. 2017, pp 1-18. July 23, 2017. DOI: 10.1021/acs.chemmater.7b02009.

.

A neutralized non-charged polyethylenimine-based system for efficient delivery of siRNA into heart without toxicity. Fang Wang, Lu Gao, Liu-Yi Meng, Jing-Ming Xie, Jing-Wei Xiong, and Ying Luo. ACS Applied Materials and Interfaces. 2016, pp 1-43. November 17, 2016. DOI: 10.1021/acsami.6b13295.

.

A homogeneous fluorescent sensor for human serum albumin. Rongsheng E. Wang, Ling Tian, Yie-Hwa Chang. Journal of Pharmaceutical and Biomedical Analysis. 2012, 63 pp 165-169. April 7, 2012. DOI :10.1016/j.jpba.2011.12.035.

.

A virus-like particle vaccine platform elicits heightened and hastened local lung mucosal antibody production after a single dose. Laura E. Richert, Amy E. Servid, Ann L. Harmsen, Agnieszka Rynda-Apple, Soo Han, James A. Wiley, Trevor Douglas, Allen G. Harmsen. Vaccine. 2012, 30 (24) pp 3653-3665. May 21, 2012. DOI: 10.1016/j.vaccine.2012.03.035.

.

Interaction of Synaptotagmin with Lipid Bilayers, Analyzed by Single-Molecule Force Spectroscopy. Hirohide Takahashi, Victor Shahin, Robert M. Henderson, Kunio Takeyasu, and J. Michael Edwardson. Biophysical Journal. 2010, 99 (8), pp 2550–2558, October 20, 2010. DOI: 10.1016/j.bpj.2010.08.047.

.

Control of Ultrasmall Sub-10 nm Ligand- Functionalized Fluorescent Core-Shell Silica Nanoparticle Growth in Water. Kai Ma, Carlie Mendoza, Margaret Hanson, Ulrike Werner-Zwanziger, Josef Zwanziger and Ulrich Wiesner. Chemistry of Materials. 2015, 27 (11) pp 4119-4133 May 13, 2015. DOI: 10.1021/acs.chemmater.5b01222.

.

Creating Antibacterial Surfaces with the Peptide Chrysophsin‑1. Ivan E. Ivanov, Alec E. Morrison, Jesse E. Cobb, Catherine A. Fahey, and Terri A. Camesano. ACS Applied Materials & Interfaces. 2012, 4 (11) pp 5891−5897. October 8, 2012. DOI: 10.1021/am301530a.

.

Recognition Imaging with a DNA Aptamer. Liyun Lin, Hongda Wang, Yan Liu, Hao Yan, and Stuart Lindsay. Biophysical Journal. 2006, 90 (11), pp 4236-4238. June 1, 2006. DOI: 10.1529/biophysj.105.079111.

.

Design of a Modular Tetrameric Scaffold for the Synthesis of Membrane-Localized D-Peptide Inhibitors of HIV-1 Entry. J. Nicholas Francis, Joseph S. Redman, Debra M. Eckert, and Michael S. Kay. Bioconjugate Chemistry. 2012, 23 (6), pp 1252-1258. May 1, 2012. DOI: 10.1021/bc300076f.

.

New concept of cytotoxic immunoconjugate therapy targeting cancer-induced fibrin clots. Yasunaga M, Manabe S, Matsumura Y. Cancer Science. 2011, 102 (7) pp 1396-1402. May 9, 2011. DOI: 10.1111/j.1349-7006.2011.01954.x.

.

Intravital confocal Raman microscopy with multiplexed SERS contrast agents. Patrick Z. McVeigh, Brian C Wilson. Plasmonics in Biology and Medicine IX. 2012, 8234 PP 82340D. February 9, 2012. DOI: 10.1117/12.907048.

.

3D Porous Chitosan-Alginate Scaffolds as an In Vitro Model for Evaluating Nanoparticle-Mediated Tumor Targeting and Gene Delivery to Prostate Cancer. Kui Wang, Forrest M. Kievit, Stephen J. Florczyk, Zachary R. Stephen, and Miqin Zhang. BioMacromolecules. 2015, September 8, 2015. DOI: 10.1021/acs.biomac.5b01032.

.

Rapid ratiometric biomarker detection with topically applied SERS nanoparticles. Yu “Winston” Wang, Altaz Khan, Madhura Som, Danni Wang, Ye Chen, Steven Y. Leigh, Daphne Meza, Patrick Z. McVeigh, Brian C. Wilson and Jonathan T.C. Liu. Technology. 2014, 2 (2) pp 1-15. June 2014. DOI: 10.1142/S2339547814500125.

.

Direct Cell Surface Modification with DNA for the Capture of Primary Cells and the Investion of Myotube Formation on Defined Patterns. Sonny C. Haiso, Betty J. Shaun, Hiroaki Onoe, Erik S. Douglas, Zev J. Gartner, Richard A. Mathies, Carolyn R. Bertozzi, and Matthew B. Francis. Langmuir. 2009, 25 (12), pp 6985–6991. April 29, 2009. DOI: 10.1021/la900150n.

.

Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles. Farnoosh Roohi, Jessica Lohrke, Andreas Ide, Gunnar Schütz, Katrin Dassler. International Journal of Nanomedicine. 2012, 7 pp 4447–4458. August 10, 2012. DOI: 10.2147/IJN.S33120.

.

Pyrrolobenzodiazepine Dimer Antibody–Drug Conjugates: Synthesis and Evaluation of Noncleavable Drug-Linkers. Stephen J. Gregson, Luke A. Masterson, Binqing Wei, Thomas H. Pillow, Susan D. Spencer, Gyoung-Dong Kang, Shang-Fan Yu, Helga Raab, Jeffrey Lau, Guangmin Li, Gail D. Lewis Phillips, Janet Gunzner-Toste, Brian S. Safina, Rachana Ohri, Martine Darwish, Katherine R. Kozak, Josefa dela Cruz-Chuh, Andrew Polson, John A. Flygare, and Philip W. Howard. Journal of Medical Chemistry. 2017, 60 (23) pp 9490-9507. 11/7/2017. DOI: 10.1021/acs.jmedchem.7b00736.

.

Cell selective targeting of a simian virus 40 virus-like particle conjugated to epidermal growth factor. Yuichi Kitai, Hajime Fukuda, Teruya Enomoto, Yuki Asakawa, Takahiro Suzuki, Satoshi Inouye, Hiroshi Handa. Journal of Biotechnology. 2011, 155 (2) pp 251-256. Sept 10, 2011. DOI: 10.1016/j.jbiotec.2011.06.030.

.

Stem cell membrane engineering for cell rolling using peptide conjugation and tuning of celleselectin interaction kinetics. Hao Cheng, Marta Byrska-Bishop, Cathy T. Zhang, Christian J. Kastrup, Nathaniel S. Hwang, Albert K. Tai, Won Woo Lee, Xiaoyang Xu, Matthias Nahrendorf , Robert Langer, Daniel G. Anderson. Biomaterials. 2012, 33 (20), pp 5004-5012. July 2012. DOI: 10.1016/j.biomaterials.2012.03.065.

.

Conjugation of Peptides to the Passivation Shell of Gold Nanoparticles for Targeting of Cell-Surface Receptors. Lisa Maus, Oliver Dick, Hilmar Bading, Joachim P. Spatz, and Roberto Fiammengo. ACS Nano. 2010, 4 (11), pp 6617–6628. October 12, 2010. DOI: 10.1021/nn101867w.

.

Aptamer-Containing Surfaces for Selective Capture of CD4 Expressing Cells. Qing Zhou, Ying Liu, Dong-Sik Shin, Jaime Silangcruz, Nazgul Tuleuova, and Alexander Revzin. Langmuir. 2012, 28 (34) pp 12544−12549. August 1, 2012. DOI: 10.1021/la2050338.

.

Comparison between polyethylene glycol and zwitterionic polymers as antifouling coatings on wearable devices for selective antigen capture from biological tissue. Kye J. Robinson, Jacob W. Coffey, David A. Muller, Paul R. Young, Mark A. F. Kendall, Kristofer J. Thurecht, Lisbeth Grondahl, and Simon R. Corrie. Biointerphases. 2015, 10 (4) pp 04A305. December 2015. DOI: 10.1116/1.4932055.

.

The use of glass substrates with bi-functional silanes for designing micropatterned cell-secreted cytokine immunoassays. Seo JH, Chen Li, Verkhoturov SV, Schweikert EA, Revzin A. Biomaterials. 2011, 32 (23) pp 5478-5488. August 2011. DOI: 10.1016/j.biomaterials.2011.04.026.

.

A simple DNA handle attachment method for single molecule mechanical manipulation experiments. Duyoung Min, Mark A. Arbing, Robert E. Jefferson, and James U. Bowie. Protein Science, 2016, 25 pp 1535-1544. May 24, 2016. DOI: 10.1002/pro.2952.

.

Extracellular Antibody Drug Conjugates Exploiting the Proximity of Two Proteins. David J Marshall, Scott S Harried, John L Murphy, Chad A Hall, Mohammed S Shekhani, Christophe Pain, Conner A Lyons, Antonella Chillemi, Fabio Malavsi, Homer L Pearce, Jon S Thorson, and James R Prudent. MT Open. 2016. July 19, 2016. DOI: 10.1038/mt.2016.119.

.

NIR light controlled photorelease of siRNA and its targeted intracellular delivery based on upconversion Nanoparticles. Yanmei Yang, Fang Liu, Xiaogang Liu and Bengang Xing. Nanoscale. 2013, 5 (1) pp 231-238. Oct 30, 2012. DOI: 10.1039/C2NR32835F.

.

Affinity-Based Assembly of Peptides on Plasmonic Nanoparticles Delivered Intracellularly with Light Activated Control. Demosthenes P Morales, William Wonderly, Xiao Huang, Meghan McAdams, Amanda Chron, and Norbert O Reich. Bioconjugate Chemistry. 2017, pp 1-6. May 19, 2017. DOI: 10.1021/acs.bioconjchem.7b00276.

.

Controlled co-reconstitution of multiple membrane proteins in lipid bilayer nanodiscs using DNA as a scaffold. Thomas Raschle, Chenxiang Lin, Ralf Jungmann, William M. Shih, and Gerhard Wagner. ACS Chemical Biology. 2015, pp 1-18. September 10, 2015. DOI: 10.1021/acschembio.5b00627.

.

Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA. International Journal of Nanomedicine. 2013, 8 pp 2041–2052. May 20, 2013. DOI: 10.2147/IJN.S43683.

.

Therapy of Murine Pulmonary Aspergillosis with Antibody-Alliinase Conjugates and Alliin. Elena Appel, Alexandra Vallon-Eberhard, Aharon Rabinkov, Ori Brenner, Irina Shin, Keren Sasson, Yona Shadkchan, Nir Osherov, Steffen Jung, and David Mirelman. AAC. 2010. 54 (2) pp 898–906. February 1,2010. DOI: 10.1128/AAC.01267-09.

.

Surface Coating of Nanoparticles Reduces Background Inflammatory Activity while Increasing Particle Uptake and Delivery. Brittany A Moser, Rachel C Steinhardt, and Aaron P Esser-Kahn. ACS Biomaterials Science and Engineering. 2016. December 1, 2016. DOI: 10.1021/acsbiomaterials.6b00473.

.

Surface Coating Directed Cellular Delivery Of TAT-Functionalized Quantum Dots. Yifeng Wei, Nikhil R. Jana, Shawn J. Tan, and Jackie Y. Ying. Bioconjugate Chem. 2009, 20 (9) pp1752-1758. August 14, 2009.  DOI: 10.1021/bc8003777.

.

Transfection efficiency of depolymerized chitosan and epidermal growth factor conjugated to chitosan–DNA polyplexes. Sasamon Supaprutsakul, Wilaiwan Chotigeat, Supreya Wanichpakorn, Ureporn Kedjarune-Leggat. Journal of Materials Science- Materials in Medicine. 2010, 21 (5) pp 1553-1561. May 1, 2010. DOI: 10.1007/s10856-010-3993-9.

.

Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Eric A. Murphy, Bharat K. Majeti, Leo A. Barnes, Milan Makale, Sara M. Weis, Kimberly Lutu-Fuga, Wolfgang Wrasidlo, David A. Cheresh. PNAS. 2008, 105 (27) pp 9343-9348. July 8, 2008. DOI: 10.1073/pnas.0803728105.

.

Cell-Penetrating Peptide-Functionized Quantum Dots for Intracellular Delivery. Betty R. Liu, Yue-Wern Huang, Huey-Jenn Chiang, and Han-Jung Lee, JNN, 2010. 10 (12) pp. 7897-7905. December 2010. DOI: 10.1166/jnn.2010.3012.

.

Immobilizing Reporters for Molecular Imaging of the Extracellular Microenvironment in Living Animals. Zuyong Xia, Yun Xing, Jongho Jeon, Young-Pil Kim, Jessica Gall, Anca Dragulescu-Andrasi, Sanjiv S. Gambhir, and Jianghong Rao. ACS Chemical Biology. 2011, 6 (10), pp 1117–1126. August 10, 2011. DOI: 10.1021/cb200135e.

.

Self-Protecting Bactericidal Titanium Alloy Surface Formed by Covalent Bonding of Daptomycin Bisphosphonates. Chang-Po Chen and Eric Wickstrom. Bioconjugate Chemistry. 2010, 21 (11), pp 1978–1986. Nov. 17, 2010. DOI: 10.1021/bc100136e.

.

120To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 127: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Biocompatible and biodegradable fibrinogen microshperes for tumor-targeted doxorubicin delivery. Jae Yeon Joo, GilYong Park, and Seong Soo A An. International Journal of Nanomedicine. 2015, 10 pp 101-111. September 1, 2015. DOI: 10.2147/IJN.S88381.

.

Biogenic and Synthetic Peptides with Oppositely Charged Amino Acids as Binding Sites for Mineralization. Marie-Louise Lemloh, Klara Altintoprak, Christina Wege, Ingrid M Weiss, and Dirk Rothenstein. Materials. 2017, 10 (119) pp 1-15. January 28, 2017. DOI: 10.3390/ma10020119.

.

Synthesis and Evaluation of Hydrophilic Linkers for Antibody-Maytansinoid Conjugates. Robert Y. Zhao, Sharon D. Wilhelm, Charlene Audette, Gregory Jones, Barbara A. Leece, Alexandru C. Lazar, Victor S. Goldmacher, Rajeeva Singh, Yelena Kovtun, Wayne C. Widdison, John M. Lambert, and Ravi V. J. Chari. J. Medicinal Chemistry. 2011, 54 (10), pp 3606–3623. April 25, 2011. DOI: 10.1021/jm2002958.

.

Maize rayado fino virus virus-like particles expressed in tobacco plants: A new platform for cysteine selective bioconjugation peptide display. Angela Natilla, Rosemarie W. Hammond. Journal of Virological Methods. 2011, 178 (1-2) pp 209-215. September 22, 2011. DOI: 10.1016/j.jviromet.2011.09.013.

.

Elongated plant virus-based nanoparticles for enhanced delivery of thrombolytic therapies. Andrzej Stanislaw Pitek, Yunmei Wang, Sahil Gulati, Huiyun Gao, Phoebe L Stewart, Daniel I. Simon, and Nicole F Steinmetz. Molecular Pharmaceutics. 2017, pp 1-9. September 7, 2017. DOI: 10.1021/acs.molpharmaceut.7b00559.

.

Targeted nanogels: a versatile platform for drug delivery to tumors. Eric A. Murphy, Bharat K. Majeti, Rajesh Mukthavaram, Lisette M. Acevedo,Leo A. Barnes, and David A. Cheresh. Molecular Cancer Therapeutics. 2011, 10 (6) pp 972-982. April 25, 2011. DOI: 10.1158/1535-7163.MCT-10-0729.

.

Inhibiting miRNA in Caenorhabditis elegans using a potent and selective antisense reagent. Genhua Zheng, Victor Ambros and Wen-hong Li, Zheng, Biomed Central Ltd. 2010, 1 (9), April 1, 2010. DOI: 10.1186/1758-907X-1-9.

.

To Target or Not to Target: Active vs. Passive Tumor Homing of Filamentous Nanoparticles Based on Potato virus X. Sourabh Shukla, Nicholas A. DiFranco, Amy M. Wen and Nicole F. Steinmetz. Cellular and Molecular Bioengineering. 2015, pp 1-24. April 8, 2015. DOI: 10.1007/s12195-015-0388-5.

.

Single-molecule detection of phosphorylation-induced plasticity changes during ezrin activation. Dan Liu, Ling Ge, Fengsong Wang, Hirohide Takahashi, Dongmei Wang, Zhen Guo, Shige H. Yoshimura, Tarsha Ward, Xia Ding, Kunio Takeyasu, Xuebiao Yao. FEBS Letters. 2007, 581 (18), pp 3563-3571. July 24, 2007. DOI: 10.1016/j.febslet.2007.06.071.

.

Single molecule tracking of quantum dot-labeled mRNAs in a cell nucleus. Yo Ishihama, Takashi Funatsu. Biochemical and Biophysical Research Communications. 2009, 381 pp 33-38. February 8, 2009. DOI:10.1016/j.bbrc.2009.02.001.

.

Therapeutic Anti-Methamphetamine Antibody Fragment-Nanoparticle Conjugates: Synthesis and in Vitro Characterization. Nisha Nanaware-Kharade , Guillermo A. Gonzalez , III, Jackson O. Lay , Jr., Howard P. Hendrickson , and Eric C. Peterson. Bioconjugate Chemistry. 2012, 23 (9) pp 1864–1872. August 9, 2012. DOI: 10.1021/bc300204n.

.

Interactive Configuration through Force Analysis of GM1 Pentasaccharide-Vibrio cholera Toxin Interaction. Jeong Hyun Seo, Chang Sup Kim, Hea Yeon Lee, Tomoji Kawai, and Hyung Joon Cha. Analytical Chemistry. 2011, 83 (15) pp 6011–6017. June 24, 2011. DOI: 10.1021/ac201013p.

.

Application of HaloTag Protein to Covalent Immobilization of Recombinant Proteins for Single Molecule Force Spectroscopy. Yukinori Taniguchi and Masaru Kawakami. Langmuir. 2010, 26 (13) pp 10433–10436. June 9, 2010. DOI: 10.1021/la101658a.

.

Controlled-release system of single-stranded DNA triggered by the photothermal effect of gold nanorods and its in vivo application. Shuji Yamashita, Hiromitsu Fukushima, Yasuyuki Akiyama, Yasuro Niidome, Takeshi Mori, Yoshiki Katayama, Takuro Niidome. Bioorganic & Medicinal Chemistry. 2011, 19 (7), pp 2130-2135. April 1, 2011. DOI: 10.1016/j.bmc.2011.02.042.

.

Development of a novel bead-based96-well filtrationplate competitive immunoassay for the detection of Gentamycin. Tien Yu Jessica Ho, Chia-ChungChan, KingHoChan, YuChiehWang, Jing-TangLin, Cheng-Ming Chang, Chien-ShengChen. Biosensors and Bioelectronics. 2013, 49 pp 126–132. November 15,2013. DOI: 10.1016/j.bios.2013.04.027.

.

Genotyping by allele-specific L-DNA-tagged PCR. Gosuke Hayashi, Masaki Hagihara, Kazuhiko Nakatani. Journal of Biotechnology. 2008, 135 (2), pp 157-160. June 1, 2008. DOI: 10.1016/j.jbiotec.2008.03.011.

.

Inhibition of Myeloperoxidase Activity in Cystic Fibrosis Sputum by Peptide Inhibitor of Complement C1 (PIC1). Pamela S. Hair, Laura A. Sass, Neel K. Krishna, and Kenji M. Cunnion. PLOS one. 2017, 12 (1) e0170203. January 30, 2017. DOI: 10.1371/journal.pone.0170203.

.

Molecular Pincers: Antibody-Based Homogeneous Protein Sensors. Ewa Heyduk, Benjamin Dummit, Yie-Hwa Chang, and Tomasz Heyduk. Analytical Chemistry. 2008, 80 (13) pp 5152-5159. May 21, 2008. DOI: 10.1021/ac8004154.

.

“Smart” Drug Carriers: PEGylated TATp-Modified pH-Sensitive Liposomes. Amit A. Kale and Vladimir P. Torchilin. Journal of Liposome Research. 2007, 17(3-4) pp 197-203. June 6, 2007. DOI: 10.1080/08982100701525035.

.

Elongated plant virus-based nanoparticles for enhanced delivery of thrombolytic therapies. Andrzej Stanislaw Pitek, Yunmei Wang, Sahil Gulati, Huiyun Gao, Phoebe L Stewart, Daniel I. Simon, and Nicole F Steinmetz. Molecular Pharmaceutics. 2017, pp 1-9. September 7, 2017. DOI: 10.1021/acs.molpharmaceut.7b00559.

.

Delivery of Small Interfering RNA by Peptide-Targeted Mesoporous Silica Nanoparticle-Supported Lipid Bilayers. Carlee E. Ashley, Eric C. Carnes, Katharine E. Epler, David P. Padilla, Genevieve K. Phillips, Robert E. Castillo, Dan C. Wilkinson, Brian S. Wilkinson, Cameron A. Burgard, Robin M. Kalinich, Jason L.Townson, Bryce Chackerian, Cheryl L. Willman, David S. Peabody, Walker Wharton and C. Jeffrey Brinker.ACS Nano. 2012, 6 (3) pp 2174-2188. February 6, 2012. DOI: 10.1021/nn204102q.

.

Subcellular trafficking and transfection efficacy of polyethylenimine-polyethylene glycol polyplex nanoparticles with a ligand to melanocortin receptor-1. Mikhail O. Durymanov, Elena A. Beletkaia, Alexey V. Ulasov, Yuri V. Khramtsov, Georgiy A. Trusov, Nikita S. Rodichenko, Tatiana A. Slastnikova, Tatiana V.Vinogradova, Natalia Y. Uspenskaya, Eugene P. Kopantsev, Andrey A. Rosenkranz, Eugene D. Sverdlov, Alexander S. Sobolev. Journal of Controlled Release. 2012, 163 (2) pp 211-219. October 28, 2012. DOI: 10.1016/j.jconrel.2012.08.027.

.

Human pIgR mimetic peptidic ligand for affinity purification of IgM Part II: Ligand binding characteristics. Satyen Gautam, Kai-Chee Loh. Separation and Purification Technology. 2013, 102 pp 43–49. January 4, 2013. DOI: 10.1016/j.seppur.2012.09.024.

.

Surface Force Analysis of Pyrite (FeS2): Its Reactivity to Amino Acid Adsorption. Narangerel Ganbaatar, Nina Matsuzaki, Yuya Nakazawa, Rehana Afrin, Masashi Aono, Taka-aki Yano, Tomohiro Hayashi, and Masahiko Hara. Advances in Materials Physics and Chemistry. 2016, 6, pp 167-176. June 30, 2016. http://dx.doi.org/10.4236/ampc.2016.67018.

.

A Nanotechnology-Based Platform for Extending the Pharmacokinetic and Binding Properties of Anti-methamphetamine Antibody Fragments. Nisha Nanaware-Kharade, shraddha Thakkar, Guillermo A. Gonzalez III, and Eric C. Peterson. Scientific Reports. 2014, 5 (12060). July 10, 2015. DOI: 10.1038/srep12060.

.

Immobilization of hydrophobic peptidic ligands to hydrophilic chromatographic matrix: A preconcentration approach. Satyen Gautam, Kai-Chee Loh. Analytical Biochemistry. 2012, 423 (2) pp 202-209. April 15, 2012. DOI: 10.1016/j.ab.2012.01.020.

.

Photodynamic characterization and optimization using multifunctional nanoparticles for brain cancer treatment. Kristen Herrmann, Yong-Eun Lee Koo, Daniel A. Orringer, Oren Sagher, Martin Philbert, Raoul Kopelman. SPIE Proceedings. 2013, 8568 (1) pp 1-8. March 13, 2013. DOI: 10.1117/12.2005530.

.

64Cu-Labeled Trastuzumab Fab-PEG24-EGF Radioimmunoconjugates Bispecific for HER2 and EGFR-Pharmacokinetics, Biodistribution, and Tumor Imaging by PET in Comparison to Monospecific Agents. Luke (Yongkyu) Kwon, Deborah A Scollard, and Raymond M Reilly. Molecular Pharmaceutics. 2017, pp 1-38. January 3, 2017. DOI: 10.1021/acs.molpharmaceut.6b00963.

.

A methodology for preparing nanostructured biomolecular interfaces with high enzymatic activity. Lu Shin Wong, Chinnan V. Karthikeyan, Daniel J. Eichelsdoerfer, Jason Micklefield and Chad A. Mirkin. Nanoscale. 2012, 4 (2) pp 659-666. December 8, 2011. DOI:10.1039/C1NR11443C.

.

Quantitative Evaluation of Viral Protein Binding to Phosphoinositide Receptors and Pharmacological Inhibition. Seong-Oh Kim, Joshua A. Jackman, Menashe Elazar, Sang-Joon Cho, Jeffrey S Glenn, and Nam-Joon Cho. Analytical Chemistry. 2017, August 15, 2017. DOI: 10.1021/acs.analchem.7b01568.

.

Functional improvement of an IRQ-PEG-MEND for delivering genes to the Lung. Taichi Ishitsuka, Hidetaka Akita, Hideyoshi Harashima. Journal of Controlled Release. 2011, 154 (1) pp 77-83, August 25, 2011. DOI: 10.1016/j.jconrel.2011.05.012.

.

Antigen Peptide-Based Immunosensors for Rapid Detection of Antibodies and Antigens. Ling Tian and Tomasz Heyduk. Analytical Chemistry. 2009, 81 (13) pp 5218–5225. May 26, 2009. DOI: 10.1021/ac900845a.

.

SNAP-Tag Technology Mediates Site Specific Conjugation of Antibody Fragments with a Photosensitizer and Improves Target Specific Phototoxicity in Tumor Cells. Ahmad Fawzi Hussain, Florian Kampmeier, Verena von Felbert, Hans-F. Merk, Mehmet Kemal Tur, and Stefan Barth. Bioconjugate Chemistry. 2011, 22 (12) pp 2487–2495. October 13, 2011. DOI: 10.1021/bc200304k.

.

Nanomechanics of HaloTag Tethers. Ionel Popa, Ronen Berkovich, Jorge Alegre-Cebollada, Carmen L. Badilla, Jaime Andrés Rivas-Pardo, Yukinori Taniguchi, Masaru Kawakami, and Julio M. Fernandez. Journal of the American Chemical Society. 2013, 135 (34) pp 12762–12771. August 2, 2013. DOI: 10.1021/ja4056382.

.

Efficient capture of circulating tumor cells with a novel immunocytochemical microfluidic device. Mary Nora Dickson, Pavel Tsinberg, Zhongliang Tang, Farideh Z. Bischoff, Timothy Wilson, and Edward F. Leonard. Biomicrofluidics. 2011, 5 (3). August 22, 2011. DOI: 10.1063/1.3623748.

.

Genetic PEGylation. Seiichi Tada, Takashi Andou, Takehiro Suzuki, Naoshi Dohmae, Eiry Kobatake and Yoshihiro Ito. PLoS One. 2012, 7 (11) pp e49235. November 8, 2012. DOI:10.1371/journal.pone.0049235.

.

BMP-2 tethered hydroxyapatite for bone tissue regeneration: Coating chemistry and osteoblast attachment. Stefanie M. Shiels, Kimberly D. Solomon, Marcello Pilia,Mark R. Appleford, Joo L. Ong. Journal of Biomedical Materials Research. 2012, 100A (11) pp 3117-3123. July 20, 2012. DOI: 10.1002/jbm.a.34241.

.

Development of Raman Spectroscopy as a clinical Diagnostic Tool. Santa Borel. Tspace. 2016, pp 1-99. November 2016. http://hdl.handle.net/1807/74538.

.

Tumor tissue slice cultures as a platform for analyzing tissue-penetration and biological activities of nanoparticles. Lea Merz, Sabrina Hobel, Sonja Kallendrusch, Alexander Ewe, Ingo Bechmann, Heike Franke, Felicitas Merz, and Achim Aigner. Science Direct. 2016, 112, pp 45-50. http://dx.doi.org/10.1016/j.ejpb.2016.11.0163.

.

Single-molecule imaging, force measurement and fluorescence observation reveal protein and chromosome dynamics around the nuclear envelope. S. Otsuka, Y. Hirano, H. Takahashi, M. Kumeta, K. Takeyasu, and S.H Yoshimura. Micro-NanoMechatronics and Human Science. 2007, pp 310-315.December 1, 2007. DOI: 10.1109/MHS.2007.4420872.

.

A proof of the specificity of kanamycin-ribosomal RNA interaction with designed synthetic analogs and the antibacterial activity. Yoshio Nishimura, Hayamitsu Adachi, Motoki Kyo, Shoichi Murakami, Seiko Hattori, and Keiichi Ajito. Bioorganic & Medicinal Chemistry Letters. 2005, 15 (8), pp 2159-2162. April 15, 2005. DOI: 10.1016/j.bmcl.2005.02.043.

.

Investigation of the Interaction between a Bivalent Aptamer and Thrombin by AFM. Lin Ge, Gang Jin and Xiaohong Fang. Langmuir. 2012, 28 (1) pp 707–713. November 21, 2011. DOI: 10.1021/la203954x.

.

Improved Biodistribution and Radioimmunoimaging with Poly(ethylene glycol)-DOTA-Conjugated Anti-CEA Diabody. Lin li, Paul J. Yazaki, Anne-Line Anderson, Desiree Crow, David Colcher, Anna M. Wu, Lawrence E. Williams, Jeffrey Y.C. Wong, Andrew Raubitschek, and John E. Shively. Bioconjugate Chemistry. 2006, 17 (1), pp 68–76. December 24, 2005. DOI: 10.1021/bc0502614.

.

Cell recruitment and transfection in gene activated collagen matrix. Silvia Orsi, Antonia De Capua, Daniela Guarnieri, Daniela Marasco, Paolo A. Netti. Biomaterials. 2010, 31 (3) pp 570–576. January 2010. DOI: 10.1016/j.biomaterials.2009.09.054.

.

Cetuximab-conjugated magneto-fluorescent silica nanoparticles for in vivo colon cancer targeting and imaging. Young-Seok Cho, Tae-Jong Yoon, Eue-Soon Jang, Kwan Soo Hong, Shin Young Lee, Ok Ran Kim, Cheongsoo Park, Yong-Jin Kim, Gyu-Chul Yi, Kiyuk Chang. Cancer Letters. 2010, 299 (1) pp 63-71. December 18, 2010. DOI: 10.1016/j.canlet.2010.08.004.

.

Effect of Compressive Force on Unbinding Specific Protein−Ligand Complexes with Force Spectroscopy. Carleen M. Bowers, David A. Carlson, Monica Rivera, Robert L. Clark, and Eric J. Toone. Journal of Physical Chemistry B. 2013, 117 (17) pp 4755-4762. March 28, 2013. DOI: 10.1021/jp309393s.

.

121To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 128: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles. Matthias T. Stephan, Sirkka B. Stephan, Peter Bak, Jianzhu Chen, Darrell J. Irvine. Biomaterials. 2012, 33 (23) pp 5776-5787. August 2012. DOI: 10.1016/j.biomaterials.2012.04.029.

.

111In-Labeled Immunoconjugates (Ics) Bispecific for the Epidermal Growth Factor Receptor (EGFR) and Cyclin-Dependent Kinase Inhibitor, p27Kip1. Bart Cornelissen, Veerle Kersemans, Kristin McLarty, Lara Tran, Raymond M. Reilly. Cancer Biotherapy and Radiopharmaceuticals. 2009, 24 (2) pp 163-173. May 1, 2009. DOI: 10.1089/cbr.2008.0553.

.

Nanoparticle Self-Assembly Directed by Antagonistic Kinase and Phosphatase Activities. Geoffrey von Maltzahn, Dal-Hee Min, Yingxin Zhang, Ji-Ho Park, Todd J. Harris, Michael Sailor, Sangeeta N. Bhatia. Advance Materials. 2007, 19 (21) pp 3579-3583. October 16, 2007. DOI: 10.1002/adma.200701183.

.

Imaging mass spectrometry for the precise design of antibody-drug conjugates. Yuki Fujiwara, Masaru Furuta, Shino Manabe, Yoshikatsu Koga, Masahiro Yasunaga, and Yasuhiro Matsumura. Scientific Reports. 2016, 6 (24954). April 21, 2016. DOI: 10.1038/srep24954.

.

Development of glutathione-coupled cantilever for the single-molecule force measurement by scanning force microscopy. Shige H. Yoshimua, Hirohide Takahashi, Shotaro Otsuka, Kunio Takeyasu. FEBS Letters. 2006, 580 (16), pp 3961-3965. July 10, 2006. DOI: 10.1016/j.febslet.2006.06.032.

.

Directed Intermixing in Multicomponent Self-Assembling Biomaterials. Joshua Z. Gasiorowski and Joel H. Collier. Biomacromolecules. 2011, 12 (10), pp 3549–3558. August 25, 2011. DOI: 10.1021/bm200763y.

.

Spectroscopy Based Approaches for Detection of Ions, Alpha-L-Fucosidase, and Singlet Oxygen. Eric Waidely. University of Miami Scholarly Repository. 2017, pp 1-113. May 3, 2017. http://scholarlyrepository.miami.edu/oa_dissertations/1842.

.

Targeted Intracellular Delivery of Proteins with Spatial and Temporal Control. Demosthenes P. Morales, Gary B. Braun, Alessia Pallaoro, Renwei Chen, Xiao Huang, Joseph A. Zasadzinski and Norbert O. Reich. Molecular Pharmaceutics. 2015, 12 (2) pp 600-609. December 9, 2014. DOI: 10.1021/mp500675p.

.

Aptamer-targeted Antigen Delivery. Brian C Wenerter, Joseph A Katakowski, Jacob M Rosenberg, Chae Gyu Park, Steven C Almo, Deborah Palliser and Matthew Levy. Molecular Therapy. 2014, 22 (7) pp 1375-1387. May 6, 2014. DOI: 10.1038/mt.2014.51.

.

Optimal Surface Chemistry for Peptide Immobilization in On-Chip Phosporylation Analysis.Kazuki Inamori, Motoki Kyo, Kazuki Matsukawa, Yusuke Inoue, Tatsuhiko Sonoda, Kenji Tatematsu, Katsuyuki Tanizawa, Takeshi Mori, and Yoshiki Katayama. Analytical Chemistry. 2008, 80 (3), pp 643–650. January 8, 2008. DOI: 10.1021/ac701667g.

.

Efficient Transfection of Blood-Brain Barrier Endothelial Cells by Lipoplexes and Polyplexes in the Presence of Nuclear Targeting NLS-PEG-Acridine Conjugates. Hongwei Zhang, Anton Mitin, and Serguei V. Vinogradov. Bioconjugate Chemistry. 2009, 20 (1), pp 120–128. December 9, 2008. DOI: 10.1021/bc8003414.

.

MicroSPECT/CT imaging of co-expressed HER2 and EGFR on subcutaneous human tumor xenografts in athymic mice using 111In-labeled bispecific radioimmunoconjugates. Eva Razumienko, Lindsay Dryden,

Deborah Scollard, Raymond M. Reilly. Breast Cancer Research and Treatment. 2013, 138 (3) pp 709-718. March 24, 2013. DOI: 10.1007/s10549-013-2490-5.

.

Silica Nanoparticles for the Delivery of DNA and RNAi in Cancer Treatment. Michael Aaron Vrolijk. Graduate College Dissertations and Theses. 2017, pp 1-122. May 22, 2017. http://scholarworks.uvm.edu/graddis/783.

.

Optimized polyethylenimine (PEI)-based nanoparticles for siRNA delivery, analyzed in vitro and in an ex vivo tumor tissue slice culture model. Alexander Ewe, Sabrina Hobel, Claudia Heine, Lea Merz, Sonja Kallendrusch, Ingo Bechmann, Felicitas Merz, Heike Franke, Achim Aigner. Drug Delivery and Translational Research. 2016, pp 1-11. June 22, 2016. DOI: 10.1007/s13346-016-0306-y.

.

An Approach to Rapid Synthesis and Functionalization of Iron Oxide Nanoparticles for High Gene Transfection. Zachary Stephen, Christopher Dayringer, Josh Lim, Richard Revia, Mackenzie Halbert, Mike Jeon, Arvind Bakthavatsalam, Richard G Ellenbogen, and Miqin Zhang. ACS Applied Materials and Interfaces. 2016, 8(6) pp 3557-4266. February 19, 2016. DOI: 10.1021/acsami.5b10883.

.

Small-Animal SPECT/CT of HER2 and HER3 Expression in Tumor Xenografts in Athymic Mice Using Trastuzumab Fab–Heregulin Bispecific Radioimmunoconjugates. Eva J. Razumienko, Deborah A. Scollard, and Raymond M. Reilly. The Journal of Nuclear Medicine. 2012, 53 (12) pp 1943–1950. October 24, 2012. DOI: 10.2967/jnumed.112.106906.

.

Structural characterization and functionalization of engineered spider silk films. Kristina Spieß, Stefanie Wohlrab and Thomas Scheibel. Soft Matter. 2010, 6 (17) pp 4168-4174. June 16, 2010. DOI: 10.1039/b927267d.

.

Single-molecule Structural and Functional Analyses of Nuclear Pore Complex. Otsuka, S, Takahashi, H, Yoshimura, Shige H. Micro-NanoMechatronics and Human Science. 2006. November 5, 2006. DOI:10.1109/MHS.2006.320314.

.

U1 Adaptor Oligonucleotides Targeting BCL2 and GRM1 Suppress Growth of Human Melanoma Xenografts In Vivo. Rafal Goraczniak, Brian A Wall, Mark A Behlke, Kim A Lennox, Eric S Ho, Nikolas H Zaphiros, Christopher Jakubowski, Neil R Patel, Steven Zhao, Carlo Magaway, Stacey A Subbie, Lumeng Jenny Yu, Stephanie LaCava, Kenneth R Reuhl,Suzie Chen, and Samuel I Gunderson. Molecular Therapy–Nucleic Acids. 2013, 2 (e92). May 14, 2013. DOI: 10.1038/mtna.2013.24.

.

Single-molecule anatomy by atomic force microscopy and recognition imaging. Hirohide Takahashi, Kohji Hizume, Masahiro Kumeta, Shige H. Yoshimura and Kunio Takeyasu. Archives of Histology and Cytology. 2009, 72 (4/5) pp 217-225. January 27, 2009. DOI: 10.1679/aohc.72.217.

.

MAL-dPEG®x-t-boc-hydrazide

Fluidity evaluation of cell membrane model formed on graphene oxide with single particle tracking using quantum dot. Yoshiaki Okamoto,Toshinori Motegi, Seiji Iwasa, Adarsh Sandhu and Ryugo Tero. Japan Journal of Applied Physics. 2015, 54 (4S) pp 1-6. March 26, 2015. DOI: 10.7567/JJAP.54.04DL09.

.

Fluidity evaluation of cell membrane model formed on graphene oxide with single particle tracking using quantum dot. Yoshiaki Okamoto,Toshinori Motegi, Seiji Iwasa, Adarsh Sandhu and Ryugo Tero. Japan Journal of Applied Physics. 2015, 54 (4S) pp 1-6. March 26, 2015. DOI: 10.7567/JJAP.54.04DL09.

.

Fluidity evaluation of cell membrane model formed on graphene oxide with single particle tracking using quantum dot. Yoshiaki Okamoto,Toshinori Motegi, Seiji Iwasa, Adarsh Sandhu and Ryugo Tero. Japan Journal of Applied Physics. 2015, 54 (4S) pp 1-6. March 26, 2015. DOI: 10.7567/JJAP.54.04DL09.

.

Molecular Dendritic Transporter Nanoparticle Vectors Provide Efficient Intracellular Delivery of Peptides. Sharon K. Hamilton and Eva Harth. ACS Nano. 2009, 3 (2), pp 402–410. February 5, 2009. DOI: 10.1021/nn800679z.

.

Reagents for Astatination of Biomolecules. 5. Evaluation of Hydrazone Linkers in 211At- and 125I-Labeled closo-Decaborate(2-) Conjugates of Fab0 as a Means of Decreasing Kidney Retention. D. Scott Wilbur, Ming-Kuan Chyan, Donald K. Hamlin, Holly Nguyen, and Robert L. Vessella. Bioconjugate Chem. 2011, 22 (6), pp 1089–1102. April 23, 2011. DOI: 10.1021/bc1005625.

.

MPS (NHS-3-maleimidopropionate)

Reagents for Astatination of Biomolecules. 2. Conjugation of Anionic Boron Cage Pendant Groups to a Protein Provides a Method for Direct Labeling that is Stable to in Vivo Deastatination. D. Scott Wilbur, Ming-Kuan Chyan, Donald K. Hamlin, Robert L. Vessella, Timothy J. Wedge, and M. Frederick Hawthorne. Bioconjugate Chem. 2007, 18 (4) pp 1226–1240. June 21, 2007. DOI: 10.1021/bc060345s.

.

Biodistribution of 211At labeled HER-2 binding affibody molecules in mice. Ann-Charlotts teffen, Ylva Almqvist, Ming-Kuan Chyan, Hans Lundqvist, Vladimir Tolmachev, D. Scott Wilbur and Jorgen Carlsson. Oncology Reports. 2007, 17 (5) pp 1141-1147. May 1, 2007. DOI: www.tessera.spandidos-publications.com/or/17/5/1141.

.

Propargyl-dPEG®₁-NHS ester

Monitoring the Size and Lateral Dynamics of ErbB1 Enriched Membrane Domains through Live Cell Plasmon Coupling Microscopy. Guoxin Rong, Bjorn M. Reinhard. PLoS ONE. 2012, 7 (3) e34175. March 28, 2012. DOI:10.1371/journal.pone.0034175.

.

An Effective Targeted Nanoglobular Manganese(II) Chelate Conjugate for Magnetic Resonance Molecular Imaging of Tumor Extracellular Matrix. Mingqian Tan, Xueming Wu, Eun-Kee Jeong, Qianjin Chen, Dennis L. Parker, and Zheng-Rong Lu, Mol. Pharmaceutics, 2010, 7 (4), pp 936–943 May 19, 2010. DOI: 10.1021/mp100054m.

.

An Intein-Mediated Site-Specific Click Conjugation Strategy for Improved Tumor Targeting of Nanoparticle Systems. Drew R. Elias, Dr. Zhiliang Cheng, and Prof. Andrew Tsourkas. Small 2010 6 (21) pp 2460–2468 November 5, 2010. DOI:10.1002/smll.201001095.

.

Peptide-Targeted Nanoglobular Gd-DOTA Monoamide Conjugates for Magnetic Resonance Cancer Molecular Imaging. Mingqian Tan, Xueming Wu, Eun-Kee Jeong, Qianjin Chen, and Zheng-Rong Lu. Biomacromolecules. 2010 11 (3) pp 754–761 March 8, 2010. DOI:10.1021/bm901352v.

.

Prodrug Strategy for PSMA-Targeted Delivery of TGX-221 to Prostate Cancer Cells. Yunqi Zhao, Shaofeng Duan, Xing Zeng, Chunjing Liu, Neal M. Davies, Benyi Li, and M. Laird Forrest. Mol. Pharmaceutics. 2012, 9 (6) pp 1705–1716. April 11, 2012. DOI: 10.1021/mp3000309.

.

Covalent Attachment of Lipid Cesicles to a Fluid-Supported Bilayer Allows Observation of DNA-Mediated Vesicle Interactions. Bettina van Lengerich, Robert J. Rawle, and Steven G. Boxer, Langmuir, 2010, 26 (11), pp 8666–8672, February 24, 2010. DOI: 10.1021/la904822f.

.

Monitoring the Size and Lateral Dynamics of ErbB1 Enriched Membrane Domains through Live Cell Plasmon Coupling Microscopy. Guoxin Rong, Bjorn M. Reinhard. PLoS ONE. 2012, 7 (3) e34175. March 28, 2012. DOI:10.1371/journal.pone.0034175.

.

Nanoconjugation: a materials approach to enhance epidermal growth factor induced apoptosis. Linxi Wu, Xinwei Yu, Amin Feizpour and Björn M. Reinhard. Biomaterials Science. 2013, (www.rsc.org/biomaterialsscience). September 23,2013. DOI: 10.1039/c3bm60142k.

.

Illuminating Epidermal Growth Factor Receptor Densities on Filopodia through Plasmon Coupling. Jing Wang, Svetlana V. Boriskina, Hongyun Wang, and Bjorn M. Reinhard. ACS Nano. 2011, 5 (8), pp 6619–6628. July 17, 2011. DOI: 10.1021/nn202055b.

.

SPDP-dPEG®x-NHS ester

Cell number and transfection volume dependent peptide nucleic acid antisense activity by cationic delivery methods. Laia Llovera, Peter R. Berthold, Peter E. Nielsen and Takehiko Shiraishi. Artificial DNA, PNA & XNA 2012, 3 (1) pp 22-27 March 5, 2012. DOI: 10.4161/adna.19906.

.

Targeted Delivery of siRNA to Transferrin Receptor Overexpressing Tumor Cells via Peptide Modified Polyethylenimine. Yuran Xie, Bryan Killinger, Anna Moszczynska, and Olivia M. Merkel. Molecules. 2016, 21 (1334) pp 1-16. October 10, 2016. DOI: 10.3390/molecules21101334.

.

Systemically administered collagen-targeted gold nanoparticles bind to arterial injury following vascular interventions. Molly Wasserman Meyers, Jonathan S Rink, Qun Jiang, Megan E Kelly, Janet M Vercammen, Colby S Thaxton, and Melina R Kibbe. Physiological Reports. 2016, 5 (4): e13128. December 17, 2016. DOI: 10.14814/phy2.13128.

.

Metronomic Doses of Temozolomide Enhance the Efficacy of Carbon Nanotube CpG Immunotherapy in an Invasive Glioma Model. Mao Ouyang, Ethan E. White, Hui Ren, Qin Guo, Ian Zhang, Hang Gao, Song Yanyan, Xuebo Chen, Yiming Weng, Anna Da Fonseca, Sunny Shah, Edwin R. Manuel, Leying Zhang, Steven L. Vonderfecht, Darya Alizadeh, Jacob M. Berlin, and Behnam Badie. PLoS One. 2016, 11 (2) e0148139. February 1, 2016. DOI: 10.1371/journal.pone.0148139.

.

Refined purification strategy for reliable proteomic profiling of HDL 2/3: Impact on proteomic complexity. Michael Holzer, Sabine Kern, Ruth Birner-Grunberger, Sanja Curcic, Akos Heinemann, and Gunther Marsche. Scientific Reports. 2016, 6 (38533) pp 1-10. December 5, 2016. DOI: 10.1038/srep38533.

.

Different pH-Dependencies of the Two Synaptic Adhesion Molecules N-Cadherin and Cadherin-11 and the Possible Functional Implication for Long-term Potentiation. WERNER BAUMGARTNER, ARMIN OSMANAGIC, MARITA GEBHARD,SANDRA KRAEMER, AND NIKOLA GOLENHOFEN. SYNAPSE. 2013, 67 (10) pp 705-715. June 3, 2013. DOI: 10.1002/syn.21679.

.

Cellular Delivery and Antisense Effects of Peptide Nucleic Acid Conjugated to Polyethyleneimine via Disulfide Linkers. Peter R. Berthold, Takehiko Shiraishi, and Peter E. Nielsen.Bioconjugate Chem., 2010, 21 (10), pp 1933–1938 September 27, 2010. DOI: 10.1021/bc1003586.

.

In Situ Detection of Protein Complexes and Modifications by Chemical Ligation Proximity Assay. Rui Hong, Esteban Roberts, and Christopher Bieniarz. Bioconjugate Chemistry. 2016, June 1, 2016. DOI: 10.1021/acs.bioconjchem.6b00230.

.

Post-transcriptional regulation of the GASC1 oncogene with active tumor-targeted siRNA-nanoparticle. Sara Movassaghian, Claudia Hildebrandt, Yuran Xie, Rayna Rosati, Ying Li, Na Hyung Kim, Denise Conti, Sandro RP da Rocha, Zeng-Quan Yang, and Olivia M. Merkel. Molecular Pharmaceutics. 2016, May 25, 2016. DOI: 10.1021/acs.molpharmaceut.5b00948.

.

122To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 129: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Ellman's and Aldrithiol Assay as Versatile and Complementary Tools for the Quantification of Thiol Groups and Ligands on Nanomaterials. Marko Moser, Ralf Schneider, Thomas Behnke, Thomas Schneider, Jana Falkenhagen, and Ute Resch-Genger. Analytical Chemistry. 2016, pp 1-9. July 2, 2016. DOI: 10.1021/acs.analchem.6b01798.

.

t-boc-N-amido-dPEG®x-amine

Compact Biocompatible Quantum Dots via RAFT-Mediated Synthesis of Imidazole-Based RandomCopolymer Ligand. Wenhao Liu, Andrew B. Greytak, Jungmin Lee, Cliff R. Wong, Jongnam Park, Lisa F.Marshall, Wen Jiang, Peter N. Curtin, Alice Y. Ting, Daniel G. Nocera, Dai Fukumura, Rakesh K. Jain and Moungi G. Bawendi. J. Am. Chem. Soc. 2010, 132 (2) pp 472–483. December 21, 2009. DOI: 10.1021/ja908137d.

.

Novel Nanoassemblies Composed of Squfalenoyl—Paclitaxel Derivatives: Synthesis, Characterization, and Biological Evaluation. Franco Dosio, L. Harivardhan Reddy, Annalisa Ferrero, Barbara Stella, Luigi Cattel, and Patrick Couvreur. Bioconjugate Chem. 2010, 21 (7), pp 1349–1361. July 2, 2010. DOI: 10.1021/bc100154g.

.

Development of an oligo (ethylene glycol)-based SPR immunosensor for TNT detection. Yutaka Mizuta, Takeshi Onodera, Praveen Singh, Kiyoshi Matsumoto, Norio Miura, Kiyoshi Toko. Biosensors and Bioelectronics. 2008. 24 (2). Pp. 191-197. DOI:10.1016/j.bios.2008.03.042.

.

Thiol-Mediated Anchoring of Ligands to Self-Assembled Monolayers for Studies of Biospecific Interactions. Kunal V. Gujraty, Randolph Ashton, Sridhar R. Bethi, Sandesh Kate, Christopher J. Faulkner, G. Kane Jennings, and Ravi S. Kane. Langmuir. 2006, 22 (24) pp 10157–10162. October 19, 2006.DOI: 10.1021/la0621463.

.

Oriented Surface Immobilization of Antibodies at the Conserved Nucleotide Binding Site for Enhanced Antigen Detection. Nathan J Alves, Tanyel Kiziltepe, and Basar Bilgicer. Langmuir. 2012, 28 (25) pp 9640–9648. May 21, 2012. DOI: 10.1021/la301887s.

.

Oriented Surface Immobilization of Antibodies at the Conserved Nucleotide Binding Site for Enhanced Antigen Detection. Nathan J Alves, Tanyel Kiziltepe, and Basar Bilgicer. Langmuir. 2012, 28 (25), pp 9640-9648. May 1, 2012. DOI: 10.1021/la301887s.

.

Nanotube-assisted protein deactivation. Amit Joshi, Supriya Punyani, Shyam Sundhar Bale, Hoichang Yang, Theodorian Borca-Tasciuc and Ravi S. Kane. Nature Nanotechnology. 2008, 3 pp 41 – 45. December 9, 2007. DOI: 10.1038/nnano.2007.386.

.

Design and Synthesis of Bis-Biotin-Containing Reagents for Applications Utilizing Monoclonal Antibody-Based Pretargeting system with Streptavidin Mutants. D. Scott Wibur, Steven I. Park, Ming-Kuan Chyan, Feng Wan, Donald K. Hamlin, Jaideep Shenoi, Yukang Lin, Shani M. Wilbur, Franz Buchegger, Anastasia Pantelias, John M. Pagel, and Oliver W. Press. Bioconjugate Chem. 2010, 21 (7), pp 1225–1238. July 2, 2010. DOI: 10.1021/bc100030q.

.

A continuous fluorescence displacement assay for BioA: An enzyme involved in biotin biosynthesis. Daniel J. Wilson, Ce Shi, Benjamin P. Duckworth, Joseph M. Muretta, Ujjini Manjunatha, Yuk Y. Sham, David D. Thomas, and Courtney C. Aldrich. Analytical Biochemistry. 2011, 416 (1) pp 27-38. September 2011. DOI:10.1016/j.ab.2011.05.003.

.

Time-resolved fluorescence resonance energy transfer and surface plasmon resonance-based assays for retinoid and transthyretin binding to retinol-binding protein 4. Orzala Sharif, Huiyong Hu, Heath Klock, Eric N. Hampton, Edward Nigoghossian, Mark W. Knuth, Jason Matzen, Paul Anderson, Richard Trager, Tetsuo Uno, Richard J. Glynne, Sassan M. Azarian, Jeremy S. Caldwell , Achim Brinker. Analytical Biochemistry. 2009, 392, (2) PP 162–168. September 15 , 2009. DOI: org/10.1016/j.ab.2009.05.038.

.

Design, Synthesis, and Validation of a Branched Flexible Linker for Bioactive Peptides. Martina E. Bowen, Yasunari Monguchi, Rajesh Sankaranarayanan, Josef Vagner, Lucinda J. Begay, Liping Xu, Bhumasamudram Jagadish, Victor J. Hruby, Robert J. Gillies, and Eugene A. Mash. J. Org. Chem. 2007, 72 (5) pp 1675–1680. February 6, 2007. DOI: 10.1021/jo062276g.

.

Biomimetic Ligands for Immunoglobulin-M Purification. Satyen Gautam. National University of Singapore. 2010, April 12, 2010. DOI: www.scholarbank.nus.edu.sg/handle/10635/22872.

.

Novel Nanoassemblies Composed of Squfalenoyl—Paclitaxel Derivatives: Synthesis, Characterization, and Biological Evaluation. Franco Dosio, L. Harivardhan Reddy, Annalisa Ferrero, Barbara Stella, Luigi Cattel, and Patrick Couvreur. Bioconjugate Chem. 2010, 21 (7), pp 1349–1361. July 2, 2010. DOI: 10.1021/bc100154g.

.

Compact Biocompatible Quantum Dots via RAFT-Mediated Synthesis of Imidazole-Based Random Copolymer Ligand. Wenhao Liu, Andrew B. Greytak, Jungmin Lee, Cliff R. Wong, Jongnam Park, Lisa F. Marshall, Wen Jiang, Peter N. Curtin, Alice Y. Ting, Daniel G. Nocera, Dai Fukumura, Rakesh K. Jain and Moungi G. Bawendi. J. Am. Chem. Soc. 2010, 132 (2) pp 472–483. December 21, 2009. DOI: 10.1021/ja908137d.

.

Immobilization of Actively Thromboresistant Assemblies on Sterile Blood-Contacting Surfaces. Zheng Qu, Venkat Krishnamurthy, Carolyn A. Haller, Brent M. Dorr, Ulla M. Marzec, Sawan Hurst, Monica T. Hinds, Stephen R. Hanson, David R. Liu, and Elliot L. Chaikof. Adv. Healthcare Mater. 2013. March 23, 2013. DOI: 10.1002/adhm.201300110.

.

Oriented Immobilization of Fab Fragments by Site-Specific Biotinylation at the Conserved Nucleotide Binding Site for Enhanced Antigen Detection. Nur Mustafaoglu, Nathan J. Alves, and Basar Bilgicer. Langmuir. 2015, 31 (35) pp 9728-9736. August 14, 2015. DOI: 10.1021/acs.langmuir.5b01734.

.

t-boc-N-EDA

DEVD-NucView 488: a novel class of enzyme substrates for real-time detection of caspase-3 activity in live cells. Hui Cen, Fei Mao, Ida Aronchik, Rholinelle Joy Fuentes, and Gary L. Firestone. The FASEB Journal. 2008, (22), pp 2243-2252. July 2010. DOI: 10.1096/fj.07-099234.

.

dPEG® Biotinylation Reagents

Biotin-dPEG®₃-cyanocobalamin

Comparison of a tetravalent single-chain antibody-streptavidin fusion protein and an antibody-streptavidin chemical conjugate for pretargeted anti-CD20 radioimmunotherapy of B-cell lymphomas. Pagel, John M.; Lin, Yukang; Hedin, Nathan; Pantelias, Anastasia; Axworthy, Donald; Stone, Diane; Hamlin, Don K., Wilbur, D. Scott; Press, Oliver W. Blood. 2006, 108 (1) pp 328-336. February 21, 2006. DOI:10.1182/blood-2005-11-4327.

.

Pretargeting CD45 enhances the selective delivery of radiation to hematolymphoid tissues in nonhuman primates. Green, Damian J.; Pagel, John M.; Nemecek, Eneida R.; Lin, Yukang; Kenoyer, Aimee; Pantelias, Anastasia; Hamlin, Donald K.; Wilbur, D. Scott; Fisher, Darrell R.; Rajendran, Joseph G.; Gopal, Ajay K.; Park, Steven I.; Press, Oliver W. Blood Journal. 2009, 114 (6) pp 1226-1235. March 11, 2009. DOI:10.1182/blood-2009-03-210344.

.

Biotin-dPEG®₃-TFPA

Molded hyaluronic-acid gel as a micro-template for blood capillaries. Ko Sugibayashi, Yoshikazu Kumashiro, Tatsuya Shimizu, Jun Kobayashi, and Teruo Okano. Journal of biomaterials science. Polymer edition, 2012 May 22, 2012. DOI: 10.1163/156856212X627847.

.

Elastomeric microparticles for acoustic mediated Bioseparations. Leah M Johnson, Lu Gao, C Wyatt Shields IV, Margret Smith, Kirill Efimenk, Kevin Cushing, Jan Genzer and Gabriel P López. Journal of Nanobiotechnology. 2013, 11 (22) pp 1-8. June 28, 2013. DOI:10.1186/1477-3155-11-22.

.

Biotin-dPEG®₄-hydrazide

Simultaneous Monitoring of Presynaptic Transmitter Release and Postsynaptic Receptor Trafficking Reveals an Enhancement of Presynaptic Activity in Metabotropic Glutamate Receptor-Mediated Long-Term Depression. Wei Xu, Yiu Chung Tse, Frederick A. Dobie, Michel Baudry, Ann Marie Craig, Tak Pan Wong, and Yu Tian Wang. The Journal of Neuroscience. 2013, 33 (13) pp 5867-5877. March 27, 2013. DOI:10.1523/JNEUROSCI.1508-12.2013.

.

The carbohydrate-linked phosphorylcholine of the parasitic nematode product ES-62 modulates complement activation. Umul Kulthum Ahmed, N. Claire Maller, Asif J. Iqbal, Lamyaa Al-Riyami, William Harnett, and John G. Raynes. The Journal of Biological Chemistry. 2016, April 4, 2016. DOI: 10.1074/jbc.M115.702746.

.

Electrochemically Directed Modification of ITO Electrodes and Its Feasibility for the Immunosensor Development. Daegeun Yu and Kyuwon Kim. Bull Korean Chem. Soc.2009, 30 (4) pp 955-958. February 23, 2009.

.

WSS25 Inhibits Growth of Xenografted Hepatocellular Cancer Cells in Nude Mice by Disrupting Angiogenesis via Blocking Bone Morphogenetic Protein (BMP)/Smad/Id1 Signaling. Hong Qiu, Bo Yang, Zhi-Chao Pei, Zhang Zhang and Kan Ding. JBC. 2010, 285 (42) pp 32638–32646. October 15, 2010. DOI: 10.1074/jbc.M110.105544.

.

A Facile Approach to Functionalize Cell Membrane-Coated Nanoparticles. Hao Zhou, Zhiyuan Fan, Pelin K. Lemons, and Hao Cheng. Theranostics. 2016, 6 (7) pp 1012-1022. April 28, 2016. DOI: 10.7150/thno.15095.

.

Chemical labelling of active serum thioester proteins for quantification. Lotta Holm, Gareth L. Ackland, Mark R. Edwards, Ross A. Breckenridge, Robert B. Sim, John Offer. Immunbiology. 2010, 2017 (2) 256-264. July 18, 2011. DOI :10.1016/j.imbio.2011.07.021.

.

Three Recombinant Engineered Antibodies against Recombinant Tags with High Affinity and Specificity. Hongyu Zhao, Ao Shen, Yang K. Xiang, and David P. Corey. PLoS ONE. 2016, 11 (3) e0150125. March 4, 2016. DOI: 10.1371/journal.pone.0150125.

.

Transcription Termination Factor Rho Can Displace Streptavidin from Biotinylated RNA. Annie Schwartz, Emmanuel Margeat, A. Rachid Rahmouni, and Marc Boudvillain. JBC. 2007, 282 (43) pp 31469–31476. October 26, 2007. DOI: 10.1074/jbc.M706935200.

.

Antibody neutralization of CXCL10 in vivo is dependent on binding free and not endothelial bound chemokine: Implications for the design of a new generation of anti-chemokine therapeutic antibodies. Pauline Bonvin, Franck Gueneau, Vanessa Buatois, Maud Charreton-Galby, Stanley Lasch, Marie Messmer, Urs Christen, Andrew D Luster, Zoe Johnson, Walter Ferlin, Marie Kosco-Vilbois, Amanda Proudfoot, and Nicolas Fischer. The Journal of Biological Chemistry. 2017, 292 (10), pp 4185-4197. January 30, 2017. DOI: 10.1074/jbc.M116.745877.

.

Development of biosensor-based assays to identify anti-infective oligosaccharides. Jonathan A. Lane, Raj K. Mehra, Stephen D. Carrington, Rita M. Hickey. Analytical Biochemistry. 2011, 410 (2) pp 200-205.November 25, 2010. DOI: 10.1016/j.ab.2010.11.032.

.

Comparing the efficiencies of hydrazide labels in the study of protein carbonylation in human serum albumin. Zafer Ugur & Chelsea M. Coffey & Scott Gronert. Analytical and Bioanalytical Chemistry. 2012, 404 (5) pp 1399-1411. July 19, 2012. DOI: 10.1007/s00216-012-6235-9.

.

Epidermal-specific deletion of CD44 reveals a function in keratinocytes in response to mechanical stress. M Shatirishvili, AS Burk, CM Franz, G Pace, T Kastilan, K Breuhahn, E Hinterseer, A Dierich, L Bakiri, EF Wagner, H Ponta, TN Hartmann, M Tanaka, and V Orian-Rousseau. Cell Death and Disease. 2016, 7 (e2461). November 10, 2016. DOI: 10.1038/cddis.2016.342.

.

Biotin-dPEG®x-azide

Surface Functionalization Using Catalyst-Free Azide-Alkyne Cycloaddition. Alexander Kuzmin, Andrei Poloukhtine, Margreet A. Wolfert, and Vladimir V. Popik. Bioconjugate Chem. 2010, 21 (11) pp 2076–2085. October 21, 2010. DOI: 10.1021/bc100306u.

.

Site-Specific Incorporation of Photo-Cross-Linker and Bioorthogonal Amino Acids into Enteric Bacterial Pathogens. Shixian Lin, Zhenrun Zhang, Hao Xu, Lin Li, She Chen, Jie Li, Ziyang Hao, and Peng R. Chen. J. Am. Chem. Soc. 2011, 133 (50), pp 20581–20587. November 15, 2011. DOI: 10.1021/ja209008w.

.

Site-Specific Incorporation of Photo-Cross-Linker and Bioorthogonal Amino Acids into Enteric Bacterial Pathogens. Shixian Lin, Zhenrun Zhang, Hao Xu, Lin Li, She Chen, Jie Li, Ziyang Hao, and Peng R. Chen. J. Am. Chem. Soc. 2011, 133 (50), pp 20581–20587. November 15, 2011. DOI: 10.1021/ja209008w.

.

Precision Electrophile Tagging in Caenorhabditis elegans. Marcus J. C. Long, Daniel A. Urul, Shivansh Chawla, Hong-YuLin, Yi Zhao, Joseph A. Haegele, Yiran Wang, and Yimon Aye. Biochemistry. 2018, 57 (2), pp 216-220. August 31, 2017. DOI: 10.1021/acs.biochem.7b00642.

.

123To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 130: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Site-Specific Incorporation of Photo-Cross-Linker and Bioorthogonal Amino Acids into Enteric Bacterial Pathogens. Shixian Lin, Zhenrun Zhang, Hao Xu, Lin Li, She Chen, Jie Li, Ziyang Hao, and Peng R. Chen. J. Am. Chem. Soc. 2011, 133 (50), pp 20581–20587. November 15, 2011. DOI: 10.1021/ja209008w.

.

Detection of O -GlcNAc Modi fi cations on Cardiac Myo fi lament Proteins. Genaro A. Ramirez-Correa , Isabel Martinez Ferrando , Gerald Hart and Anne Murphy. Methods in Molecular Biology. 2013, 1005 (13) pp 157-168. January 1, 2013. DOI: 10.1007/978-1-62703-386-2_13.

.

Palmitoylation of superoxide dismutase 1(SOD1) is increased for familial ALS-linked SOD1 mutants. Sarah E. Antinone, Ghanashyam D. Ghadge, TuKiet T. Lam, Lijun Wang, Raymond P. Roos and William N. Green.J. Biol. Chem. 2013, 288 (49) pp 1-25. June 12, 2013. DOI: 10.1074/jbc.M113.487231.

.

Herpes Simplex Virus 2 Infection Impacts Stress Granule Accumulation. Renée L. Finnen, Kyle R. Pangka, and Bruce W. Banfield. J. Virol. 2012, 86 (15) pp 8119–8130. August 1, 2012. doi:10.1128/JVI.00313-12.

.

Polymer Therapeutics with a Coiled Coil Motif Targeted against Murine BCL1 Leukemia. Robert Pola, Richard Laga, Karel Ulbrich, Irena Sieglová, Vlastimil Král, Milan Fábry, Martina Kabešová, Marek Kovář, and Michal Pechar. Biomacromolecules. 2013, 14 (3) pp 881–889. February 1, 2013. DOI: 10.1021/bm3019592.

.

Sequential Nucleophilic Substitutions Permit Orthogonal Click Functionalization of Multicomponent PEG Brushes. Jin Sha, Ethan S. Lippmann, Jason McNulty, Yulu Ma, and Randolph S. Ashton. Biomacromolecules. 2013, 14 (9) pp 3294–3303. August 13, 2013. DOI: 10.1021/bm400900r.

.

Biotin-dPEG®x-MAL

Biomimetic approach to the formation of gold nanoparticle/silica cor/shell structures and subsequent bioconjugation. Sung Min Kang, Kyung-Bok Lee, Dong Jin Kim and Insung S Choi. Nanotechnology. 2006, (17), pp. 4719–4725. September 1, 2006. DOI: 10.1088/0957.

.

Structural characterization and functionalization of engineered spider silk films. Kristina Spieß, Stefanie Wohlrab and Thomas Scheibel. Soft Matter. 2010, 6 (17) pp 4168-4174. June 16, 2010. DOI: 10.1039/b927267d.

.

5’-Sulfhydryl-Modified RNA: Initiator Synthesis, in Vitro Transcription, and Enzymatic Incorporation. Lei Zhang, Lele Sun, Zhiyong Cui, Robert L. Gottlieb and Biliang Zhang. Bioconjugate Chem.2001, 12 (6) pp 939–948. October 16, 2001. DOI: 10.1021/bc015504g.

.

An Anti-Insulin-like Growth Factor I Receptor AntibodyIs a Potent Inhibitor of Cancer Cell Proliferation. Erin K. Maloney, Jennifer L. McLaughlin, Nancy E. Dagdigian. Cancer Research. 2003, 63 pp 5073-5083. August 15, 2003. DOI: www.cancerres.aacrjounrals.org/content/63/5073.

.

Electrochemical Template Synthesis of Multisegment Nanowires:  Fabrication and Protein Functionalization. Bridget Wildt, Prashant Mali, and Peter C. Searson. Langmuir. 2006, 22 (25), pp 10528–10534. September 8, 2006. DOI: 10.1021/la061184j.

.

Targeted delivery of a photosensitizer to Aggregatibacter actinomycetemcomitans biofilm. Suci P, Kang S, Gmür R, Douglas T, Young M.. Antimicrobial Agents and Chemotherapy. 2010, 54 (6) pp 2489-2496. April 12, 2010. DOI: 10.1128/AAC.00059-10.

.

High-Throughput Screening of Small Molecules Identifies Hepcidin Antagonists. Eileen Fung, Priscilla Sugianto, Jason Hsu, Robert Damoiseaux, Tomas Ganz, and Elizabeta Nemeth. Molecular Pharmacology. 2013, 83 (3) pp 681-690. January 4, 2013. DOI: org/10.1124/mol.112.083428.

.

Diarylpropionitrile (DPN) Enantiomers: Synthesis and Evaluation of Estrogen Receptor β-Selective Ligands. Vincent M. Carroll, M. Jeyakumar, Kathryn E. Carlson, and John A. Katzenellenbogen. J. Med. Chem. 2012, 55 (1) pp 528–537. November 28, 2011. DOI: 10.1021/jm201436k.

.

Sugar-Binding Proteins from Fish: Selection of High Affinity “Lambodies” That Recognize Biomedically Relevant Glycans. Xia Hong, Mark Z. Ma, Jeffrey C. Gildersleeve, Sudipa Chowdhury, Joseph J. Barchi, Jr., Roy A. Mariuzza,∥ Michael B. Murphy, Li Mao and Zeev Pancer. ACS Chem. Biol. 2013, 8 pp 152−160. October 2, 2012. DOI:.org/10.1021/cb300399s.

.

Probing the Topological Tolerance of Multimeric Protein Interactions: Evaluation of an Estrogen/Synthetic Ligand for FK506 Binding Protein Conjugate. Terry W. Moore Jillian R. Gunther, and John A. Katzenellenbogen. Bioconjugate Chem. 2010, 21 (10), pp 1880–1889. October 4, 2010. DOI: 10.1021/bc100266v.

.

Enzyme-independent, orientation-selective conjugation of whole human complement C3 to protein surfaces. Daniel A. Mitchell, Rebecca Ilyas, Alister W. Dodds, Robert B. Sim. Journal of Immunological Methods. 2008, 337 (1) pp 49-54. June 9, 2008. DOI: 10.1016/j.jim.2008.05.011.

.

The rotation-coupled sliding of EcoRV. Jasmina Dikic, Carolin Menges, Samuel Clarke, Michael Kokkinidis, Alfred Pingoud, Wolfgang Wende and Pierre Desbiolles. Nucleic Acids Research. 2012, 40 (9), pp 4064-4070. January 12, 2012. DOI:10.1093/nar/gkr1309.

.

A Set of Time-Resolved Fluorescence Resonance Energy Transfer Assays for the Discovery of Inhibitors of Estrogen Receptor-Coactivator Binding. Jillian R. Gunther, Yuhong Du, Eric Rhoden, Iestyn Lewis, Brian Revennaugh, Terry W. Moore, Sung Hoon Kim, Raymond Dingledine, Haian Fu and John A. Katzenellenbogen. Journal of Biomolecular Screening. 2009, 14 (2) pp # 181-195. February 4, 2009. DOI: 10.1177/1087057108329349.

.

Exploration of Dimensions of Estrogen Potency Parsing Ligand Binding and Coactivator Binding Affinities. M. Jeyakumar, Kathryn E. Carlson, Jillian R. Gunther, and John A. Katzenellenbogen. Journal of Biological Chemistry. 2011 (286), pp. 12971-12982. February 14, 2011. DOI: 10.1074/jbc.M110.205112.

.

Attachment of hydrogel microstructures and proteins to glass via thiol-terminated silanes. Jeong Hyun Seo, Dong-Sik Shin, Priam Mukundan, Alexander Revzin. Colloids and Surfaces B: Biointerfaces. 2012, 98, pp 1–6. October 1, 2012. DOI: .org/10.1016/j.colsurfb.2012.03.025.

.

Monitoring a Coordinated Exchange Process in a Four-Component Biological Interaction System: Development of a Time-Resolved Terbium-Based One Donor/Three-Acceptor Multi-Color FRET System. Sung Hoon Kim, Jillian R. Gunther, and John A. Katzenellenbogen. JACS. 2010 132 (13) pp 4685-4692. April 7, 2011. DOI:10.1021/ja100248q.

.

Colorimetric multiplexed immunoassay using specific aggregation of antigenic peptide-modified luminous nanoparticles. Toshihiro Ihara, Yasunori Mori, Takaaki Imamura, Motoko Mukae, Shojiro Tanaka, Akinori Jyo. Science Direct. 2006, 578 (1) pp 11-18. May 4, 2006. DOI: 10.1016/j.aca.2006.04.066.

.

Interleukin-2 signalling is modulated by a labile disulfide bond in the CD132 chain of its receptor. Clive Metcalfe, Peter Cresswell and A. Neil Barclay. Open Biology. 2012, 2 (1). January 11, 2012. DOI: 10.1098/rsob.110036.

.

Self-Assembled Quantum Dot-Bioconjugates: Characterization and Use for Sensing Proteolytic Activity. Igor L. Medintz1, Thomas Pons, Kim E. Sapsford, Philip E. Dawson and Hedi Mattoussi. Proc. of SPIE. 2008, 6945. April 15, 2008. DOI: 10.1117/12.782174.

.

TCR Triggering by pMHC Ligands Tethered on Surfaces via Poly(Ethylene Glycol) Depends on Polymer Length. Zhengyu Ma, David N. Lebard, Sharon M. Loverde, Kim A. Sharp, Michael L. Klein, Dennis E. Discher, Terri H. Finkel. PLoS ONE. 2014. November 10, 2014. DOI: 10.137/journal.pone.0112292.

.

An Assay to Quantitate Reducible Cysteines from Nanograms of GST-Fusion Proteins. Dixon J. Woodbury, Chris A. Rees, Ammon Thompson, Paul Meiners, April Adams. Analytical Biochemistry. 2011, 417 (2) pp 165-173. October 15, 2011. DOI: 10.1016/j.ab.2011.06.017.

.

A magnetic bead-based protein kinase assay with dual detection techniques. Guangchang Zhou, Juliesta E. Sylvester, Ding Wua, Darren R. Veach , Stephen J. Kron. Analytical Biochemistry. 2011, 1 (408), pp 5-11, January 2011. DOI: 10.1016/j.ab.2010.08.034.

.

Integrin-Generated Forces Lead to Streptavidin-Biotin Unbinding in Cellular Adhesions. Carol Jurchenko, Yuan Chang, Yoshie Narui, Yun Zhang, Khalid S. Salaita. Biophysical Journal. 2014, 106 (7) pp 1436-1446. 4/1/2017. DOI: 10.1016/j.bpj.2014.01.049.

.

Manipulation of Carrier Proteins in Antibiotic Biosynthesis. James J. La Clair, Timothy L. Foley, Tracy R. Schegg, Conor M. Regan, and Michael D. Burkart. Chemistry & Biology. 2004. 11 (2), pp 195-201. February 2004. DOI: 10.1016/j.chembiol.2004.02.010.

.

Solid Phase 4’-Phosphopantetheinylation: Fungal Thiolation Domains are Targets for Chemoenzymatic Modification. Deirdre Stack, Aisling Frizzell, Karen Tomkins, and Sean Doyle. Bioconjugate Chem. 2009, 20 (8), pp 1514–1522. July 23, 2009. DOI: 10.1021/bc900071j.

.

Biotin-dPEG®x-NH₂

Synthesis and evaluation of cell-permeable biotinylated PU-H71 derivatives as tumor Hsp90 probes. Tony Taldone, Anna Rodina, Erica M. DaGama Gomes, Matthew Riolo, Hardik J. Patel, Raul Alonso-Sabadell, Danuta Zatorska, Maulik R. Patel, Sarah Kishinevsky and Gabriela Chiosis. Beilstein J. Org. Chem. 2013, 9 pp 544-556. March 15, 2013. DOI: 10.3762/bjoc.9.60.

.

Compact Biocompatible Quantum Dots via RAFT-Mediated Synthesis of Imidazole-Based Random Copolymer Ligand. Wenhao Liu, Andrew B. Greytak, Jungmin Lee, Cliff R. Wong, Jongnam Park, Lisa F. Marshall, Wen Jiang, Peter N. Curtin, Alice Y. Ting, Daniel G. Nocera, Dai Fukumura, Rakesh K. Jain and Moungi G. Bawendi. J. Am. Chem. Soc. 2010, 132 (2) pp 472–483. December 21, 2009. DOI: 10.1021/ja908137d.

.

Efficient Short Interference RNA Delivery to Tumor Cells Using a Combination of Octaarginine, GALA and Tumor-Specific, Cleavable Polyethylene Glycol System. Yu SAKURAI, Hiroto HATAKEYAMA, Hidetaka AKITA, Motoi OISHI, Yukio NAGASAKI, Shiro FUTAKI and Hideyoshi HARASHIMA. Biol. Pharm. Bull. 2009, 32 (5) pp 928-932. May 1, 2009. DOI:10.1248/bpb.32.928.

.

Electrochemically Directed Modification of ITO Electrodes and Its Feasibility for the Immunosensor Development. Daegeun Yu and Kyuwon Kim. Bull Korean Chem. Soc.2009, 30 (4) pp 955-958. February 23, 2009.

.

KCa3.1 and TRPM7 Channels at the Uropod Regulate Migration of Activated Human T Cells. Zerrin Kuras, Yeo-Heung Yun, Ameet A. Chimote, Lisa Neumeier, Laura Conforti. PLoS ONE 7(8), e43859. August 27, 2012. DOI: 10.1371/journal.pone.0043859.

.

Synthesis of Biotinylated r-D-Mannoside or N-Acetyl _-D-Glucosaminoside Decorated Gold Nanoparticles: Study of Their Biomolecular Recognition with Con A and WGA Lectins. Xiaoze Jiang, Abdelghani Housni, Guillaume Gody, Paul Boullanger, Marie-The´re`se Charreyre, Thierry Delair, and Ravin Narain. Bioconjugate Chem. 2010, 21 pp 521–530. February 3, 2010. DOI: 10.1021/bc900431p.

.

Electrogenerated Chemiluminescence. 77. DNA Hybridization Detection at High Amplification with [Ru(bpy)3]­­­2+-Containing Microspheres. Wujian Miao and Allen J. Bard. Anal. Chem. 2004, 76 (18), pp 5379-5386. August 7, 2004. DOI: 10.1021/ac0495236.

.

Development of Robust and Standardized Cantilever Sensors Based on Biotin/Neutravidin Coupling for Antibody Detection. Jiayun Zhang, Hans Peter Lang, Felice Battiston, Natalija Backmann, Francois Huber and Christoph Gerber. Sensors. 2013, 13 pp5273-5285. April 19, 2013. DOI:10.3390/s130405273.

.

Automated flow-through amperometric immunosensor for highly sensitive and on-line detection of okadaic acid in mussel sample. Rocio B. Dominguez, Akhtar Hayat, Audrey Sassolas, Gustavo A. Alonso, Roberto Munoz, Jean-Louis Marty. Elsevier. 2012, (99), pp 232-237, September 15, 2012. DOI: 10.1016/j.talanta.2012.05.045.

.

Molecularly Imprinted Polymer Arrays as Synthetic Protein Chips Prepared by Transcription-type Molecular Imprinting by Use of Protein-Immobilized Dots as Stamps. Takahiro Kuwata, Akane Uchida, Eri Takano, Yukiya Kitayama, and Toshifumi Takeuchi. Analytical Chemistry. 2015, 87 (23) pp 11784-11791. November 16, 2015. DOI:10.1021/acs.analchem.5b03134.

.

Blood Plasma-Derived Anti-Glycan Antibodies to Sialylated and Sulfated Glycans Identify Ovarian Cancer Patients. Tatiana Pochechueva, Alexander Chinarev, Andreas Schoetzau, Andre Fedier, Nicolai V. Bovin, Neville F. Hacker, Francis Jacob, Viola Heinzelmann-Schwarz. Plos One. 2016, 11 (10) e0164230. October 20, 2016. DOI: 10.1371/journal.pone.0164230.

.

Biotin-dPEG®x-oxyamine. HCl

Reduced Sialylation Impacts Ventricular Repolarization by Modulating Specific K+ Channel Isoforms Distinctly. Andrew R. Ednie and Eric S. Bennett. Journal of Biological Chemistry. 2014. December 18, 2014. DOI: 10.1074/jbc.M114.605139.

.

dPEG®x-biotin acid

Prion protein 90-231 contains a streptavidin-binding motif. Thurid Boetel, Steffen Bade, Marcus Alexander Schmidt, Andreas Frey. Biochemical and Biophysical Research Communications. 2006, 349 (1) pp 296-302. October 13, 2006. DOI: 10.1016/j.bbrc.2006.08.041.

.

Sphere-Like Protein-Glycopolymer Nanostructures Tailored by Polyassociation. Franka Ennen, Philipp Fenner, Susanne Boye, Albena Lederer, Hartmut Komber, Brigitte Voit, and Dietmar Appelhans. Biomacromolecules. 2015, 16 (12) pp 3731-4032. December 1, 2015. DOI: 10.1021/acs.biomac.5b00975.

.

Measurement of Inflammatory Cytokine Secretion from Human Monocytes after Inflammasome Activation. Yoshitaka Shirasaki, Asahi Nakahara, Nanako Shimura, Kazushi Izawa, Nobutake Suzuki, Mai Yamagishi, Jun Mizuno, Tetsushi Sekiguchi, Ryuta Nishikomori, Shuichi Shoji, Osamu Ohara. Royal Society of Chemistry. 2012, 978-0-9798064-5-2 pp 1012-1014. November 1, 2012. DOI: 12CBMS-0001.

.

124To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 131: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Synthesis of Three-dimensional Polymer Nanostructures via Chemical Vapor Deposition. Kenneth Chang. Dissertations and Theses (Ph.D. and Master's). 2017, pp iv-157. 10/5/2017.

.

Macrocycles That Inhibit the Binding between Heat Shock Protein 90 and TPR-Containing Proteins. Veronica C. Ardi, Leslie D. Alexander, Victoria A. Johnson, and Shelli R. McAlpine. ACS Chem. Biol. 2011, 6 (12), pp 1357–1366. September 27, 2011. DOI: 10.1021/cb200203m.

.

Real-time single-cell imaging of protein secretion. Yoshitaka Shirasaki, Mai Yamagishi, Nobutake Suzuki, Kazushi Izawa, Asahi Nakahara, Jun Mizuno, Shuichi Shoji, Toshio Heike, Yoshie Harada, Ryuta Nishikomori and Osamu Ohara. Scientific Reports. 2014, 4 (4736) pp 1-16. April 22, 2014. DOI: 10.1038/srep04736.

.

Sensitive Detection of Small Molecule–Protein Interactions on a Metal – Insulator – Metal Label-Free Biosensing Platform. Amir Syahir, Kotaro Kajikawa and Hisakazu Mihara. Chemistry Asian Journal. 2012, 8 (7), pp 1867-1874. August 2012. DOI: 10.1002/asia.201200138.

.

Surface Functionalization Using Catalyst-Free Azide-Alkyne Cycloaddition. Alexander Kuzmin, Andrei Poloukhtine, Margreet A. Wolfert, and Vladimir V. Popik. Bioconjugate Chem. 2010, 21 (11) pp 2076–2085. October 21, 2010. DOI: 10.1021/bc100306u.

.

NHS-biotin

Human serum albumin and HER2-binding affibody fusion proteins for targeted delivery of fatty acid-modified molecules and therapy. Daoyuan Dong, Guanjun Xia, Zhijun Li, and Zhiyu Li. Molecular Pharmaceutics. 2016, August 21, 2016. DOI: 10.1021/acs.molpharmaceut.6b00265.

.

NHS-dPEG®x-biotin

Biotinylation reagents for the study of cell surface proteins. Giuliano Elia DR. Proteomics. 2008, 8 (19) pp 4012-4024. September 3, 2008. DOI: 10.1002/pmic.200800097.  

.

Prion Protein Detection Using Nanomechanical Resonator Arrays and Secondary Mass Labeling. Madhukar Varshney , Philip S. Waggoner , Christine P. Tan , Keith Aubin , Richard A. Montagna , and Harold G. Craighead. Analytical Chemistry . 2008, 80 (6), pp 2141–2148. February 14, 2008. DOI: 10.1021/ac702153p

.

Trafficking of immature F508-CFTR to the plasma membrane and its detection by biotinylation. Yishan Luo, Ken McDonald and John W. Hanrahan. Biochem J. 2009, 419 pp 211–219. December 8, 2008. DOI: 10.1042/BJ20081869.

.

Bioconjugation of Ln3-Doped LaF3 Nanoparticles to Avidin. Peter R. Diamente, Robert D. Burke, and Frank C. J. M. van Veggel. Langmuir. 2006, 22 (4), pp 1782–1788. December 30, 2005. DOI: 10.1021/la052589r.

.

Biomolecular strategies for cell surface engineering. John Tanner Wilson. Smartech. 2008, December 5, 2008.

.

Preparation of Biotinylated Cypridina Luciferase and Its Use in Bioluminescent Enzyme Immunoassay. Chun Wu, Kosei Kawasaki, Yoko Ogawa, Yasukazu Yoshida, Satoru Ohgiya, and Yoshiro Ohmiya. Analytical Chemistry. 2007, 79 (4) pp 1634-1638. January 13, 2007. DOI: 10.1021/ac061754k.

.

Bioconjugation of Ln3+-Doped LaF3 Nanoparticles to Avidin. Peter R. Diamente, Robert D. Burke, and Frank C. J. M. van Veggel. Langmuir. 2006, 22 (4) pp 1782–1788. December 30, 2005. DOI: 10.1021/la052589r.

.

Hepatocyte Targeting of Nucleic Acid Complexes and Liposomes by a T7 Phage p17 Peptide. So C. Wong, Darren Wakefield, Jason Klein, Sean D. Monahan, David B. Rozema, David L. Lewis, Lori Higgs, James Ludtke, Alex V. Sokoloff, and Jon A. Wolff. Mol. Pharm. 2006, 3, (4) pp 386-397. March 28, 2006. DOI: 10.1021/mp050108r.

.

Visualizing mechanical tension across membrane receptors with a fluorescent sensor. Daniel R Stabley, Carol Jurchenko, Stephen S Marshall & Khalid S Salaita. Nature Methods. 2011, 9, PP 64–67. October 30, 2011. doi:10.1038/nmeth.1747.

.

Introduction of the Mass Spread Function for Characterization of Protein Conjugates. Joseph P. Skinner, Lianli Chi, Panfilo F. Ozeata,Carol S. Ramsay, Robynn L. O’Hara, Brenda B. Calfin, and Sergey Y. Tetin. Analytical Chemistry. 2012, 84 (2), pp 1172–1177. November 30, 2011. DOI: 10.1021/ac202239j.

.

An analysis of the function and expression of D6 on lymphatic endothelial cells. Clive S. McKimmie, Mark D. Singh, Kay Hewit, Oscar Lopez-Franco, Michelle Le Brocq, Stefan Rose-John, Kit Ming Lee, Andrew H.Baker, Rachel Wheat, David J. Blackbourn, Robert J. B. Nibbs and Gerard J. Graham. Blood Journal. 2013, 121 pp 3768-3777. March 11, 2013. DOI:10.1182/blood-2012-04-425314.

.

Impedance spectral fingerprint of E. coli cells on interdigitated electrodes: A new approach for label free and selective detection. Maria Mallen-Alberdi, Nuria Vigues, Jordi Mas, Cesar Fernandez-Sanchez, and Antonio Baldi. Sensing and Bio-Sensing Research. 2016, 7 pp 100-106. February 3, 2016. DOI: 10.1016/j.sbsr.2016.02.001.

.

New Assay for Quantification of PEGylated Proteins During in Vitro Permeability Studies.Spela Jalen,, Vanja Smilovic, Katarina Fidler, Barbara Podobnik, Maja Marusic, Radovan Komel, Vladka Gaberc-Porekar and Simona Jevsevar. Acta Chimica Slovenica. 2014, 61 (3) pp 615-622. January 15, 2014.

.

Site-Specific Labeling of DNA and RNA Using an Efficiently Replicated and Transcribed Class of Unnatural Base Pairs. Young Jun Seo, Denis A. Malyshev, Thomas Lavergne, Phillip Ordoukhanian, and Floyd E. Romesberg . Journal of the American Chemical Society. 2011, 133 (49) pp 19878–19888. October 8, 2011. DOI: 10.1021/ja207907d.

.

Spontaneous Dissociation of Streptavidin from Biotinylated Double Stranded DNA. Kennedy Michelle. Undergraduate Honors Theses. 2017, pp 1-23. Spring 2017. http://scholar.colorado.edu/honr_theses/1373.

.

Nanometric gap structure with fluid lipid bilayer for the selective transport and detection of biological molecules. Koji Ando, Masashi Tanabe, and Kenichi Morigaki. Langmuir. 2016, pp 1-30. July 18, 2016. DOI: 10.1021/acs.langmuir.6b01405.

.

Affinity purification of human m-calpain through an intrinsically disordered inhibitor, calpastatin. Hung Huy Nguyen, Mihaly Varadi, Peter Tompa, and Kris Pauwels. PLOS one. 2017, 12 (3): e0174125. March 20, 2017. https://doi.org/10.1371/journal.pone.0174125.

.

Achieving Potent Autologous Neutralizing Antibody Responses against Tier 2 HIV-1 Viruses by Strategic Selection of Envelope Immunogens. Ann J. Hessell, Delphine C. Malherbe, Franco Pissani, Sean McBurney, Shelly J. Krebs, Michelle Gomes, Shilpi Pandey, William F. Sutton, Benjamin J. Burwitz, Matthew Gray, Harlan Robins, Byung S. Park, Jonah B. Sacha, Celia C. LaBranche, Deborah H. Fuller, David C. Montefiori, Leonidas Stamatatos, D. Noah Sather, and Nancy L. Haigwood. The Journal of Immunology.2016, pp 1550-6606. March 4, 2016. DOI: 10.4049/jimmunol.1500527.

.

Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents. Barbara Bernardim, Pedro M.S.D. Cal, Maria J. Matos, Bruno L. Oliveira, Nuria Martinez-Saez, Ines S. Albuquerque, Elizabeth Perkins, Francisco Corzana, Antonio C.B. Burtoloso, Gonzalo Jimenez-Oses, and Goncalo J.L. Bernardes. Nature Communications. 2016, 7 (13128) pp 1-9. October 26, 2016. DOI: 10.1038/ncomms13128.

.

Linker length matters, Fynomer - Fc Fusion with an Optimized Linker Displaying Picomolar IL-17A Inhibition Potency. Michela Silacci, Nadja Baenziger-Tobler, Wibke Lembke, Wenjuan Zha, Sarah Batey, Julian Bertschinger and Dragan Grabulovski. The Journal of Biological Chemistry. 2014, 289 (14) pp 14392-14398. April 1, 2014. DOI: 10.1074/jbc.M113.534578.

.

Antibody humanization by molecular dynamics simulations-in-silico guided selection of critical backmutations. Christian Margreitter, Patrick Mayrhofer, Renate Kunert, and Chris Oostenbrink. Journal of Molecular Recognition. 2016, January 8, 2016. DOI: 10.1002/jmr.2527.

.

Calsyntenin3: Molecular Architecture and Interaction with Neurexin 1alpha. Zhuoyang Lu, Yun Wang, Fang Chen, Huimin, Tong, M. V.V.V. Sekhar Reddy, Lin Luo, Suchithra Seshadrinathan, Lei Zhang, Luis, Marcelo F. Holthauzen, Ann Marie Craig, Gang Ren and Gabby Rudenko. Journal of Biological Chemistry. 2014, 289 (50) pp 34530-34542. October 28, 2014. DOI: 10.1074/jbc.M114.606806.

.

Analysis of the sensitizing properties of ragweed pollen componets and the influence of environmental factors in a murine in vivo model. Maria Kamml. Fakultat fur Medizin. 2014, July 5, 2014.

.

Sequence determinants of protein aggregation in human VH domains. Kip Dudgeon, Kristoffer Famm, and Daniel Christ. Protein Engineering, Design & Selection. 2009, 22 (3) pp 217-220. October 28, 2008. DOI: 10.1093/protein/gzn059.

.

Codon optimization and factorial screening for enhanced soluble expression of human ciliary neurotrophic factor in Escherichia coli. Jaakko M. Itkonen, Arto Urtti, Louise E. Bird, Sanjay Sarkhel. BMC Biotechnology. 2014, 14 (92). November 14, 2014. DOI: 10.1186/s12896-014-0092-x.

.

Allosteric Targeting of the Fanconi Anemia Ubiquitin-Conjugating Enzyme Ube2T by Fragment Screening. Francesca E Morreale, Alessio Bortoluzzi, Viduth K Chaugule, Connor Arkinson, Helen Walden, and Alessio Ciulli. Journal of Medicinal Chemistry. 2017, 60 pp 4093-4098. April 24, 2017. DOI: 10.1021/acs.jmedchem.7b00147.

.

Development and characterization of serotype-specific monoclonal antibodies against the dengue virus-4 (DENV-4) non-structural protein (NS1). Tesfaye Gelanew and Elizabeth Hunsperger. Virology Journal. 2018, 15 (30) pp 1-12. February 6, 2018. DOI: 10.1186/s12985-018-0925-7.

.

Synthetic Antibodies with a Human Framework That Protect Mice from Lethal Sudan Ebolavirus Challenge. Gang Chen, Jayne F. Koellhoffer, Samantha E. Zak, Julia C. Frei, Nina Liu, Hua Long, Wei Ye, Kaajal Nagar, Guohua Pan, Kartik Chandran, John M. Dye, Sachdev S. Sidhu, and Jonathan R. Lai. ACS Chemical Biology. 2014, 9 (10) pp 2263-2273. August 20, 2014. DOI: 10.1021/cb5006454.

.

Adapter Protein-1 Complex Affects the Endocytic Trafficking and Function of Peptidylglycine a-Amidating Monooxygenase, a Luminal Cuproenzyme. Mathilde L. Bonnemaison, Nils Back, Megan E. Duffy, Martina Ralle, Richard E. Mains and Betty A. Eipper. Journal of Biological Chemistry. 2015. July 13, 2015. DOI: 10.1074/jbc.M115.641027.

.

Pyrrolobenzodiazepine Dimer Antibody–Drug Conjugates: Synthesis and Evaluation of Noncleavable Drug-Linkers. Stephen J. Gregson, Luke A. Masterson, Binqing Wei, Thomas H. Pillow, Susan D. Spencer, Gyoung-Dong Kang, Shang-Fan Yu, Helga Raab, Jeffrey Lau, Guangmin Li, Gail D. Lewis Phillips, Janet Gunzner-Toste, Brian S. Safina, Rachana Ohri, Martine Darwish, Katherine R. Kozak, Josefa dela Cruz-Chuh, Andrew Polson, John A. Flygare, and Philip W. Howard. Journal of Medical Chemistry. 2017, 60 (23) pp 9490-9507. 11/7/2017. DOI: 10.1021/acs.jmedchem.7b00736.

.

Visualizing mechanical tension across membrane receptors with a fluorescent sensor. Daniel R Stabley, Carol Jurchenko, Stephen S Marshall & Khalid S Salaita. Nature Methods. 2011, 9, PP 64–67. October 30, 2011. DOI: 10.1038/nmeth.1747.

.

Molecular characterization of human anti-hinge antibodies derived from single cell cloning of normal human B cells. Tao Huang, Mary Mathieu, Sophia Lee, Xinhua Wang, Yee Seir Kee, Jack J. Bevers III, Claudio Ciferri, Alberto Estavez, Manda Wong, Nancy Y. Chiang, Gerald Nakamura, and Randall J. Brezski. Journal of Biological Chemistry. 2017, 00 pp 1-20. November 30, 2017. DOI: 10.1074/jbc.RA117.000165.

.

DSSylation, a novel protein modification targets proteins induced by oxidative stress, and facilitates their degradation in cells. Yinghao Zhang, Fang-Mei Chang, Jianjun Huang, Jacob J. Junco, Shivani K. Maffi, Hannah I. Pridgen, Gabriel Catano, Hong Dang, Xiang Ding, Fuquan Yang, Dae Joon Kim,Thomas J. Slaga, Rongqiao He, Sung-Jen Wei. Protein & Cell. 2013, 5 (2) pp 124-140. February 11, 2014. DOI: 10.1007/s13238-013-0018-8.

.

Polymorphisms of Mouse Apolipoprotein A-II Alter Its Physical and Functional Nature. Timothy J. Sontag, Catherine A. Reardon. PLOS ONE. 2014, 9 (2) e88705. February 10, 2014. DOI:10.1371/journal.pone.0088705.

.

Rapid Tumor Necrosis Factor α-Induced Exocytosis of Glutamate Receptor 2-Lacking AMPA Receptors to Extrasynaptic Plasma Membrane Potentiates Excitotoxicity. Dmitri Leonoudakis, Pingwei Zhao, and Eric C. Beattie. The Journal of Neuroscience. 2008, 28 (9) pp 2119-2130. February 27, 2008. DOI: 10.1523/JNEUROSCI.5159-07.2008.

.

Enzymatically active microspheres for self-propelled colloidal engines. Jungeum Park. CUNY Academic Works. 2017. http://academicworks.cuny.edu/cc_etds_theses/671.

.

Targeted Contrast-Enhanced Ultrasound Imaging of Tumor Angiogenesis with Contrast Microbubbles Conjugated to Integrin-Binding Knottin Peptides. Jürgen K. Willmann, Richard H. Kimura, Nirupama Deshpande, Amelie M. Lutz, Jennifer R. Cochran and Sanjiv S. Gambhir. The Journal of Nuclear Medicine. 2010, 51 (3) pp 433-440. February 11, 2010. DOI: 10.2967/jnumed.109.068007.

.

Tip-Specific Functionalization of Gold Nanorods for Plasmonic Biosensing: Effect of Linker Chain Length. Pedro M R Paulo, Peter Zijlstra, Michel Orrit, Emilio Garcia-Fernandez, Tamara C S Pace, Ana S Viana, and Silvia M B Costa. Langmuir. 2017. June 7, 2017. DOI: 10.1021/acs.langmuir.7b00422.

.

125To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 132: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

A digital enzyme-linked immunosorbent assay for ultrasensitive measurement of amyloid-ß 1-42 peptide in human plasma with utility for studies of Alzheimer's disease therapeutics. Linan Song, D Richard Lachno, David Hanlon, Adam Shepro, Andreas Jeromin, Dipika Gemani, Jayne A Talbot, Margaret M Racke, Jeffrey L Dage, and Robert A Dean. Alzheimer's Research & Therapy. 2016, 8 (58) pp 1-15. December 15, 2016. DOI: 10.1186/s13195-016-0225-7.

.

In vivo biotinylated calpastatin improves the affinity purification of human m-calpain. Hung Huy Nguyen, Alexander N. Volkov, Guy Vandenbussche, Peter Tompa, and Kris Pauwels. Protein Expression and Purification. 2018, 145, pp 77-84. January 13, 2018. DOI: 10.1016/j.pep.2018.01.002.

.

Surface Plasmon Resonance Imaging Microscopy of Liposomes and Liposome-Encapsulated Gold Nanoparticles. Lauri Viitala, Adam M Maley, H.W. Millie Fung, Robert M. Corn, Tapani Viitala, and Lasse Murtomaki. The Journal of Physical Chemistry. 2016, October 31, 2016. DOI: 10.1021/acs.jpcc.6b09503.

.

Comparison of homologous and heterologous prime-boost vaccine approaches using Modified Vaccinia Ankara and soluble protein to induce neutralizing antibodies by the human cytomegalovirus pentamer complex in mice. Flavia Chiuppesi, Felix Wussow, Louise Scharf, Heidi Contreras, Han Gao, Zhuo Meng, Jenny Nguyen, Peter A. Barry, Pamela J. Bjorkman, and Don J. Diamond. PLOS One. 2017, 12 (8) e0183377. August 16, 2017. https://doi.org/10.1371/journal.pone.0183377.

.

The Nutrigenetics of Hyperhomocysteinemia. Patricia M. DiBello, Sanjana Dayal, Suma Kaveti, Dongmei Zhang, Michael Kinter, Steven R. Lentz, and Donald W. Jacobsen. Molecular & Cellular Proteomics. 2010, 9 (3) pp 471-485. December 21, 2009. 10.1074/mcp.M900406-MCP200.

.

A Novel Antibody Targeting Tau Phosphorylated at Serine 235 Detects Neurofibrillary Tangles. David Brici, Jürgen Götz, and Rebecca M. Nisbet. Journal of Alzheimer's Disease. 2018, 61 (3) pp. 899-905. January 9, 2018. DOI: 10.3233/JAD-170610.

.

A natural human monoclonal antibody targeting Staphylococcus Protein A protects against Staphylococcus aureus bacteremia. Avanish K. Varshney, Galina A. Kuzmicheva, Jian Lin, Kevin M. Sunley, Rodney A. Bowling Jr., Tzu-Yu Kwan, Heather R. Mays, Anu Rambhadran, Yanfeng Zhang, Rebecca L. Martin, Michael C. Cavalier, John Simard, and Sushma Shivaswamy. PLOS ONE. 2018, 13 (1) pp 1-22. January 24, 2018. DOI: 10.1371/journal.pone.0190537.

.

The Lysosomal Transmembrane Protein 9B Regulates the Activity of Inflammatory Signaling Pathways. Francis Dodeller, Marie Gottar, Dieter Huesken, Vadim Iourgenko and Bruno Cenni. The Journal of Biological Chemistry. 2008, 283 (31) pp 21487-21494. June 9, 2008. DOI: 10.1074/jbc.M801908200.

.

The Tumor Suppressive Small GTPase DiRas1 Binds the Non-canonical Guanine Nucleotide Exchange Factor SmgGDS and Antagonizes SmgGDS Interactions with Oncogenic Small GTPases. Carmen Bergom, Andrew D. Hauser, Amy Rymaszewski, Patrick Gonyo, Jeremy W. Prokop, Benjamin C. Jennings, Alexis J. Lawton, Anne Frei, Ellen L. Lorimer Jr., Irene Aguilera-Barrantes Jr., Alexander C. Mackinnon Jr., Kathleen Noon, Carol A. Fierke, and Carol L. Williams. The Journal of Biological Chemistry. 2016, January 26, 2016. DOI: 10.1074/jbc.M115.696831.

.

Utilisation of antibody microarrays for the selection of specific and informative antibodies from recombinant library binders of unknown quality. Janek Kibat, Thomas Schirrmann, Matthias J. Knape, Saskia Helmsing, Doris Meier, Michael Hust, Christoph Schroder, Daniela Bertinetti, Gerhard Winter, Khalid Pardes, Mia Funk, Andrea Vala, Nathalia Giese, Friedrich W. Herberg, Stefan Dubel, and Jorg D. Hoheisel. New Biotechnology. 2015, 00 (00). December 17, 2015. DOI: 101016/j.nbt.2015.12.003.

.

A versatile approach towards nucleobase-modified aptamers. Fabian Tolle, Dr. Gerhard M Brandle, Daniel Matzner, and Prof. Dr. Gunter Mayer. Angewandte Chemie. 2015, 54 (37) pp 10971-10974. September 7, 2015. DOI: 10.1002/anie.201503652.

.

Transport of biomolecules to binding partners displayed on the surface of microbeads arrayed in traps in a microfluidic cell. Xiaoxiao Chen, Thomas F Leary, and Charles Maldarelli. Biomicrofluidics. 2017, 11 (1) pp 014101. January 4, 2017. DOI: 10.1063/1.4973247.

.

Potency determination of inactivated H7 influenza vaccines using monoclonal antibody-based ELISA and biolayer interferometry assays. Anupama Vasudevan, Amy Woerner, Falko Schmeisser, Swati Verma, Ollie Williams, and Jerry P. Weir. Influenza and Other Respiratory Viruses. 2017, 00 pp 1-9. 12/15/2017. DOI: 10.1111/irv.12528.

.

Electron Paramagnetic Resonance of a Single NV Nanodiamond Attached to an Individual Biomolecule. Richelle M. Teeling-Smith, Young Woo Jung, Nicolas Scozzaro, Jeremy Cardellino, Isaac Rampersaud, Justin A. North, Marek Šimon, Vidya P. Bhallamudi, Arfaan Rampersaud, Ezekiel Johnston-Halperin, Michael G.Poirier, and P. Chris Hammel. Biophysical Journal. 2016, 110 (9) pp 2044-2052. 5/10/2016. DOI: 10.1016/j.bpj.2016.03.022.

.

Regulation of Integrin Adhesions by Varying the Density of Substrate-Bound Epidermal Growth Factor. Tamar Shahal Benjamin Geiger Iain E. Dunlop Joachim P. Spatz. Biointerphases. 2012, 7 (23) February 13, 2012. DOI: 10.1007/s13758-012-0023-0.

.

Hepatocyte Targeting of Nucleic Acid Complexes and Liposomes by a T7 Phage p17 Peptide. So C. Wong, Darren Wakefield, Jason Klein, Sean D. Monahan, David B. Rozema, David L. Lewis, Lori Higgs, James Ludtke, Alex V. Sokoloff, and Jon A. Wolff. Molecular Pharmaceutics. 2006, 3 (4) pp 386-397. March 28, 2006. DOI: 10.1021/mp050108r.

.

Characterization of Particle Translocation through Mucin Hydrogels. Oliver Lieleg,  Ioana Vladescu, and Katharina Ribbeck. Biophysical Journal. 2010, 98 (9) pp 1782–1789. May 5, 2010. DOI: 10.1016/j.bpj.2010.01.012.

.

Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. Peer-Hendrik Kuhn, Katarzyna Koroniak, Sebastian Hogl, Alessio Colombo, Ulrike Zeitschel, Michael Willem, Christiane Volbracht, Ute Schepers, Axel Imhof, Albrecht Hoffmeister, Christian Haass, Steffen Roßner, Stefan Brase and Stefan F Lichtenthaler. The EMBO Journal. 2012, 31 pp 3157–3168. June 22, 2012. DOI: 10.1038/emboj.2012.173.

.

Silicon Nanoribbons for Electrical Detection of Biomolecules. Niklas Elfström, Amelie Eriksson Karlström, Jan Linnros. Nano Letters. 2008, 8 (3) pp 945-949. February 12, 2008. DOI: 10.1021/nl080094r.

.

Topography and Recognition Imaging with the Agilent 6000ILM, an Integrated AFM/ILM. W. Travis Johnson, Ph.D. Agilent Technologies, Inc. 2011, 5990-8982EN. August 24, 2011. www.agilent.com/find/afm.

.

Single and multiple bonds in (strept)avidin–biotin interactions. Jean-Marie Teulon, Yannick Delcuze, Michael Odorico, Shu-wen W. Chen, Pierre Parot and Jean-Luc Pellequer. Journal of Molecular Recognition. 2011, 24 (3) pp 490–502. April 4, 2011. DOI:10.1002/jmr.1109.

.

Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. Isaak Quast, Christian W. Keller, Michael A. Maurer, John P. Giddens, Bjorn Tackenberg, Lai-Xi Wang, Christian Munz, Falk Nimmerjahn, Marinos C. Dalakas and Jan D. Lunemann. The Journal of Clinical Investigation. 2015, August 25, 2015. DOI: 10.1172/JCI82695.

.

Silica nanostructured platform for affinity capture of tumor-derived exosomes. Parissa Ziaei, Jonathan J Geruntho, Oscar G Marin-Flores, Clifford E Berkman, and M Grant Norton. Journal of Materials Science. 2017, pp 1-10. February 8, 2017. DOI: 10-1007/s10853-017-0905-0.

.

Development of recombinant Aleuria aurantia lectins with altered binding specificities to fucosylated glycans. Patrick R. Romano, Andrew Mackay, Minh Vong, Johann deSa, Anne Lamontagne , Mary Ann Comunale , Julie Hafner , Timothy Block, Ryszard Lec, Anand Mehta. Biochemical and Biophysical Research Communications. 2011, 414 (1) pp 84-89. October 14, 2011. DOI: 10.1016/j.bbrc.2011.09.027.

.

The detection of biomolecules using self-assembled microspheres in an immunoassay. Chen-Hao Chen, Huei-Shian Lin & James R. Carey. Innovation, Communication and Engineering. 2014. January 2, 2014.

.

Force Measurement for Interaction between Cucurbit[7]uril and Mica and Self-Assembled Monolayer in the Presence of Zn2+ Studied with Atomic Force Microscopy. Young-In Bae, Iiha Hwang, Ikjin Kim, Kimoon Kim, and Joon Won Park. Langmuir. 2017, pp 1-32. September 26, 2017. DOI: 10.1021/acs.langmuir.7b02168.

.

Alternative mRNA Splicing Generates Two Distinct ADAM12 Prodomain Variants. Sara Duhachek-Muggy, Hui Li, Yue Qi, Anna Zolkiewska. PLOS ONE. 2013, 8 (10) e75730. October 7, 2013. DOI: 10.1371/journal.pone.0075730.

.

Delivery of NADPH-Cytochrome P450 Reductase Antisense Oligos Using Avidin-Biotin Approach. Venkateswaren C. Pillai, Rekha Yesudas, Imam H. Shaik, Thomas J. Thekkumkara, Ulrich Bickel, Kalkunte S. Srivenugopal, and Reza Mehvar. Bioconjugate Chemistry. 2010, 21 (2) pp 203–207. January 11, 2010.DOI: 10.1021/bc900449b.

.

Highly bright avidin-based affinity probes carrying multiple lanthanide chelates. Laura Wirpsza, Shyamala Pillai, Mona Batish, Salvatore Marras, Lev Krasnoperov, Arkady Mustaev. Journal of Photochemistry and Photobiology B: Biology. 2012, 116 pp 22-29. November 5, 2012. DOI: 10.1016/j.jphotobiol.2012.07.001.

.

Magnetic Separation of Melenoma-Specific Cytoxic T Lymphocytes from a Vaccinated Melanoma Patients’s Blood Using MHC/Peptide Complex-Conjugated Bacterial Magnetic Particles. Masayuki Takahashi, Yasuto Akiyama, Junpei Ikezumi, Takeshi Nagata, Tomoko Yoshino, Akira Iizuka, Ken Yamaguchi, and Tadashi Matsunaga. Bioconjugate Chemistry. 2009, 20 (2) pp 304–309. January 14, 2009. DOI: 10.1021/bc800398d.

.

Quantitative Label-Free Characterization of Avidin-Biotin Assemblies on Silanized Glass. Li-Jung Chen, Jeong Hyun Seo, Michael J. Eller, Stanislav V. Verkhoturov, Sunny S. Shah, Alexander Revzin, and Emile A. Schweikert. Analytical Chemistry. 2011, 83 (18) pp 7173–7178. August 15, 2011.

.

Structurally Defined Nanoscale Sheets from Self-Assembly of Collagen-Mimetic Peptides.Tao Jiang, Chunfu Xu, Yang Liu, Zheng Liu, Joseph S. Wall, Xiaobing Zuo, Tianquan Lian, Khalid Salaita, Chaoying Ni, Darrin Pochan, Vincent P. Conticello. Journal of the American Chemical Society. 2014, 136 (11) pp 4300-4308. February 26, 2014. DOI: 10.1021/ja412867z.

.

Polymeric mechanical amplifiers of immune cytokine-medicated apoptosis. Michael J Mitchell, Jamie Webster, Amanda Chung, Pedro P.G Guimaraes, Omar F Khan, and Robert Langer. Nature Communications. 2017, 8 (14179) pp 1-13. March 20, 2017. DOI: 10.1038/ncomms14179.

.

Selection of human antibody fragments by phage display. Lee, C.M, Iorno, N., Sierro, F. and Christ, D. Nature Protocol. 2007, 2(11) pp 3001-3008. November 15, 2007. DOI:10.1038/nprot.2007.448.

.

Melanoma Imaging with Pretargeted Bivalent Bacteriophage. Jessica R Newton, Yubin Miao, Susan L Deutscher, Thomas P Quinn. Journal of Nuclear Medicine. 2007, 48 (3) pp 429-436. March 1, 2007.

.

Synthetic, site-specific biotinylated analogs of human MCP-1. Marian Kruszynski, Ping Tsui, Nicole Stowell, Jinquan Luo, Jennifer F. Nemeth, Anuk M. Das, Raymond Sweet, George A. Heavner. Journal of Peptide Science. 2006, 12 (5) pp 354-360. November 14, 2005. DOI: 10.1002/psc.734.

.

Biotinylation reagents for the study of cell surface proteins. Giuliano Elia DR. Proteomics. 2008, 8 (19) pp 4012-4024. September 3, 2008. DOI: 10.1002/pmic.200800097.  

.

Development and Validation of an Ultrasensitive Procalcitonin Sandwich Immunoassay. Viviana A. Carcamo Yañez, Jens C. Göpfert, Markus Otto, Hayrettin Tumani, Andreas Peter, and Thomas O. Joos. High-Throughput. 2017, 6 (4) pp 18. 11/16/2017. DOI: 10.3390/ht6040018.

.

The in vivo fates of plant viral nanoparticles camouflaged using self-proteins: overcoming immune recognition. Neetu M. Gulati, Andrzej S. Pitek, Anna E. Czapar, Phoebe L. Stewart, and Nicole F. Steinmetz. Journal of Materials Chemistry B. 2018, pp 1-14. February 27, 2018. DOI: 10.1039/C7TB03106H.

.

The therapeutic potential of SA-sCD40L in the orthotopic model of superficial bladder cancer. Zhang Z, Xu X, Zhang X, Chen X, Chen Q, Dong L, Hu Z, Li J, Gao J.Acta Oncologica. 2011, 50 (7) pp 1111-1118. October 1, 2011.  DOI: 10.3109/0284186X.2010.549838.

.

Force Measurement for Interaction between Cucurbit[7]uril and Mica and Self-Assembled Monolayer in the Presence of Zn2+ Studied with Atomic Force Microscopy. Young-In Bae, Iiha Hwang, Ikjin Kim, Kimoon Kim, and Joon Won Park. Langmuir. 2017, pp 1-32. September 26, 2017. DOI: 10.1021/acs.langmuir.7b02168.

.

Engineering of novel tamavidin 2 muteins with lowered isoelectric points and lowered non-specific binding properties. Yoshimitsu Takakura, Naomi Oka, Hitomi Kajiwara, Masako Tsunashima. Journal of Bioscience and Bioengineering. 2012, 114 (5) pp 485-489. November 2012. DOI: 10.1016/j.jbiosc.2012.06.009.

.

Kinetic Approach to Pathway Attenuation Using XOMA 052, a Regulatory Therapeutic Antibody That Modulates Interleukin-1 b Activity. Marina K. Roell, Hassan Issafras, Robert J. Bauer, Kristen S. Michelson, Nerissa Mendoza, Sandra I. Vanegas, Lisa M. Gross, Paul D. Larsen, Daniel H. Bedinger, David J. Bohmann, Genevieve H. Nonet, Naichi Liu, Steve R. Lee, Masahisa Handa, Seema S. Kantak, Arnold H. Horwitz, John J. Hunter, Alexander M. Owyang, Amer M. Mirza, John A. Corbin and Mark L. White. The Journal of Biological Chemistry. 2010, 285 pp 20607-20614. April 21, 2010. DOI: 10.1074/jbc.M110.115790.

.

Targeted Delivery of a Photosensitizer to Aggregatibacter actinomycetemcomitans Biofilm. Suci P, Kang S, Gmür R, Douglas T, Young M.. Antimicrobial Agents and Chemotherapy. 2010, 54 (6) pp 2489-2496. April 12, 2010. DOI: 10.1128/AAC.00059-10.

.

126To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 133: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Introduction of the Mass Spread Function for Characterization of Protein Conjugates. Joseph P. Skinner, Lianli Chi, Panfilo F. Ozeata,Carol S. Ramsay, Robynn L. O’Hara, Brenda B. Calfin, and Sergey Y. Tetin. Analytical Chemistry. 2012, 84 (2), pp 1172–1177. November 30, 2011. DOI: 10.1021/ac202239j.

.

Chemoaffinity capture of pre-targeted prostate cancer cells with magnetic beads. Lisa Y. Wu, Tiancheng Liu, Mark R. Hopkins, William C. Davis, and Clifford E. Berkman. The Prostate. 2012, 72 (14) pp 1532-1541. April 4, 2012. DOI: 10.1002/pros.22508.

.

An adsorption chromatography assay to probe bulk particle transport through hydrogels. VLADESCU, O. LIELEG, S. JANG, KATHARINA RIBBECK. Journal of Pharmaceutical Sciences. 2012, 101 (1) pp 436-442. September 8, 2011. DOI: 10.1002/jps.22737.

.

Development of immobilized enzyme reactors based on human recombinant cytochrome P450 enzymes for phase I drug metabolism studies. R. Nicoli, M. Bartolini, S. Rudaz, V. Andrisano, J.-L. Veuthey. Journal of Chromatography A. 2008, 1206 (1) pp 2-10. October 3, 2008. DOI: 10.1016/j.chroma.2008.05.080.

.

Constructing modular and universal single molecule tension sensor using protein G to study mechano-sensitive receptors. Xuefeng Wang, Zainab Rahil, Isaac T.S.Li, Farhan Chowdhury, Deborah E. Leckband, Yann R. Chemla, and Taekjip Ha. Scientific Reports. 2016, 6 (21584). February 15, 2016. DOI: 10.1038/srep21584.

.

Multiplexed protein analysis using encoded antibody-conjugated microbeads. Nora Theilacker, Eric E. Roller, Kristopher D. Barbee, Matthias Franzreb and Xiaohua Huang. J. R. Soc. Interface. 2011, 12 (109) pp 1104-1111. January 19, 2011. DOI: 10.1098/rsif.2010.0594.

.

Site-Specifically Biotinylated VEGF121 for Near-Infrared Fluorescence Imaging of Tumor Angiogenesis. Hui Wang , Kai Chen , Gang Niu and Xiaoyuan Chen. Molecular Pharmaceutics. 2009, 6 (1) pp 285-294. December 19, 2008. DOI: 10.1021/mp800185h.

.

NV Center Electron Paramagnetic Resonance of a Single Nanodiamond Attached to an Individual Biomolecule. Richelle M. Teeling-Smith, Young Woo Jung, Nicolas Scozzaro, Jeremy Cardellino, Isaac Rampersaud, Justin A North, Marek Simon, Vidya P. Bhallamudi, Arfaan Rampersaud, Ezekiel Johnston-Halperin, Michael G. Poirier, and P. Chris Hammel. Mesoscale and Nanoscale Physics. 2015. November 21, 2015. DOI: arXiv:1511.06831v1.

.

Major Membrane Protein TDE2508 Regulates Adhesive Potency in Treponema denticola. Yuki Abiko, Keiji Nagano, Yasuo Yoshida, Fuminobu Yoshimura. PLOS ONE. 2014, 9 (2) e89051. February 21, 2014. DOI: 10.1371/journal.pone.0089051.

.

An extended range generic immunoassay for total human therapeutic antibodies in preclinical pharmacokinetic studies. Colin M. Hall, Josh T. Pearson, Vimal Patel, Larry C. Wienkers, Robert J. Greene. Journal of Immunological Methods. 2013, 393 (1-2) pp 70-73. July 31, 2013. DOI: 10.1016/j.jim.2013.03.011.

.

Identification and characterization of alternative splice variants of the mouse Trek2/Kcnk10 gene. K. Mirkovic and K. Wickman. Neuroscience. 2011, 194 (1), pp 11-18 October 27, 2011. DOI: 10.1016/j.neuroscience.2011.07.064.

.

Antibody Repertoire Profiling Using Bacterial Display Identifies Reactivity Signatures of Celiac Disease. Bradley N. Spatola, Joseph A. Murray, Martin Kagnoff, Katri Kaukinen, and Patrick S. Daugherty. Analytical Chemistry. 2013, 85 (2) pp 1215–1222. December 12, 2012. DOI: 10.1021/ac303201d.

.

Tagging and Enriching Proteins Enables Cell-Specific Proteomics. Thomas S. Elliott, Ambra Bianco, Fiona M. Townsley, Stephen D. Fried, and Jason W. Chin. Cell Chemical Biology. 2016, 23 pp 805-815. July 21, 2016. http://dx.doi.org/10.1016/j.chembiol.2016.05.018.

.

From SOMAmer-Based Biomarker Discovery to Diagnostic and Clinical Applications: A SOMAmer-Based, Streamlined Multiplex Proteomic Assay. Stephan Kraemer, Jonathan D. Vaught, Christopher Bock, Larry Gold, Evaldas Katilius, Tracy R. Keeney, Nancy Kim, Nicholas A. Saccomano, Sheri K. Wilcox, Dom Zichi, Glenn M. Sanders. PLoS ONE. 6 (10), e26332. October 17, 2011. DOI:10.1371/journal.pone.0026332.

.

Quantitative analysis of multivesicular bodies (MVBs) in the hypoglossal nerve: Evidence that neurotrophic factors do not use MVBs for retrograde axonal transport. Amy L. Altick, Larisa M. Baryshnikova, Tania Q. Vu and Christopher S. von Bartheld. Journal of Comparative Neurology. 2009, 514 (6) pp 641-657. March 18, 2009. DOI: 10.1002/cne.22047.

.

P25a ⁄ TPPP expression increases plasma membrane presentation of the dopamine transporter and enhances cellular sensitivity to dopamine toxicity. Anja W. Fjorback, Sabrina Sundbye, Justus C. Dachsel, Steffen Sinning, Ove Wiborg and Poul H. Jensen. FEBS Journal. 2011, 278 (3) pp 493-505. December 23, 2010. DOI: 10.1111/j.1742-4658.2010.07970.x.

.

G-protein coupled receptor-associated sorting protein 1 (GASP-1), a ubiquitous tumor marker. Xiaoyi Zheng, Frank Chang, Xinmin Zhang, Vicki L. Rothman, George P. Tuszynski. Experimental and Molecular Pathology. 2012, 93 (1) pp 111-115. August 1, 2012. DOI: 10.1016/j.yexmp.2012.03.013.

.

Surface-Immobilized Self-Assembled Protein-Based Quantum Dot Nanoassemblies. Kim E. Sapsford, Igor L. Medintz, Joel P. Golden, Jeffery R. Deschamps, Harry Tetsuo Uyeda, and Heidi Mattoussi. Langmuir.2004, 20 (18), pp 7720–7728. August 6, 2004. DOI: 10.1021/la049263n.

.

Formation of raloxifene homo-dimer in CYP3A4, evidence for multi-substrate binding in a single catalytically competent P450 active site. John A. Davis, Robert J. Greene, Sean Han, Dan A. Rock, Larry C. Wienkers. Archives of Biochemistry and Biophysics. 2011, 513 (2) pp 110-118. September 15, 2011. doi:10.1016/j.abb.2011.06.016.

.

Enhancement of Notch receptor maturation and signaling sensitivity by Cripto-1. Kazuhide Watanabe, Tadahiro Nagaoka, Joseph M. Lee, Caterina Bianco, Monica Gonzales, Nadia P. Castro, Maria Cristina Rangel, Kei Sakamoto, Youping Sun, Robert Callahan, and David S. Salomon. JCB. 2009, 187 (3) pp 343–353. November 2, 2009. DOI: 10.1083/jcb.200905105.

.

Kinetics of G-protein–coupled receptor endosomal trafficking pathways revealed by single quantum dots. Katye M. Fichter, Marc Flajolet, Paul Greengard and Tania Q. Vu. PNAS. 2010, 107 (43), pp 18658-18663. October 26, 2010. DOI: 10.1073/pnas.1013763107.

.

Antibody microarray-based profiling of complex specimens: systematic evaluation of labeling strategies. Wlad Kusnezow Virryan Banzon, Christoph Schroder, Rene Schaal, Jorg D. Hoheisel, Sven Ruffer, Petra Luft, Albert Duschl and Yana V. Syagailo. Protemics. 2007, 11 (7), pp 1786-1799. March 2, 2007. DOI: 10.1002/pmic.200600762.

.

Electrochemical Template Synthesis of Multisegment Nanowires:  Fabrication and Protein Functionalization. Bridget Wildt, Prashant Mali, and Peter C. Searson. Langmuir. 2006, 22 (25), pp 10528–10534. September 8, 2006. DOI: 10.1021/la061184j.

.

Enhancing Peptide Ligand Binding to Vascular Endothelial Growth Factor by Covalent Bond Formation. Bernadette V. Marquez, Heather E. Beck,Tolulope A. Aweda, Brett Phinney, Cynthia Holsclaw, William Jewell, Diana Tran, Jeffrey J. Day, Malalage N. Peiris, Charles Nwosu,Carlito Lebrilla, and Claude F. Meares.Bioconjugate Chemistry. 2012, 23 (5) pp 1080-1089. April 26, 2012. DOI: 10.1021/bc300114d.

.

Preparation of Biotinylated Cypridina Luciferase and Its Use in Bioluminescent Enzyme Immunoassay. Chun Wu, Kosei Kawasaki, Yoko Ogawa, Yasukazu Yoshida, Satoru Ohgiya, and Yoshihiro Ohmiya. Analytical Chemistry. 2007, 79 (4), pp 1634–1638. January 13, 2007. DOI: 10.1021/ac061754k.

.

Kinetics of Amine Modification of Proteins. George P. Smith. Bioconjugate Chemistry. 2006, 17 (2), pp 501–506. February 16, 2006. DOI: 10.1021/bc0503061.

.

Synthesis and evaluation of cell-permeable biotinylated PU-H71 derivatives as tumor Hsp90 probes. Tony Taldone, Anna Rodina, Erica M. DaGama Gomes, Matthew Riolo, Hardik J. Patel, Raul Alonso-Sabadell, Danuta Zatorska, Maulik R. Patel, Sarah Kishinevsky and Gabriela Chiosis. Beilstein Journal of Organic Chemistry. 2013, 9 pp 544-556. March 15, 2013. DOI: 10.3762/bjoc.9.60.

.

Possible involvement of glycolipids in lectin-mediated cellular transformation of symbiotic microalgae in corals. Mitsuru Jimbo, Yuya Suda, Kazuhiko Koike, Sachiko Nakamura-Tsuruta, Junko Kominami, Masugu Kamei, Jun Hirabayashi Ryuichi Sakai, Hisao Kamiya. Journal of Experimental Marine Biology and Ecology. 2013, 439 pp 129-135. January 1, 2013. DOI: 10.1016/j.jembe.2012.10.022.

.

Epithelial Cell Retention of Transcriptionally Active, P3HR-1-Derived Heterogeneous Epstein-Barr Virus DNA with Concurrent Loss of Parental Virus. Kazufumi Ikuta, Mingyu Ding, Fangfang Zhang, John W. Sixbey and Rona S. Scott. Journal of Virology. 2011, 85 (15) pp 7634-7643. August 1, 2011. DOI: 10.1128/JVI.00045-11.

.

Determination of bacterial viability by selective capture using surface-bound siderophores. Mark L. Wolfenden, Rama M. Sakamuri, Aaron S. Anderson, Lakshman Prasad, Jurgen G. Schmidt, Harshini Mukundan. Advances in Biological Chemistry. 2012, 2 (4) pp 396-402. September 30, 2012. DOI: 10.4236/abc.2012.24049.

.

Detection of oligoclonal IgG kappa and IgG lambda bands in cerebrospinal fluid and serum with Hevylite™ antibodies. Comparison with the free light chain oligoclonal pattern. David Zeman, Pavel Hradílek, Zdeněk Švagera, Eva Mojžíšková, Ivana Woznicová, Olga Zapletalová. Fluids and Barriers of the CNS. 2012, 9 (5) pp 1-11. February 23, 2013. DOI: 10.1186/2045-8118-9-5.

.

Integrin Binds to the RGD Motif of Glycoprotein B of Kaposi’s Sarcoma-Associated Herpesvirus and Functions as an RGD-Dependent Entry Receptor. H. Jacques Garrigues, Yelena E. Rubinchikova, C. Michael DiPersio, Timothy M. Rose. Journal of Virology. 2008, 82 (3) pp 1570-1580. November 28, 2007. DOI: 10.1128/JVI.01673-07.

.

M Cell–Targeted Ocular Immunization: Effect on Immunoglobulins in Tears, Feces, and Serum. Thomas E. Phillips, Jeremy Sharp, Kay Rodgers, and Hongshan Liu. IVOS. 2010, 51 (3) pp 1533-1539. March 1, 2010. DOI:10.1167/iovs.09-4491.

.

Mapping of Conformational IgE Epitopes with Peptide-Specific Monoclonal Antibodies Reveals Simultaneous Binding of Different IgE Antibodies to a Surface Patch on the Major Birch Pollen Allergen, Bet v 1. Anna Gieras, Petra Cejka, Katharina Blatt, Margarete Focke-Tejkl, Birgit Linhart, Sabine Flicker, Angelika Stoecklinger, Katharina Marth, Anja Drescher, Josef Thalhamer, Peter Valent, Otto Majdic, Rudolf Valenta. Journal of Immunology. 2011, 186 (9) pp 5333-5344. March 30, 2011. DOI: 10.4049/jimmunol.1000804.

.

Modified Tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications. Mark L. Smith, John A. Lindbo, Stephan Dillard-Telm, Paul M. Brosio, Amanda B. Lasnik, Alison A. McCormick, Long V. Nguyen, Kenneth E. Palmer. Virology. 2006, 348 (2) pp 475-488. May 10, 2006. DOI: 10.1016/j.virol.2005.12.039.

.

Continuous association of cadherin with b-catenin requires the non-receptor tyrosine-kinase Fer. Gang Xu, Andrew W. B. Craig, Peter Greer, Matthew Miller, Panos Z. Anastasiadis, Jack Lilien, Janne Balsamo. Journal of Cell Science. 2004, 117 (15) pp 3207-3219. July 1, 2004. DOI: 10.1242/jcs.01174.

.

All major prion types recognised by a multiplex immunofluorometric assay for disease screening and confirmation in sheep. Yue Tang, Adriana Gielbert, Jorg G. Jacobs, Thierry Baron, Olivier Andreoletti, Takashi Yokoyama, Jan P.M. Langeveld, Maurice J. Sauer. Journal of Immunological Methods. 2012, 380 (1-2) pp 30-39. June 29, 2012. DOI: 10.1016/j.jim.2012.03.004.

.

A generalized kinetic model for amine modification of proteins with application to phage display. Xiaofang Jin, Jessica Rose Newton, Stephen Montgomery-Smith, George P. Smith. Bio Techniques. 2009, 46 (3) pp 175-182. March 1, 2009. DOI: 10.2144/000113074.

.

Preparation, characterization, resistance to protein adsorption, and specific avidin–biotin binding of poly(amidoamine) dendrimers functionalized with oligo (ethylene glycol) on gold. Chi Ming Yam , Maxence Deluge, David Tang, Amit Kumar, Chengzhi Cai. Journal of Colloid and Interface Science. 2006, 296 (1), pp 118–130. April 2006. DOI :10.1016/j.jcis.2005.08.052.

.

Thrombospondin-1 Mimetic Agonist Peptides Induce Selective Death in Tumor Cells: Design, Synthesis and Structure-Activity Relationship Studies. Thomas Denefle, Heloise Boullet, Linda Herbi, Clara Newton, Ana-Carolina, Martinez-Torres, Alexandre Guez, Elodie Pramil, Claire Quiney, Marilyne Pourcelot, Mikail Daniel Levasseur, Eva Larde, Roba Moumne, Francois-Xavier Ogi, Pascal Grondin, Helene Merle-Beral, Olivier Lequin, Santos A. Susin, and Philippe Karoyan. Journal of Medicinal Chemistry. 2016, pp 1-33. August 15, 2016. DOI: 10.1021/acs.jmedchem.6b00781.

.

Structural Characterization of Individual Vesicles using Fluorescence Microscopy. Emily C. Heider, Moussa Barhoum, Kyle Edwards, Karl-Heinz Gericke, and Joel M. Harris. Analytical Chemistry. 2011, 83 (12), pp 4909–4915. May 16, 2011. DOI: 10.1021/ac200632h.

.

a-Synuclein Senses Lipid Packing Defects and Induces Lateral Expansion of Lipids Leading to MembraneRemodeling. Myriam M. Ouberai, Juan Wang, Marcus J. Swann, Celine Galvagnion, Tim Guilliams, Christopher M. Dobson and Mark E. Welland. The Journal of Biological Chemistry. 2013, June 5, 2013.DOI: 10.1074/jbc.M113.478297.

.

Generation and characterization of Anti-AA Amyloid-Specific Monoclonal Antibodies. Jonathan S. Wall , Stephen J. Kennel, Tina Richey, Amy Allen, Alan Stuckey, Deborah T. Weiss, Sallie D. Macy, Robin Barbour, Peter Seubert , Alan Solomon and Dale Schenk. Frontiers in Immunology. 2011, 2 (32). August 8, 2011. DOI: 10.3389/fimmu.2011.00032.

.

Multidimensional nano-HPLC coupled with tandem mass spectrometry for analyzing biotinylated proteins. Jens Sproß, Sebastian Brauch, Friedrich Mandel, Moritz Wagner, Stephan Buckenmaier, Bernhard Westermann, Andrea Sinz. Analytical and Bioanalytical Chemistry. 2012, 405 (7) pp 2163-2173. May 29, 2012. DOI: 10.1007/s00216-012-6057-9.

.

127To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 134: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

AL Amyloid Imaging and Therapy with a Monoclonal Antibody to a Cryptic Epitope on Amyloid Fibrils. Jonathan S. Wall, Stephen J. Kennel, Angela Williams, Tina Richey, Alan Stuckey, Ying Huang, Sallie Macy, Robert Donnell, Robin Barbour, Peter Seubert, Dale Schenk. PLOS ONE. 2012, 7 (12) pp e52686. December 26, 2012. DOI: 10.1371/journal.pone.0052686.

.

Identification of the human eosinophil lineage-committed progenitor: revision of phenotypic defi nition of the human common myeloid progenitor. Yasuo Mori, Hiromi Iwasaki, Kentaro Kohno, Goichi Yoshimoto, Yoshikane Kikushige, Aki Okeda, Naokuni Uike, Hiroaki Niiro, Katsuto Takenaka, Koji Nagafuji, Toshihiro Miyamoto, Mine Harada, Kiyoshi Takatsu, and Koichi Akashi. The Journal of Experimental Medicine. 2008, 206 (1) pp 183-193. December 29, 2008. DOI: 10.1084/jem.20081756.

.

On-Bead Screening of Combinatorial Libraries: Reduction of Nonspecific Binding by Decreasing Surface Ligand Density. Xianwen Chen, Pauline H. Tan, Yanyan Zhang and Dehua Pei. J. Combinatorial Science. 2009, 11 (4), pp 604-611. April 28, 2009. DOI: 10.1021/cc9000168.

.

Chemotactic Activity of S100A7 (Psoriasin) Is Mediated by the Receptor for Advanced Glycation End Products and Potentiates Inflammation with Highly Homologous but Functionally Distinct S100A15. Ronald Wolf, O. M. Zack Howard, Hui-Fang Dong, Christopher Voscopoulos, Karen Boeshans, Jason Winston, Rao Divi, Michele Gunsior, Paul Goldsmith, Bijan Ahvazi, Triantafyllos Chavakis, Joost J. Oppenheim, Stuart H. Yuspa. Journal of Immunology. 2008, 181 (2) pp 1499-1506. July 15, 2008. DOI: 10.4049/jimmunol.181.21499

.

Comparative study of thiolated protein G scaffolds and signal antibody conjugates in the development of electrochemical immunosensors. Jeremy M. Fowler, Margaret C. Stuart, Danny K.Y. Wong. Europe PubMed Central. 2007, 23 (5) pp 633-639. July 28, 2007. DOI: 10.1016/j.bios.2007.07.007.

.

Generation of monospecific antibodies based on affinity capture of polyclonal antibodies. Barbara Hjelm, Bjorn Forsstrom, Ulrika Igel, Henrik Johannesson, Charlotte Stadler, Emma Lundberg, Fredrik Ponten, Anna Sjoberg, Johan Rockberg, Jochen M. Schwenk, Peter Nilsson, Christine Johansson, and Mathias Uhlen. Protein Science. 2011, 20 (11) pp 1824-1835. October 12, 2011. DOI: 10.1002/pro.716.

.

Plasma Profiling Reveals Human Fibulin-1 as Candidate Marker for Renal Impairment. Maja Neiman, Jesper J. Hedberg, Pierre R. D€onnes, Ina Schuppe-Koistinen, Stephan Hanschke, Ralf Schindler, Mathias Uhl’en, Jochen M. Schwenk, and Peter Nilsson. Journal of Proteome Research. 2011, 10 (11) pp 4925-4934. September 3, 2011. DOI.org/10.1021/pr200286c.

.

Antibody-based profiling of cerebrospinal fluid within multiple sclerosis. Anna Haggmark, Sanna Bystrom, Burcu Ayoglu, Ulrika Qundos, Mathias Uhlen, Mohsen Khademi, Tomas Olsson, Jochen M. Schwenk and Peter Nilsson. Proteomics, 2013, 13 (15) pp 2256-2267. June 25, 2013. DOI: 10.1002/pmic.201200580.

.

Identification of Quantum Dot Bioconjugates and Cellular Protein Co-localization by Hybrid Gel Blotting. Hong Yan Liu and Tania Q. Vu. Nano Letters. 2007, 7 (4) pp 1044-1049. March 3, 2007. DOI: 10.1021/nl070239e.

.

Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide. Qing Liu, Xiaoguang Tu, Kyung Woo Kim, Jack Sheng Kee, Yong Shin, Kyungsup Han, Yong-Jin Yoon, Guo-Qiang Lo, Mi Kyoung Park. Sensors and Actuators B: Chemical. 2013, 188 pp 681-688. July 25, 2013. DOI: 10.1016/j.snb.2013.07.053.

.

IgY-binding peptide screened from a random peptide library as a ligand for IgY purification. Kamrul Hasan Khan, Arisa Himeno, Shouhei Kosugi, Yosuke Nakashima, Abdur Rafique, Ayana Imamura, Takaaki Hatanaka, Dai-Ichiro Kato, and Yuji Ito. Journal of Peptide Science. 2017, 23 (10) pp 790-797. July 31, 2017. DOI: 10.1002/psc.3027.

.

Robust dithiocarbamate-anchored amine functionalization of Au nanoparticles. Kai Chen, Hans D. Robinson. Journal of Nanoparticle Research. 2011, 13 (2) pp 751-761. February 1, 2011. DOI: 10.1007/s11051-010-0075-3.

.

Intermolecular Interaction of Avidin and PEGylated Biotin. Shan Ke, John C. Wright, and Glen S. Kwon. Bioconjugate Chemistry. 2007, 18 (6), pp 2109–2114. October 19, 2007. DOI: 10.1021/bc700204k.

.

A Fresnel zone plate biosensor for signal amplification with enhanced signal-to-noise ratiow. Yong-Cheol Jeong, Bokyung Jung, Jung-Hwan Park and Jung-Ki Park. Chemical Communications. 2012, 48 (51) pp 6378-6380. May 2, 2012. DOI: 10.1039/C2CC32008H.

.

Autocatalytic Activation of Influenza Hemagglutinin. Jeong H. Lee, Mark Goulian, Eric T. Boder. Journal of Molecular Biology. 2006, 364 (3) pp 275-282. December 1, 2006. DOI: 10.1016/j.jmb.2006.09.015.

.

Selection of Human VH Single Domains with Improved Biophysical Properties by Phage Display. Kip Dudgeon , Romain Rouet , Kristoffer Famm , and Daniel Christ. Methods in Molecular Biology. 2012, 911 pp 383-397. July 12, 2012. DOI: 10.1007/978-1-61779-968-6_23.

.

Multilayer enzyme-coupled magnetic nanoparticles as efficient, reusable biocatalysts and biosensors. Josep Garcia, Yue Zhang, Hannah Taylor, Oscar Cespedes, Michael E. Webb and Dejian Zhou. Nanoscale. 2011, 3 (9) pp 3721-3730. June 10, 2011. DOI: 10.1039/C1NR10411J.

.

Reduction of matrix interferences by the combination of chaotropic salt and DMSO in a broadly applicable target-based ELISA for pharmacokinetic studies of therapeutic monoclonal antibodies. Julie Doucet , Jasna Canadi, Christoph Kalis, Marie-Anne Valentin, Séverine Marrony ,Fabienne Deckert-Salva, Francois Legay, Alexandre Avrameas. Journal of Pharmaceutical and Biomedical Analysis. 2009, 50 (5) pp 924-931. December 5, 2009. DOI :10.1016/j.jpba.2009.06.029.

.

Generation of Monoclonal Antibodies to the AML1-ETO Fusion Protein: Strategies for Overcoming High Homology. Stephen G. Simkins, Steven L. Knapp, George H. Brough, Karen L. Lenz, Lise Barley-Maloney, Jeffrey P. Baker, Liesbeth Dekking, Hobert Wai, and Eric P. Dixon. Hybridoma. 2011, 30 (5), pp 433-443, Oct. 18, 2011. DOI: 10.1089/hyb.2011.0037.

.

A plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus. Simone Grasso, Chiara Lico, Francesca Imperatori, Luca Santi. Transgenic Research. 2013, 22 (3) pp 519-535. October 30, 2012. DOI:10.1007/s11248-012-9663-6.

.

Detection of human platelet antigen-1a alloantibodies in cases of fetomaternal alloimmune thrombocytopenia using recombinant b3 integrin fragments coupled to fluorescently labeled beads. Winnie Chong, Paul Metcalfe, Rosey Mushens, Geoff Lucas,Willem H. Ouwehand, and Cristina V. Navarrete. Transfusion. 2010, 51 (6) pp 1261-1270. December 16, 2010. DOI: 10.1111/j.1537-2995.2010.02977.x.

.

Light-Up Hoechst–DNA Aptamer Pair: Generation of an Aptamer-Selective Fluorophore from a Conventional DNA-Staining Dye. Shinsuke Sando, Atsushi Narita, and Yasuhiro Aoyama. ChemBioChem. 2007, 8 (15) pp 1795-1803. October 15, 2007. DOI: 10.1002/cbic.200700325.

.

Impedance spectral fingerprint of E. coli cells on interdigitated electrodes: A new approach for label free and selective detection. Maria Mallen-Alberdi, Nuria Vigues, Jordi Mas, Cesar Fernandez-Sanchez, and Antonio Baldi. Sensing and Bio-Sensing Research. 2016, 7 pp 100-106. February 3, 2016. DOI: 10.1016/j.sbsr.2016.02.001.

.

Characterization and use of a rabbit-anti-mouse VPAC1 antibody by flow cytometry. Rebecca J. Hermann, Travis Van der Steen, Emilie E. Vomhof-DeKrey, Sejaa Al-Badrani, Steve B. Wanjara, Jarrett J. Failing, Jodie S. Haring, Glenn P. Dorsam. Journal of Immunological Methods. 2012, 376 (1-2) pp 20-31. February 28, 2012. DOI:10.1016/j.jim.2011.10.009.

.

Optimal Design of Microarray Immunoassays to Compensate for Kinetic Limitations. Wlad Kusnezow, Yana V. Syagailo, Sven Ruffer, Nina Baudenstiel, Christopher Gauer, Jorg D. Hoheisel, David Wild and Igor Goychuck. Molecular & Cellular Proteomics. 2006, (5) pp 1681-1696. May 30, 2006. DOI: 10.1074/mcp.T500035-MCP200.

.

The initial substrate-binding site of y–secretase is located on presenilin near the active site. Anna Y. Kornilova, Frederic Bihel, Chittaranjan Das, and Michael S. Wolfe. PNAS. 2005, 102 (9), pp 3230-3235. March 1, 2005. DOI: 10.1073/pnas.0407640102.

.

Layer-by-Layer Assembly of Bioengineered Flagella Protein Nanotubes. Mudalige Thilak Kumara, Brian C Tripp, Subra Muralidharan. Biomacromolecules. 2007, 8 (12) pp 3718-3722. November 03, 2007. DOI: 10.1021/bm7005449.

.

Directional Transport by Nonprocessive Motor Proteins on Fascin-Cross-Linked Actin Arrays. Yongkuk Lee and Parviz Famouri. Nano Letter. 2013, 13 (8) pp 3775–3782. July 2, 2013. DOI: 10.1021/nl401718q.

.

A pretargeted nanoparticle system for tumor cell labeling. Jonathan Gunn, Steven I. Park, Omid Veiseh, Oliver W. Press and Miqin Zhang. Molecular BioSystems. 2011, 7 (3) pp 742-748. October 13, 2010. DOI: 10.1039/c005154c.

.

Selective attachment of F-actin with controlled length for developing an intelligent nanodevice. Ming-Yuan Wei, Lenin J. Leon, Yongkuk Lee, Denzel Parks, Lloyd Carroll, Parviz Famouri. Journal of Colloid and Interface Science. 2011, 356 (1) pp 182-189. April 1, 2011. DOI: 10.1016/j.jcis.2010.12.079.

.

A visualized observation of calcium-dependent gelsolin activity upon the surface coverage of fluorescent-tagged actin filaments. Yongkuk Lee, Ming-Yuan Wei, Parviz Famouri. Journal of Colloid and Interface Science. 2013, 389 (1) pp 182–187. January 1, 2013. DOI: 10.1016/j.jcis.2012.08.049.

.

Structure-based design of robust glucose biosensors using a Thermotoga maritima periplasmic glucose-binding protein. Yaji Tian, Matthew J. Cuneo, Anita Changela, Birte Hocker, Lorena S. Beese, and Homme W. Hellinga. Protein Science. 2007, 16 (10) pp 2240-2250. January 1, 2009. DOI: 10.1110/ps.072969407.

.

Biomimetic approach to the formation of gold nanoparticle/silica core/shell structures and subsequent bioconjugation. Sung Min Kang, Kyung-Bok Lee, Dong Jin Kim and Insung S Choi. Nanotechnology. 2006, 17 (18), pp 4719–4725. September 1, 2006. DOI: 10.1088/0957.

.

Evaluation of substrate and inhibitor binding to yeast and human isoprenylcysteine carboxyl methyltransferases (Icmts) using biotinylated benzophenone-containing photoaffinity probes. Kalub Hahne, Jeffery S.Vervacke, Liza Shrestha, James L. Donelson, Richard A.Gibbs, Mark D. Distefano, Christine A. Hrycyna. Biochemical and Biophysical Research Communications. 2012, 423 (1), pp 98-103. June 22, 2012. DOI: 10.1016/j.bbrc.2012.05.089.

.

Neuregulin-1 is neuroprotective in a rat model of organophosphate-induced delayed neuronal injury. Yonggang Li , Pamela J. Lein , Cuimei Liu , Donald A. Bruun , Cecilia Giulivi , Gregory D. Ford , Teclemichael Tewolde , Catherine Ross-Inta , Byron D. Ford. Toxicology and Applied Pharmacology. 2012, 262 (2) pp 194-204. July 15, 2012. DOI: 10.1016/j.taap.2012.05.001.

.

High-Throughput Screening of Small Molecules Identifies Hepcidin Antagonists. Eileen Fung, Priscilla Sugianto, Jason Hsu, Robert Damoiseaux, Tomas Ganz, and Elizabeta Nemeth. Molecular Pharmacology. 2013, 83 (3) pp 681-690. January 4, 2013. DOI: org/10.1124/mol.112.083428.

.

Engineering the binding properties of the T cell receptor:peptide:MHC ternary complex that governs T cell activity. Natalie A. Bowerman, Terence S. Crofts, Lukasz Chlewicki, Priscilla Do, Brian M. Baker, K. Christopher Garcia, David M. Kranz. Molecular Immunology. 2009, 46 (15) pp 3000-3008. June 12, 2009. DOI: 10.1016/j.molimm.2009.06.012.

.

Three-dimensional organotypic models of human colonic epithelium to study the early stages of enteric salmonellosis. Kerstin Ho¨ner, zu Bentrup,Rajee Ramamurthy,C. Mark Ott , Kamal Emami, Mayra Nelman-Gonzalez , James W. Wilson , Emily G. Richter , Thomas J. Goodwin , J. Stephen Alexander , Duane L. Pierson , Neal Pellis , Kent L. Buchanan , Cheryl A. Nickerson. Microbes and Infection. 2006, 8 (7) pp 1813-1825. April 27, 2006. DOI:10.1016/j.micinf.2006.02.020.

.

Structure and dynamics of single DNA molecules manipulated by magnetic tweezers and or flow. Sanford H. Leuba, Travis B. Wheeler , Chao-Min Cheng , Philip R. LeDuc , Mónica Fernández-Sierra , Edwin Quiñones. Methods. 2009, 47 (3) pp 214-222. November 17, 2008. DOI:10.1016/j.ymeth.2008.10.022.

.

Non-healing is associated with persistent stimulation of the innate immune response in chronic venous leg ulcers. Brita S. Pukstad, Liv Ryan, Trude H. Flo, Jørgen Stenvik, Ryan Moseley, Keith Harding, David W. Thomas, Terje Espevik. Journal of Dermatological Science. 2010, 59 (2) pp 115-122. August 1, 2010. DOI: 10.1016/j.jdermsci.2010.05.003.

.

DNA sequencing by denaturation: experimental proof of concept with an integrated fluidic device. Ying-Ja Chen, Eric E. Roller and Xiaohua Huang. Lab Chip. 2010, 10 (9) pp 1153-1159. May 7, 2010. DOI: 10.1039/b921417h.

.

Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor. M. Bisoffi, B. Hjelle, D.C. Brown, D.W. Branch, T.L. Edwards, S.M. Brozik, V.S. Bondu-Hawkins, R.S. Larson. Biosensors and Bioelectronics. 2008, 23 (9) pp 1397-1403. April 15, 2008. DOI: 10.1016/j.bios.2007.12.016.

.

Design of a prototype flow microreactor for synthetic biology in vitro. Christian R. Boehm, Paul S. Freemont and Oscar Ces. Lab on a Chip. 2013, 13 (17) pp 3426-3432. June 27, 2013. DOI: 10.1039/c3lc50231g.

.

Single-Molecule Detection for Femtomolar Quantification of Proteins in Heterogeneous Immunoassays. Eric A. Nalefski, Christina M. D’Antoni, Evan P. Ferrell, Janice A. Lloyd, Haoqun Qiu, John L. Harris, and Duncan H. Whitney. Clinical Chemistry. 2006, 52 (11) pp 2172-2175. November 1, 2006. DOI: 10.1373/clinchem.2006.072850.

.

An analysis of the function and expression of D6 on lymphatic endothelial cells. Clive S. McKimmie, Mark D. Singh, Kay Hewit, Oscar Lopez-Franco, Michelle Le Brocq, Stefan Rose-John, Kit Ming Lee, Andrew H.Baker, Rachel Wheat, David J. Blackbourn, Robert J. B. Nibbs and Gerard J. Graham. Blood Journal. 2013, 121 (18), pp 3768-3777. May 2, 2013. DOI: 10.1182/blood-2012-04-425314.

.

128To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 135: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Molecular Cloning, Functional Expression, and Tissue Distribution of a Novel Human Gap Junction-forming Protein, Connexin-31.9: Interaction With Zona Occludens Protein-1. Peter A. Nielsen, Derek L. Beahm, Ben N. G. Giepmans, Amos Baruch, James E. Hall and Nalin M Kumar. The Journal of Biological Chemistry. 2002, 277 (41) pp. 38272-38283. August 1, 2002. DOI: 10.1074/jbc.M205348200.

.

Micro-total analysis system for virus detection: microfluidic pre-concentration coupled to liposome-based detection. John T. Connelly, Sowmya Kondapalli, Marc Skoupi, John S. Parker, Brian J. Kirby, Antje J. Baeumner. Analytical and Bioanalytical Chemistry. 2012, 402 (1) pp 315-323. September 10, 2011. DOI: 10.1007/s00216-011-5381-9.

.

Recurrence of Intracranial Tumors following Adoptive T Cell Therapy Can Be Prevented by Direct and Indirect Killing Aided by High Levels of Tumor Antigen Cross-Presented on Stromal Cells. Diana L. Thomas, Miri Kim, Natalie A. Bowerman, Samanthi Narayanan, David M. Kranz, Hans Schreiber and Edward J. Roy. The Journal of Immunology. 2009, 183 (3) pp 1828-1837. July 10, 2009. DOI: 10.4049/jimmunol.0802322.

.

Members of RTP and REEP Gene Families Influence Functional Bitter Taste Receptor Expression. Maik Behrens, Juliane Bartelt, Claudia Reichling, Marcel Winnig, Christina Kuhn, and Wolfgang Meyerhof. The Journal of Biological Chemistry. 2006, 281 (29) pp 20650–20659. July 21, 2006. DOI:10.1074/jbc.M513637200.

.

Expression of active human sialyltransferase ST6GalNAcI in Escherichia coli. Georgios Skretas, Sean Carroll, Shawn DeFrees, Marc F Schwartz, Karl F Johnson and George Georgiou. Microbial Cell Factories. 2009 8 (50) September 30, 2009. DOI: 10.1186/1475-2859-8-50.

.

Aptamer-Based Molecular Recognition of Lysergamine, Metergoline and Small Ergot Alkaloids. Elsa Rouah-Martin, Jaytry Mehta, Bieke van Dorst, Sarah de Saeger, Peter Dubruel, Bert U. W. Maes, Filip Lemiere, Erik Goormaghtigh, Devin Daems, Wouter Herrebout, François van Hove, Ronny Blust and Johan Robbens. International Journal of Molecular Sciences. 2012, 13 (12) pp 17138-17159. December 14, 2012. DOI:10.3390/ijms131217138.

.

Connexin 47 (Cx47)-Deficient Mice with Enhanced Green Fluorescent Protein Reporter Gene Reveal Predominant Oligodendrocytic Expression of Cx47 and Display Vacuolized Myelin in the CNS. Benjamin Odermatt, Kerstin Wellershaus, Anke Wallraff, Gerald Seifert, Joachim Degen, Carsten Euwens, Babette Fuss, Heinrich Bu¨ssow, Karl Schilling, Christian Steinha, and Klaus Willecke. The Journal of Neuroscience. 2003, 23(11) pp.4549–4559. June 1, 2003.

.

Diabetes Insipidus in Mice with a Mutation in Aquaporin-2. David J. Lloyd, Frank Wesley Hall, Lisa M. Tarantino, Nicholas Gekakis. PLoS Genetics. 2005, 1 (2) pp e20. August 19, 2005. DOI:10.1371/journal.pgen.0010020.

.

Optical glutamate sensor for spatiotemporal analysis of synaptic transmission. Shigeyuki Namiki, Hirokazu Sakamoto, Sho Iinuma, Masamitsu Iino, Kenzo Hirose. European Journal of Neuroscience. 2007, 25 (8) pp 2249-2259. April 16, 2007. DOI: 10.1111/j.1460-9568.2007.05511.x.

.

Synthetic, site-specific biotinylated analogs of human MCP-1. Marian Kruszynski,* Ping Tsui, Nicole Stowell, Jinquan Luo, Jennifer F. Nemeth, Anuk M. Das, Raymond Sweet, George A. Heavner. Journal of Peptide Science. 2005, 12 (5) pp 354-360. November 14, 2005. DOI: 10.1002/psc.734.

.

Mitoxantrone Targets the ATP-binding Site of FAK, Binds the FAK Kinase Domain and Decreases FAK, Pyk-2, c-Src, and IGF-1R, In Vitro Kinase Activities. Vita Golubovskaya, Baotran Ho, Min Zheng, Andrew Magis, David Ostrov and William Cance. Anticancer Agents Med Chem. 2013, 13 (4) pp 546-554. May 1, 2013. DOI: PMC3625494.

.

Generation of streptavidin-tagged human-granulocyte macrophage colony-stimulating factor fusion proteins. Bai Li, Hu Zhiming, Wang Fei, Xu Xiaoling, Xia Chang, Jin Liqin, Li Jinlong, Gao Jimin. Pub Med. 2012, 32 (10) ) pp 1389-1393. October 1, 2012. DOI: PMID:23076170.

.

A single step multiplex immunofluorometric assay for differential diagnosis of BSE and scrapie. Yue Tang ,Jemma Thorne, Kirsty Whatling , Jorg G. Jacobs, Jan Langeveld, Maurice J. Sauer. Journal of Immunological Methods. 2010, 356 (1-2) pp 29–38. April 30, 2010. DOI:10.1016/j.jim.2010.03.002.

.

Immune response to a potyvirus with exposed amino groups available for chemical conjugation. Carlos Alberto Manuel-Cabrera, Ana Márquez-Aguirre, Hernández-Gutiérrez Rodolfo, Pablo César Ortiz-Lazareno, Gabriela Chavez-Calvillo, Mauricio Carrillo-Tripp, Laura Silva-Rosales3 and Abel Gutiérrez-Ortega. Virology Journal. 2012, 9 (75) pp 1-11. March 27, 2012. DOI:10.1186/1743-422X-9-75.

.

A novel method for quantitative measurement of a therapeutic monoclonal antibody in the presence of its target protein using enzymatic digestion. Julie Doucet, Alexandre Avrameas. Journal of Pharmaceutical and Biomedical Analysis. 2010, 52 (4) pp 565–570. August 1, 2010. DOI:10.1016/j.jpba.2010.01.033.

.

Cutting Edge: A Monoclonal Antibody Specific for the Programmed Death-1 Homolog Prevents Graft-versus-Host Disease in Mouse Models. Dallas B. Flies, Shengdian Wang, Haiying Xu and Lieping Chen. The Journal of Immunology. 2011, 187 (4) pp 1537-1541. July 18, 2011. doi: 10.4049/jimmunol.1100660.

.

Development of an ELISA detecting Tumor Protein 53-Induced Nuclear Protein 1 in serum of prostate cancer patients. Houda Saadi, Marion Seillier, Maria Jose Sandi, Sylvain Peuget , Christine Kellenberger, Gwenaelle Gravi, Nelson J. Dusetti, Juan L. Iovanna, Palma Rocchi, Mohamed Amri, Alice Carrier. Results in Immunology. 2013, 3 pp 51-56. May 13, 2013. DOI: 10.1016/j.rinim.2013.05.002

.

Psoralen Conjugates for Visualization of Genomic Interstrand Cross-Links Localized by Laser Photoactivation. Arun Kalliat Thazhathveetil, Su-Ting Liu, Fred E. Indig, and Michael M. Seidman. Bioconjugate Chemistry. 2007, 18 (2) pp 431–437. January 9, 2007. DOI: 10.1021/bc060309t.

.

Biotin-end-functionalized highly fluorescent water-soluble polymers. Paula Relogio, Mael Bathfield, Zofia Haftek-Terreau, Mariana Beija, Arnaud Favier, Marie-Josephe Giraud-Panis, Franck D'Agosto, Bernard Mandrand, Jose Paulo S. Farinha, Marie-Therese Charreyre and Jose M. G. Martinho. Polymer Chemistry. 2013, 4 (10), pp 2968-2981. February 22, 2013. DOI: 10.1039/c3py00059a.

.

A Small-molecule Inhibitor, 5′-O-Tritylthymidine, targets FAK and Mdm-2 Interaction, and Blocks Breast and Colon Tumorigenesis in vivo. Vita Golubovskaya, Nadia L. Palma, Min Zheng, Baotran Ho, Andrew Magis, David Ostrov, and William G. Cance. Anticancer Agents Med Chem. 2013, 13 (4) pp 532–545. May 1, 2013.

.

Anti-tumor efficacy of chitosan-g-poly(ethylene glycol) nanocapsules containing docetaxel: Anti-TMEFF-2 functionalized nanocapsules vs. non-functionalized nanocapsules. Daniel Torrecilla, Maria V. Lozano, Enrique Lallana, Jose I. Neissa, Ramon Novoa-Carballal, Anxo Vidal, Eduardo Fernandez-Megia, Dolores Torres, Ricardo Riguera, Maria J. Alonso, Fernando Dominguez. European Journal of Pharmaceutics and Biopharmaceutics. 2013, 83 (3) pp 330-337. April 1, 2013. DOI: 10.1016/j.ejpb.2012.10.017.

.

Binding and signaling of surface-immobilized reagentless fluorescent biosensors derived from periplasmic binding proteins. Robert M De Lorimier, Yaji Tian, Homme W. Hellinga. Protein Science. 2006, 15 (8) pp 1936-1944. May 18, 2006. DOI: 10.1110/ps.062261606.

.

Exploring genotype to phenotype correlations in Duchenne muscular dystrophy. Camilla Johansson. EXAMENSARBETE INOM BIOTEKNIK, AVANCERAD NIVÅ, 30 HP. 2017, 00 pp i-vii. 5/26/2017.

.

Improvement of Pharmacokinetic Profile of TRAIL via Trimer-Tag Enhances its Antitumor Activity in vivo. Haipeng Liu, Danmei Su, Jinlong Zhang, Shuaishuai Ge, Youwei Li, Fei Wang, Michel Gravel, Anne Roulston, Qin Song, Wei Xu, Joshua G. Liang, Gordon Shore, Xiaodong Wang, and Peng Liang. Scientific Reports. 2017, 7 (8953) pp 1-11. August 21, 2017. DOI: 10.1038/s41598-017-09518-1.

.

Spatial separation and bidirectional trafficking of proteins using a multi-functional reporter. Soshana Svendsen, Chad Zimprich, Mark G McDougall, Dieter H Klaubert and Georgyi V Los. BMC Cell Biology. 2008, 9 (17) pp 1471. April 2, 2008. DOI: 10.1186/1471-2121-9-17.

.

Bioengineered surfaces to improve the blood compatibility of biomaterials through direct thrombin inactivation. S.C. Freitas, T.B. Cereija, A.C. Figueiredo, H. Osório P.J.B. Pereira, M.A. Barbosa, M.C.L. Martins. Acta Biomaterialia. 2012, 8 (11) pp 4101–4110. November 2012. DOI:10.1016/j.actbio.2012.07.020.

.

Increased cytochrome c in rat cerebrospinal fluid after cardiac arrest and its effects on hypoxic neuronal survival. Hao Liua, Syana M. Sarnaikc, Mioara D. Manolec, Yaming Chend, Sunita N. Shindeb, Wenjin Li, Marie Rosea, Henry Alexandere, Jie Chenb, Robert S.B. Clarkd, Steven H. Grahama, Robert W. Hickey. Resuscitation. 2012, 83 (12) pp 1491– 1496. December 2012. DOI: 10.1016/j.resuscitation.2012.04.009.

.

Prion protein detection in serum using micromechanical resonator arrays. Madhukar Varshneya, Philip S.Waggonera, Richard A. Montagnab, Harold G. Craighead. Talanta. 2009, 80 (2) pp 593–599. December 15, 2009. DOI:10.1016/j.talanta.2009.07.032.

.

Urinary kidney injury molecule -1: a sensitive quantitative biomarkers for early detection of kidney tubular injury. Vishal S. Vaidya, Victoria Ramirez, Takaharu Ichimura, Norma A. Bobadilla and Joseph V. Bonventre. American Journal of Physiology/Renal Physiology. 2006, 290 (2) pp F517-F529. February 1, 2006. DOI: 10.1152/ajprenal.00291.2005.

.

A small molecule focal adhesion kinase (FAK) inhibitor, targeting Y397 site: 1-(2-hydroxyethyl) -3, 5, 7-triaza-1-azoniatricyclo [3.3.1.13,7]decane; bromide effectively inhibits FAK autophosphorylation activity and decreases cancer cell viability, clonogenicity and tumor growth in vivo. Vita M.Golubovskaya, Sheila Figel, Baotran T.Ho, Christopher P. Johnson, Michael Yemma, Grace Huang, Min Zheng, Carl Nyberg, Andrew Magis,David A.Ostrov, Irwin H.Gelman and William G. Cance. Carcinogenesis. 2012, 33 (5) pp 1004–1013. March 7, 2012. DOI:10.1093/carcin/bgs120.

.

Induction of Terminal Differentiation in Melanoma Cells on Downregulation of b-Amyloid Precursor Protein. Michelle G. Botelho, Xiaolei Wang, Donna J. Arndt-Jovin, Dorothea Becker and Thomas M. Jovin. Journal of Investigative Dermatology. 2010, 130, pp 1400-1410. September 17, 2009. DOI:10.1038/jid.2009.296.

.

Relevant antibody subsets against MOG recognize conformational epitopes exclusively exposed in solid-phase ELISA. Til Menge, Hans-Christian von Budingen Patrice H Lalive, Claude P Genain. European Journal of Immunology. 2007, 37 (11) pp 3229-3239. October 4, 2007. DOI: 10.1002/eji.200737249.

.

Bivalent carbohydrate binding is required or biological activity of CNL, the LacdiNAc (GalNAcb1-4GlcNAc)-specific lectin from basidiomycete Clitocybe nebularis. Jure Pohleven, Miha Renko, Spela Magister, David F. Smith, Markus Kuenzler, Borut Strukelj, Dusan Turk, Janko Kos and Jerica Sabotic. The Journal of Biological Chemistry. 2012, 287 (13) pp 10602-10612. February 1, 2012. DOI:10.1074/jbc.M111.317263.

.

Ferritin Blocks Inhibitory Effects of Two-Chain High Molecular Weight Kininogen (HKa) on Adhesion and Survival Signaling in Endothelial Cells. Lia Tesfay, Annissa J. Huhn, Heather Hatcher, Frank M. Torti1, Suzy V. Torti. PLoS ONE. 2012, 7 (7): e40030. July 2, 2012. DOI:10.1371/journal.pone.0040030.

.

Validation of serum protein profiles by a dual antibody array approach. Rebecca Rimini, Jochen M. Schwenk, Mårten Sundberg, Ronald Sjöberg, Daniel Klevebring, Marcus Gry, Mathias Uhlén, Peter Nilsson. Journal of Proteomics. 2009, 73 (2) pp 252-266. December 1, 2009. DOI: 10.1016/j.jprot.2009.09.009.

.

Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor. J Wykosky, E Palma, D M Gibo, S Ringler, CP Turner and W Debinski. Oncogene. 2008. 27, pp 7260–7273.September 15, 2008. DOI: 10.1038/onc.2008.328.

.

A novel immunotherapy for superficial bladder cancer by intravesical immobilization of GM-CSF. Zhiming Hu, Wanlong Tan, Lin Zhang, Zhongkun Liang, Cuixiang Xu , Hua Su, Jianxin Lu, Jimin Gao. Journal of Cellular and Molecular Medicine. 2010, 14 (6b) pp 1836-1844. July 20, 2009. DOI: 10.1111/j.1582-4934.2009.00818.x.

.

SURFIN is a polymorphic antigen expressed on Plasmodium falciparum merozoites and infected erythrocytes. Gerhard Winter, Satoru Kawai, Malin Haeggström, Osamu Kaneko, Anne von Euler, Shin-ichiro Kawazu, Daniel Palm, Victor Fernandez, and Mats Wahlgren. JEM. 2005, 201 (11) pp 1853–1863. June 6, 2005. DOI:10.1084/jem.20041392.

.

Ligand-regulated oligomerization of b2-adrenoceptors in a model lipid bilayer. Juan Jose´ Fung, Xavier Deupi, Leonardo Pardo, Xiao Jie Yao, Gisselle A Velez-Ruiz, Brian T DeVree, Roger K Sunahara and Brian K Kobilka. The EMBO Journal. 2009, 28 (21) pp 3315–3328. September 17, 2009. DOI: 10.1038/emboj.2009.267.

.

Utilising the left-helical conformation of L-DNA for analysing different marker types on a single universal microarray platform. Nicole C. Hauser, Rafael Martinez, Anette Jacob, Steffen Rupp, Jörg D. Hoheisel, and Stefan Matysiak. Nucleic Acids Research. 2006, 34 (18) pp 5101–5111. September 20, 2006. DOI: 10.1093/nar/gkl671.

.

An RNAi therapeutic targeting Tmprss6 decreases iron overload in Hfe mice and ameliorates anemia and iron overload in murine b -thalassemia intermedia. Paul J. Schmidt, Iva Toudjarska, Anoop K. Sendamarai, Tim Racie, Stuart Milstein, Brian R. Bettencourt, Julia Hettinger, David Bumcrot and Mark D. Fleming. Blood Journal. 2013, 121 (7) pp 1200-1208. February 14, 2013. DOI: 10.1182/blood-2012-09-453977.

.

Phage Display Approaches for the Isolation of Monoclonal Antibodies Against Dengue Virus Envelope Domain III from Human and Mouse Derived Libraries. Nicole J. Moreland , Patricia Susanto , Elfin Lim , Moon Y. F. Tay , Ravikumar Rajamanonmani , Brendon J. Hanson and Subhash G. Vasudevan. International Journal of Molecular Sciences. 2012, 13 (3) pp 2618-2635. February 27, 2012. DOI: 10.3390/ijms13032618.

.

PG27 is a novel membrane protein essential for a Porphyromonas gingivalis protease secretion system. Ikumi Ishiguro, Keitarou Saiki, Kiyoshi Konishi. FEMS Microbiology Letters. 2009, 292 (2) pp 261-267. March 1, 2009. DOI:10.1111/j.1574-6968.2009.01489.x.

.

129To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 136: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Fibronectin Type III Domain Based Monobody with High Avidity. Jinzhu Duan, Jinsong Wu, C. Alexander Valencia, Rihe Liu. Biochemistry. 2007, 46 (44) pp 12656-12664. October 12, 2007. DOI: 10.1021/bi701215e.

.

Mapping the Membrane Topology and Extracellular Ligand Binding Domains of the Retinol Binding Protein Receptor. Riki Kawaguchi, Jiamei Yu, Patrick Wiita, Mariam Ter-Stepanian, Hui Sun. Biochemistry. 2008, 47 (19) pp 5387-5395. April 18, 2008. DOI: 10.1021/bi8002082.

.

Large-Scale Identification of Bacteria-Host Crosstalk by Affinity Chromatography: Capturing the Interactions of Streptococcus suis Proteins with Host Cells. Bo Chen, Anding Zhang, Zhongmin Xu, Ran Li, Huanchun Chen, Meilin Jin. Journal of Proteome Research. 2011, 10 (11) pp 5163-5174. September 26, 2011. DOI: org/10.1021/pr200758q.

.

Microstructured layers of spherical biofunctional core-shell nanoparticles provide enlarged reactive surfaces for protein microarrays. Kirsten Borchers, Achim Weber, Herwig Brunner, Gunter E. M. Tovar. Analytical and Bioanalytical Chemistry. 2005, 383 (5) pp 738-746. August 11, 2005. DOI: 10.1007/s00216-005-3396-9.

.

Chemical and biological characterisation of a sensor surface for bioprocess monitoring. Jonathan D. Moore, Miguel A. Perez-Pardo, Jonathan F. Popplewell, Steve J. Spencer, Santanu Ray, Marcus J. Swann, Alex G. Shard, Walis Jones, Anna Hills, Daniel G. Bracewell. Biosensors and Bioelectronics. 2011, 26 (6) pp 2940-2947. February 15, 2011. DOI: 10.1016/j.bios.2010.11.043.

.

Rapid prediction of expression and refolding yields using phage display. Kip Dudgeon, Romain Rouet, Daniel Christ. Protein Engineering Design & Selection. 2013, 26 (10) pp 671-674. April 13, 2013. DOI: 10.1093/protein/gzt019.

.

Weak Adsorption-Induced Surface Stress for Streptavidin Binding to Biotin Tethered to Silicon Microcantilever Arrays. Stanley J. Ness, Ryan R. Anderson, Weisheng Hu, Danny C. Richards, Joseph Oxborrow, Timothy Gustafson,Ben Tsai, Seunghyun Kim, Brian Mazzeo, Adam Woolley, Gregory P. Nordin. IEEE Sensors Journal. 2013, 13 (3) pp 959-968. October 18, 2012. DOI:10.1109/JSEN.2012.2225613.

.

Monolithic columns with immobilized monomeric avidin: preparation and application for affinity chromatography. Jens Sproß, Andrea Sinz. Analytical and Bioanalytical Chemistry. 2012, 402 (7) pp 2395-2405. January 20, 2012. DOI: 10.1007/s00216-011-5670-3.

.

Thyroid-stimulating hormone (TSH): Measurement of intracellular, secreted, and circulating hormone in Xenopus laevis and Xenopus tropicalis. Joseph J. Korte, Robin M. Sternberg, Jose A. Serrano, Kara R. Thoemke, Scott M. Moen, Kathryn E. Lillegard, Michael W. Hornung, Joseph E. Tietge, Sigmund J. Degitz. General and Comparative Endocrinology. 2011, 171 (3) pp 319-325. May 1, 2011. DOI: 10.1016/j.ygcen.2011.02.017.

.

Characterization of Notch1 Antibodies That Inhibit Signaling of Both Normal and Mutated Notch1 Receptors. Miguel Aste-Amezaga, Ningyan Zhang, Janet E. Lineberger, Beth A. Arnold, Timothy J. Toner,Mingcheng Gu, Lingyi Huang, Salvatore Vitelli, Kim T. Vo, Peter Haytko, Jing Zhang Zhao, Frederic Baleydier, Sarah L’Heureux, Hongfang Wang, Wendy R. Gordon, Elizabeth Thoryk, Marie Blanke Andrawes, Kittichoat Tiyanont, Kimberly Stegmaier, Giovanni Roti, Kenneth N. Ross, Laura L. Franlin, Hui Wang, Fubao Wang, Michael Chastain, Andrew J. Bett, Laurent P. Audoly, Jon C. Aster, Stephen C. Blacklow, Hans E. Huber. PLoS ONE. 2010, 5(2):e9094.February 8,2010. DOI: 10.1371/journal.pone.0009094.

.

Synthesis, characterization and applications of tether supported biomembrane-microsphere assemblies. Bin He, M. Lane Gilchrist. IEEE Xplore. 2010, pp 1-2. March 28, 2010. DOI: 10.1109/NEBC.2010.5458221.

.

Solution Structural Dynamics of HIV-1 Reverse Transcriptase Heterodimer. James M. Seckler, Kathryn J. Howard, Mary D. Barkley, Patrick L. Wintrode. Biochemistry. 2009, 48 (32) pp7646-7655. July 13, 2009. DOI: 10.1021/bi900790x.

.

Entwicklung von Antikörper-Mikroarray: von Biophysik der Mikrospot-Reaktion bis zur Hochdurchsatzanalyse der Proteine. Vorgelegt von Wals Kusnezow, Nishnij, Ural and Russische Foderation. Proteomics 2005, 6 pp 1-285 June 27, 2005. DOI: 10.1002/pmic.200500149.

.

Subnanometre single-molecule localization, registration and distance measurements. Alexandros Pertsinidis, Yunxiang Zhang, Steven Chu. Nature. 2010, 466 pp 647-651. July 29, 2010. DOI: 10.1038/nature09163.

.

Optimization of solid phase PLA with emphasis on antibody modification. Junhong Yan. 2010.

Characterization of Plasmodium Lactate Dehydrogenase and Histidine-Rich Protein 2 Clearance Patterns via Rapid On-Bead Detection from a Single Dried Blood Spot. Christine F. Markwalter, Lauren E. Gibson, Lwiindi Mudenda, Danielle W. Kimmel, Saidon Mbambara, Philip E. Thuma, and David W. Wright. The American Journal of Tropical Medicine and Hygiene. 2018, pp 1-28. March 18, 2018. DOI: 10.4269/ajtmh.17-0996.

.

Trafficking of immature F508-CFTR to the plasma membrane and its detection by biotinylation. Yishan Luo, Ken McDonald and John W. Hanrahan. Biochem Journal. 2009, 419 pp 211–219. December 8, 2008. DOI:10.1042/BJ20081869.

.

Comparison between Ovalbumin and Ovalbumin Peptide 323-339 Responses in Allergic Mice: Humoral and Cellular Aspects. L.-Z. Sun, S. Elsayed, T. B. Aasen, T. Van Do, N. P. Aardal, E. Florvaag, K. Vaali. J. of Immun. 2010, 71 (5) pp 323-339. January 21, 2010. DOI: 10.1111/j.1365-3083.2010.02382.x.

.

Evolutionarily divergent herpesviruses modulate T cell activation by targeting the herpesvirus entry mediator cosignaling pathway. Timothy C. Cheung, Ian R. Humphreys, Karen G. Potter, Paula S. Norris, Heather M. Shumway, Bonnie R. Tran, Ginelle Patterson, Rochelle Jean-Jacques, Miri Yoon, Patricia G. Spear, Kenneth M. Murphy, Nell S. Lurain, Chris A. Benedict, and Carl F. Ware. PNAS. 2005, 102 (37) pp 13218-13223. September 13, 2005. DOI: 10.1073/pnas.0506172102.

.

Detection of botulinum neurotoxins in buffer and honey using a surface plasmon resonance (SPR) sensor. Jon Ladd, Allen D. Taylor, Jiri Homola, Shaoyi Jiang. Sensors and Actuators B: Chemical. 2008, 130 (1) pp 129-134. March 14, 2008. DOI: 10.1016/j.snb.2007.07.140.

.

Native Polycystin 2 Functions as a Plasma Channel in Renal Epithelia Membrane Ca 2+-Permeable Cation Channel in Renal Epithelia.Ying Luo, Peter M. Vassilev, Xiaogang Li, Yoshifumi Kawanabe and Jing Zhou. Molecular and Cellular Biology. 2003, 23(7) pp. 2600-2607. April 1, 2003. DOI:10.1128/MCB.23.7.2600-2607.

.

Anti-cytokine autoantibodies are ubiquitous in healthy individuals. Masato Watanabea, Kanji Uchidac, Kazuhide Nakagakid, Hiroko Kanazawaa, Bruce C. Trapnellc, Yoshihiko Hoshinoe, Hiroshi Kagamua, Hirohisa Yoshizawaa, Naoto Keichof, Hajime Gotob, Koh Nakata. FEBS Letters. 2007, 581 (10) pp 2017-2021. May 15, 2007. DOI: 10.1016/j.febslet.2007.04.029.

.

An Anti-Insulin-like Growth Factor I Receptor Antibody That is a Potent Inhibitor of Cancer Cell Proliferation. Erin K. Maloney, Jennifer L. McLaughlin, Nancy E. Dagdigian. Cancer Research. 2003, 63 pp 5073-5083. August 15, 2003. DOI: www.cancerres.aacrjounrals.org/content/63/5073.

.

Solid-phase biotinylation of antibodies. Elizabeth Strachan, A. Krishna Mallia, Joanna M. Cox, Babu Antharavally, Surbhi Desai, Laura Sykaluk, Valerie O’Sullivan, Peter A. Bell. Journal of Molecular Recognition. 2004, 17 (3) pp 268-276. April 27, 2004. DOI:10.1002/jmr.669.

.

Comparative protein profiling of serum and plasma using an antibody suspension bead array approach. Jochen M. Schwenk, Ulrika Igel, Bernet S. Kato, George Nicholson, Fredrik Karpe, Mathias Uhlen, Peter Nilsson. Proteomics. 2010, 10 (3) pp 532-540. December 1, 2009. DOI : 10.1002/pmic.200900657.

.

Antibody Suspension Bead Arrays within Serum Proteomics. Jochen M. Schwenk, Marcus Gry, Rebecca Rimini, Mathias Uhlén, Peter Nilsson. Journal of Proteome. 2008, 7 (8) pp 3168-3179. June 28, 2008. DOI: 10.1021/pr700890b.

.

Bifunctional phage-based pretargeted imaging of human prostate carcinoma. Jessica R. Newton-Northup, Said D. Figueroa, Thomas P. Quinn, Susan L. Deutscher. Nuclear Medicine and Biology. 2009, 36 (7) pp 789-800. October 2009. DOI: 10.1016/j.nucmedbio.2009.04.010.

.

Characterization of a mouse amelogenin [A−4]/M59 cell surface receptor. Kevin Tompkins, Anne George, Arthur Veis, Kevin Tompkins, Anne George, Arthur Veis. Bone. 2006, 38 (2) pp 172-180. February 2006. DOI: 10.1016/j.bone.2005.08.013.

.

Antibody affinity maturation in vitro using unconjugated peptide antigen. Hiroto Iwai, Bengu Ozturk, Masaki Ihara, Hiroshi Ueda. Protein Engineering Design & Selection. 2010, 23 (4) pp 185-193. February 1, 2010. DOI: 10.1093/protein/gzp093.

.

Classification of protein profiles from antibody microarrays using heat and detergent treatment. Anna Haggmark, Maja Neiman, Kimi Drobin, Martin Zwahlen, Mathias Uhlen, Peter Nilsson, Jochen M. Schwenk. New Biotechnology. 2012, 29 (5) pp 564-570. June 15, 2012. DOI: 10.1016/j.nbt.2011.10.005.

.

Antibody Array Analysis with Label-based Detection and Resolution of Protein Size. Weiwei Wu, Heidi Slåstad, Daniel de la Rosa Carrillo, Tom Frey, Geir Tjønnfjord, Eva Boretti, Hans-Christian Aasheim, Vaclav Horejsi, Fridtjof Lund-Johansen. Molecular and Cellular Proteomics. 2008, 8 pp 245-257. September 16, 2008. DOI:10.1074/mcp.M800171-MCP200.

.

Accurate Quantification of Cardiovascular Biomarkers in Serum Using Protein Standard Absolute Quantification and Selected Reaction Monitoring. Celine Huillet, Annie Adrait, Dorothee Lebert, Guillaume Picard, Mathieu Trauchessec, Mathilde Louwagie, Alain Dupuis, Luc Hittinger, Bijan Ghaleh, Philippe Le Corvoisier, Michel Jaquinod, Je rome Garin, Christophe Bruley, Virginie Brun. Molecular and Celluar Proteomics. 2012, 11 (12) pp 1-11. November 11, 2011. DOI: 10.1074/mcp.M111.008235.

.

Calcium-dependent self-association of the C-type lectin domain of versican. Andreas Ney, Patrick Booms, Guido Epple, Matthias Morgelin, Gao Guo, Gerhard Kettelgerdes, Reinhard Geßner, Peter N. Robinson. The International Journal of Biochemistry & Cell Biology. 2006, 38 ( 1) pp23-29. January 2006. DOI: 10.1016/j.biocel.2005.07.007.

.

NHS-S-S-dPEG®₄-biotin (cleavable)

Biotinylation reagents for the study of cell surface proteins. Giuliano Elia DR. Proteomics. 2008, 8 (19) pp 4012-4024. September 3, 2008. DOI: 10.1002/pmic.200800097.  

.

Noncovalent Assembly of Anti-Dendritic Cell Antibodies and Antigens for Evoking Immune Responses In Vitro and In Vivo. Anne-Laure Flamar, Sandra Zurawski, Felix Scholz, Ingrid Gayet, Ling Ni, Xiao-Hua Li, Eynav Klechevsky, John Quinn, SangKon Oh, Daniel H. Kaplan, Jacques Banchereau and Gerard Zurawski. J Immunol. 2012, 189 pp 2645-2655. September 1, 2012. DOI: 10.4049/jimmunol.1102390

.

Thiol-Mediated Anchoring of Ligands to Self-Assembled Monolayers for Studies of Biospecific Interactions. Kunal V. Gujraty, Randolph Ashton, Sridhar R. Bethi, Sandesh Kate, Christopher J. Faulkner, G. Kane Jennings, and Ravi S. Kane. Langmuir. 2006, 22 (24) pp 10157–10162. October 19, 2006.DOI: 10.1021/la0621463.

.

From Unspecific Quenching to Specific Signaling: Functional GTPase Assays Utilizing Quenching Resonance Energy Transfer (QRET) Technology. Kari Kopra. University of Turku. 2015, pp 1-66. April 1, 2015. ISBN 978-951-29-6080-4.

.

Site-Specific Labeling of DNA and RNA Using an Efficiently Replicated and Transcribed Class of Unnatural Base Pairs. Young Jun Seo, Denis A. Malyshev, Thomas Lavergne, Phillip Ordoukhanian, and Floyd E. Romesberg . J. Am. Chem. Soc. 2011, 133 (49) pp 19878–19888. October 8, 2011. DOI: 10.1021/ja207907d.

.

TFP/NHS-dPEG®x-biotinidase resistant biotin

Biotin Reagents for Antibody Pretargeting. 7. Investigation of Chemically Inert Biotinidase Blocking Functionalities for Synthetic Utility. D. Scott Wilbur, Donald K. Hamlin, and Ming-Kuan Chyan. Bioconjugate Chem. 2006, 17 (6) pp 1514–1522. October 28, 2006. DOI: 10.1021/bc060084m.

.

Simultaneous Monitoring of Presynaptic Transmitter Release and Postsynaptic Receptor Trafficking Reveals an Enhancement of Presynaptic Activity in Metabotropic Glutamate Receptor-Mediated Long-Term Depression. Wei Xu, Yiu Chung Tse, Frederick A. Dobie, Michel Baudry, Ann Marie Craig, Tak Pan Wong, and Yu Tian Wang. The Journal of Neuroscience. 2013, 33 (13) pp 5867-5877. March 27, 2013. DOI: 10.1523/JNEUROSCI.1508-12.2013.

.

130To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 137: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

dPEG® Based Reagents for Peptide Modification

Fmoc-N-amido-dPEG®x-acid

Photocleavable Peptide-Conjugated Magnetic Beads for Protein Kinase Assays by MALDI-TOF. MS. Guangchang Zhou, Xiaoliang Yan, Ding Wu, and Stephen J. Kron. Bioconjugate Chem. 2010, 21 (10), pp 1917–1924. September 22, 2010. DOI: 10.1021/bc1003058.

.

Design of a heterotetravalent synthetic allergen that reflects epitope heterogeneity and IgE antibody variability to study mast cell degranulation. Michael W. Handlogten, Tanyel Kiziltepe and Basar Bilgicer. Biochem. J. 2013, 449 pp 91–99. October 11, 2011. DOI:10.1042/BJ20121088.

.

PEG-Peptide Conjugates. Ian W Hamley. Biomacromolecules. 2014, 15 (5) pp 1543-1559. April 1, 2014. DOI: 10.1021/bm500246w.

.

Neutrophil Targeting Heterobivalent SPECT Imaging Probe: cFLFLF-PEG-TKPPR-99mTc. Yi Zhang, Li Xiao, Mahendra D. Chordia, Landon W. Locke, Mark B. Williams, Stuart S. Berr, and Dongfeng Pan. Bioconjugate Chem. 2010, 21 (10), pp 1788–1793. September 15, 2010. DOI: 10.1021/bc100063a.

.

Polyproline-Rod Approach to Isolating Protein Targets of Bioactive Small Molecules: Isolation of a New Target of Indomethacin. Shin-ichi Sato, Youngjoo Kwon, Shinji Kamisuki, Neeta Srivastava, Quian Mao, Yoshinori Kawazoe, and Motonari Uesugi. J. Am. Chem. Soc. 2007, 129 (4), pp 873–880. January 4, 2007. DOI: 10.1021/ja0655643.

.

Hepatocyte Targeting of Nucleic Acid Complexes and Liposomes by a T7 Phage p17 Peptide. So C. Wong, Darren Wakefield, Jason Klein, Sean D. Monahan, David B. Rozema, David L. Lewis, Lori Higgs, James Ludtke, Alex V. Sokoloff, and Jon A. Wolff. Molecular Pharmaceutics. 2006, 3 (4) pp 386-397. March 28, 2006. DOI: 10.1021/mp050108r.

.

Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length. Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer. ACS Nano. 2013, 7 (9) pp 8115–8127. August 29, 2013. DOI: 10.1021/nn4033954.

.

Site-Specific Conjugation of Monodispersed DOTA-PEGn to a Thiolated Diabody Reveals the Effect of Increasing PEG Size on Kidney Clearance and Tumor Uptake with Improved 64-Copper PET Imaging. Lin Li,Desiree Crow, Fabio Turatti, James R. Bading, Anne-Line Anderson, Erasmus Poku, Paul J. Yazaki, Jenny Carmichael, David Leong, Michael P. Wheatcroft,Andrew A. Raubitschek, Peter J. Hudson,David Colcher, and John E. Shively. Bioconjugate Chemistry. 2011, 22 (4), pp 709–716. March 12, 2011. DOI: 10.1021/bc100464e.

.

Evaluation of Nonpeptidic Ligand Conjugates for SPECT Imaging of Hypoxic and Carbonic Anhydrase IX-Expressing Cancers. Peng-Cheng Lv, Karson S. Putt, and Philip S. Low. Bioconjugate Chemistry. 2016, 27, pp 1762-1769. June 30, 2016. DOI: 10.1021/acs.bioconjchem.6b00271.

.

Improving Tumor-Targeting Capability and Pharmacokinetics of 99mTc-Labeled Cyclic RGD Dimers with PEG4 Linkers. Lijun Wang, Jiyun Shi, Young-Seung Kim, Shizhen Zhai, Bing Jia, Huiyun Zhao, Zhaofei Liu, Fan Wang, Xiaoyuan Chen and Shuang Liu. Molecular Pharmaceutics. 2009, 6 (1) pp 231–245. December 9, 2008. DOI: 10.1021/mp800150r.

.

Flexible antibodies with nonprotein hinges. Daniel J. Capon, Naoki Kaneko, Takayuki Yoshimori, Takashi Shimada, Florian M. Wurm, Peter K. Hwang, Xiaohe Tong, Staci A. Adams, Graham Simmons, Taka-Aki Sato and Koichi Tanaka. The Japan Academy. 2011, 87 (9) pp 603-616. November 11, 2011. DOI: 10.2183/pjab.87.603.

.

Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length. Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer. ACS Nano. 2013, 7 (9) pp 8115–8127. August 29, 2013. DOI: 10.1021/nn4033954.

.

Design of a modular tetrameric scaffold for the synthesis of membrane-localized D-peptide inhibitors of HIV-1 entry. J. Nicholas Francis, Joseph S Redman, Debra M Eckert, and Michael S. Kay. Bioconjugate Chemistry. 2012, 23 (6), pp 1252-1258. May 1, 2012. DOI: 10.1021/bc300076f.

.

Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length. Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer. ACS Nano. 2013, 7 (9) pp 8115–8127. August 29, 2013. DOI: 10.1021/nn4033954.

.

Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length. Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer. ACS Nano. 2013, 7 (9) pp 8115–8127. August 29, 2013. DOI: 10.1021/nn4033954.

.

Determination of bacterial viability by selective capture using surface-bound siderophores. Mark L. Wolfenden, Rama M. Sakamuri, Aaron S. Anderson, Lakshman Prasad, Jurgen G. Schmidt, Harshini Mukundan. Advances in Biological Chemistry. 2012, 2 (4) pp 396-402 September 30, 2012. DOI: 10.4236/abc.2012.24049.

.

A Systematic Analysis of Peptide Linker Length and Liposomal Polyethylene Glycol Coating on Cellular Uptake of Peptide-Targeted Liposomes. Jared F. Stefanick, Jonathan D. Ashley, Tanyel Kiziltepe, and Basar Bilgicer. ACS Nano. 2013, 7 (4) pp 2935–2947. February 19, 2013. DOI: 10.1021/nn305663e.

.

Design of a Heterobivalent Inhibitor of Allergy and More Physiologically Relevant Allergy Models. Michael William Handlogten. University of Notre Dame. 2013, March 28, 2013.

.

Polyproline-Rod Approach to Isolating Protein Targets of Bioactive Small Molecules: Isolation of a New Target of Indomethacin. Shin-ichi Sato, Youngjoo Kwon, Shinji Kamisuki, Neeta Srivastava, Quian Mao, Yoshinori Kawazoe, and Motonari Uesugi. J. Am. Chem. Soc. 2007, 129 (4), pp 873–880. January 4, 2007. DOI: 10.1021/ja0655643.

.

Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length. Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer. ACS Nano. 2013, 7 (9) pp 8115–8127. August 29, 2013. DOI: 10.1021/nn4033954.

.

Robust Sensing Films for Pathogen Detection and Medical Diagnostics. Aaron S. Anderson ; Andrew M. Dattelbaum ; Harshini Mukundan ;Dominique N. Price ; W. Kevin Grace ; Basil I. Swanson. Frontiers in Pathogen Detection: From Nanosensors to Systems., 2009, Proc. Of SPIE 7167. 71670q-1 February 18, 2009. 10.1117/12.809383.

.

A Systematic Analysis of Peptide Linker Length and Liposomal Polyethylene Glycol Coating on Cellular Uptake of Peptide-Targeted Liposomes. Jared F. Stefanick, Jonathan D. Ashley, Tanyel Kiziltepe, and Basar Bilgicer. ACS Nano. 2013, 7 (4) pp 2935–2947. February 19, 2013. DOI: 10.1021/nn305663e.

.

Evaluation of Phage Display Discovered Peptides as Ligands for Prostate-Specific Membrane Antigen (PSMA). Duanwen Shen, Fei Xie, W. Barry Edwards. PLoS ONE. 2013, 8 (7), pp e68339. July 25, 2013. DOI: 10.1371/journal.pone.0068339.

.

Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length. Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer. ACS Nano. 2013, 7 (9) pp 8115–8127. August 29, 2013. DOI: 10.1021/nn4033954.

.

PEG-Peptide Conjugates. Ian W Hamley. Biomacromolecules. 2014. April 1, 2014. DOI: 10.1021/bm500246w.

.

Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length. Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer. ACS Nano. 2013, 7 (9) pp 8115–8127. August 29, 2013. DOI: 10.1021/nn4033954.

.

Oriented Surface Immobilization of Antibodies at the Conserved Nucleotide Binding Site for Enhanced Antigen Detection. Nathan J Alves, Tanyel Kiziltepe, and Basar Bilgicer. Langmuir. 2012, 28 (25) pp 9640-9648. May 21, 2012. DOI: 10.1021/la301887s.

.

Flexible antibodies with nonprotein hinges. Daniel J. Capon, Naoki Kaneko, Takayuki Yoshimori, Takashi Shimada, Florian M. Wurm, Peter K. Hwang, Xiaohe Tong, Staci A. Adams, Graham Simmons, Taka-Aki Sato and Koichi Tanaka. The Japan Academy, Series B. 2011, 87 (9) pp 603-616. November 11, 2011. DOI: 10.2183/pjab.87.603.

.

Polyproline-Rod Approach to Isolating Protein Targets of Bioactive Small Molecules: Isolation of a New Target of Indomethacin. Shin-ichi Sato, Youngjoo Kwon, Shinji Kamisuki, Neeta Srivastava, Quian Mao, Yoshinori Kawazoe, and Motonari Uesugi. J. Am. Chem. Soc. 2007, 129 (4), pp 873–880. January 4, 2007. DOI: 10.1021/ja0655643.

.

Functional PEG-Modified Thin Films for Biological Detection. Aaron S. Anderson, Andrew M. Dattelbaum, Gabriel A. Montano, Dominique N. Price, Jurgen G. Schmidt, Jennifer S. Martinez, W. Kevin Grace, Karen M. Grace, and Basil I. Swanson. Langmuir. 2008, 24 (5), pp 2240–2247. January 30, 2008. DOI: 10.1021/la7033438.

.

Oriented Surface Immobilization of Antibodies at the Conserved Nucleotide Binding Site for Enhanced Antigen Detection. Nathan J Alves, Tanyel Kiziltepe, and Basar Bilgicer. Langmuir. 2012, 28 (25) pp 9640–9648. May 21, 2012. DOI: 10.1021/la301887s.

.

Design of a Heterobivalent Ligand to Inhibit IgE Clustering on Mast Cells. Michael W. Handlogten, Tanyel Kiziltepe, Demetri T. Moustakas, and Basxar Bilgicer. Chemistry & Biology. 2011, 18 (9) pp 1179–1188. September 23, 2011. DOI: 10.1016/j.chembiol.2011.06.012.

.

PEG-Peptide Conjugates. Ian W Hamley. Biomacromolecules. 2014. April 1, 2014. DOI: 10.1021/bm500246w.

.

Bioresponsive nanocarries for targeted intracellular delivery of proteins and peptides. Ruth Elisabeth and Johanna Roder. Dissertation zur Erlangung des Doktorgrades der Fakultat fur Chemie und Pharmazie der Ludwig-Maximilians-Universitat Munchen. 2016, pp 1-128.

.

Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length. Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer. ACS Nano. 2013, 7 (9) pp 8115–8127. August 29, 2013. DOI: 10.1021/nn4033954.

.

Evaluation of Nonpeptidic Ligand Conjugates for SPECT Imaging of Hypoxic and Carbonic Anhydrase IX-Expressing Cancers. Peng-Cheng Lv, Karson S. Putt, and Philip S. Low. Bioconjugate Chemistry. 2016, 27, pp 1762-1769. June 30, 2016. DOI: 10.1021/acs.bioconjchem.6b00271.

.

A Systematic Analysis of Peptide Linker Length and Liposomal Polyethylene Glycol Coating on Cellular Uptake of Peptide-Targeted Liposomes. Jared F. Stefanick, Jonathan D. Ashley, Tanyel Kiziltepe, and Basar Bilgicer. ACS Nano. 2013, 7 (4) pp 2935–2947. February 19, 2013. DOI: 10.1021/nn305663e.

.

PEG-Peptide Conjugates. Ian W Hamley. Biomacromolecules. 2014, 15 (5) pp 1543-1559. April 1, 2014. DOI: 10.1021/bm500246w.

.

Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length. Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer. ACS Nano. 2013, 7 (9) pp 8115-8127. August 29, 2013. DOI: 10.1021/nn4033954.

.

Design of a Heterobivalent Ligand to Inhibit IgE Clustering on Mast Cells. Michael W. Handlogten, Tanyel Kiziltepe, Demetri T. Moustakas, and Basxar Bilgicer. Chemistry & Biology. 2011, 18 (9) pp 1179–1188. September 23, 2011. DOI 10.1016/j.chembiol.2011.06.012.

.

Robust Sensing Films for Pathogen Detection and Medical Diagnostics. Aaron S. Anderson ; Andrew M. Dattelbaum ; Harshini Mukundan ;Dominique N. Price ; W. Kevin Grace ; Basil I. Swanson. Frontiers in Pathogen Detection: From Nanosensors to Systems., 2009, Proc. Of SPIE 7167. 71670q-1 February 18, 2009. 10.1117/12.809383.

.

PEG-Peptide Conjugates. Ian W Hamley. Biomacromolecules. 2014, 15 (5) pp 1543-1559. April 1, 2014. DOI: 10.1021/bm500246w.

.

Bioresponsive nanocarries for targeted intracellular delivery of proteins and peptides. Ruth Elisabeth and Johanna Roder. Dissertation zur Erlangung des Doktorgrades der Fakultat fur Chemie und Pharmazie der Ludwig-Maximilians-Universitat Munchen. 2016, pp 1-128.

.

Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length. Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer. ACS Nano. 2013, 7 (9) pp 8115-8127. August 29, 2013. DOI: 10.1021/nn4033954.

.

Nanosized Multifunctional Polyplexes for Receptor-Mediated SiRNA Delivery. Christian Dohmen, Daniel Edinger, Thomas Frohlich, Laura Schreiner, Ulrich Lachelt, Christina Troiber, Joachim Radler, Philipp Hadwiger, Hans-Peter Vornlocher, and Ernst Wagner. ACS Nano. 2012, 6 (6), pp 5198-5208. May 30, 2012. DOI: 10.1021/nn300960m.

.

Development of Peptide Nucleic Acid Probes for Detection of the HER2 Oncogene. Belhu Metaferia., Jun S. Wei., Young K. Song, Jennifer Evangelista, Konrad Aschenbach, Peter Johansson, Xinyu Wen, QingrongChen, Albert Lee, Heidi Hempel, Jinesh S. Gheeya, Stephanie Getty, Romel Gomez, Javed Khan. PLoS ONE. 2012, 8 (4) e58870. April 10, 2013. DOI: 10.1371/journal.pone.0058870.

.

Neutrophil Targeting Heterobivalent SPECT Imaging Probe: cFLFLF-PEG-TKPPR-99mTc. Yi Zhang, Li Xiao, Mahendra D. Chordia, Landon W. Locke, Mark B. Williams, Stuart S. Berr, and Dongfeng Pan. Bioconjugate Chemistry. 2010, 21 (10), pp 1788–1793 September 15, 2010. DOI: 10.1021/bc100063a.

.

131To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 138: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

A Reduced SNARE Model for Membrane Fusion. Hana Robson Marsden, Nina A. Elbers, Paul H., H. Bomans, Nico A.J.M.Sommerdijk and Alexander Kros. Communications. 2009, 48 pp 2330-2333. February 16, 2009. DOI: 10.1002/anie.200804493.

.

Optimization of Xenon Biosensors for Detection of Protein Interactions. Thomas J. Lowery, Sandra Garcia, Lana Chavez, E. Janette Ruiz, Tom Wu, Thierry Brotin, Jean-Pierre Dutasta, David S. King, Peter G. Schultz, Alex Pines, and David E. Wemmer. ChemBioChem. 2006, 7 (1), pp 65-73. January 9, 2006. DOI: 10.1002/cbic.200500327.

.

Near-infrared quantum dots labelled with a tumor selective tetrabranched peptide for in vivo imaging. Jlenia Brunetti, Giulia Riolo, Mariangela Gentile, Andrea Bernini, Eugenio Paccagnini, Chiara Falciani, Luisa Lozzi, Silvia Scali, Lorenzo Depau, Alessandro Pini, Pietro Lupetti, and Luisa Bracci. Journal of Nanobiotechnology. 2018, 16 (21) pp. 1-10. March 3, 2018. DOI: 10.1186/s12951-018-0346-1.

.

Use of a leukocyte-targeted peptide probe as a potential tracer for imaging the tuberculosis granuloma. Landon W. Locke, Shankaran Kothandaraman, Michael Tweedle, Sarah Chaney, Daniel J. Wozniak, and Larry S. Schlesinger. Tuberculosis. 2018, 108 pp 201-210. January 8, 2018. DOI: 10.1016/j.tube.2018.01.001.

.

Influence of Defined Hydrophilic Blocks within Oligoaminoamide Copolymers: Compaction versus Sheilding of pDNA Nanoparticles. Stephan Morys, Ana Krhac Levacic, Sarah Urnauer, Susanne Kempter, Sarah Kern, Joachim O Radler, Christine Spitzweg, Ulrich Lachelt, and Ernst Wagner. Polymers. 2017, 9 (4) pp 1-20. April 19, 2017. DOI: 10.3390/polym9040142.

.

Insights into the role of sulfated glycans in cancer cell adhesion and migration through use of branched peptide probe. Jlenia Brunetti, Lorenzo Depau, Chiara Falciani, Mariangela Gentile, Elisabetta Mandarini, Giulia Riolo, Pietro Lupetti, Alessandro Pini, and Luisa Bracci. Scientific Reports. 2016, 6 (27174). June 3, 2016. DOI: 10.1038/srep27174.

.

Photocleavable Peptide-Conjugated Magnetic Beads for Protein Kinase Assays by MALDI-TOF. MS. Guangchang Zhou, Xiaoliang Yan, Ding Wu, and Stephen J. Kron. Bioconjugate Chemistry. 2010, 21 (10), pp 1917–1924. September 22, 2010. DOI: 10.1021/bc1003058.

.

Coiled-coil formation of the membrane-fusion K/E peptides viewed by electron paramagnetic resonance. Pravin Kumar, Martin van Son, Tingting Zheng, Dayenne Valdink, Jan Raap, Alexander Kros, and Martina Huber. PLOS ONE. 2018, 13 (1) pp 1-13. January 19, 2018. DOI: 10.1371/journal.pone.0191197.

.

Flexible antibodies with nonprotein hinges. Daniel J. Capon, Naoki Kaneko, Takayuki Yoshimori, Takashi Shimada, Florian M. Wurm, Peter K. Hwang, Xiaohe Tong, Staci A. Adams, Graham Simmons, Taka-Aki Sato and Koichi Tanaka. The Japan Academy Series B Physical and Biological Sciences. 2011, 87 (9), pp 603-616. November 11, 2011. DOI: 10.2183/pjab.87.603.

.

Systemic Delivery of Folate-PEG siRNA Lipopolyplexes with Enhanced Intracellular Intracellular Stability for In Vivo Gene Silencing in Leukemia. Dian-Jang Lee, Eva Kessel, Taavi Lehto, Xueying Liu, Naoto Yoshinaga, Kart Padari, Ying-Chen Chen, Susanne Kempter, Satoshi Uchida, Joachim O. Radler, Margus Pooga, Ming-Thau Sheu, Kazunori Kataoka, and Ernst Wagner. Bioconjugate Chemistry. 2017, August 3, 2017. DOI: 10.1021/acs.bioconjchem.7b00383.

.

Liposomes containing monophosphoryl lipid A: A potent adjuvant system for inducing antibodies to heroin hapten analogs. Gary R. Matyas, Alexander V. Mayorova, Kenner C. Rice, Arthur E. Jacobson, Kejun Cheng, Malliga R. Iyer, Fuying Li, Zoltan Becka, Kim D. Janda, Carl R. Alvinga. Vaccine. 2013, 31 (26) pp 2804-2810. June 10, 2013. DOI:.org/10.1016/j.vaccine.2013.04.027.

.

Bioresponsive nanocarries for targeted intracellular delivery of proteins and peptides. Ruth Elisabeth and Johanna Roder. Dissertation zur Erlangung des Doktorgrades der Fakultat fur Chemie und Pharmazie der Ludwig-Maximilians-Universitat Munchen. 2016, pp 1-128.

.

Lipo-Oligomer Nanoformulations for Targeted Intracellular Protein Delivery. Peng Zhang, Benjamin Steinborn, Ulrich Lachelt, Stefan Zahler, and Ernst Wagner. Biomacromolecules. 2017, June 26, 2017. DOI: 10.1021/acs.biomac.7b00666.

.

PEG-Peptide Conjugates. Ian W Hamley. Biomacromolecules. 2014, 15 (5) pp 1543-1559. April 1, 2014. DOI: 10.1021/bm500246w.

.

Precise and multifunctional conjugates for targeted siRNA delivery. Prof. Dr. Ernst Wagner Prof. Dr. Wolfgang Friess. Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München. April 27, 2012.

.

Orthogonal Cysteine Protection Enables Homogeneous Multi-Drug Antibody-Drug Conjugates. Matthew R Levengood, Xinqun Zhang, Joshua H Hunter, Kim K Emmerton, Jamie B Miyamoto, Timothy S Lewis, and Peter D Senter. Angewandte Chemie. 2016, 55 pp 1-6. December 14, 2016. DOI: 10.1002/anie.201608292.

.

Synthetic Polyglutamylation of Dual-Functional MTX Ligands for Enhanced Combined Cytotoxicity of Poly(I:C) Nanoplexes. Ulrich Lächelt Valentin Wittmann, Katharina Müller, Daniel Edinger, Petra Kos, Miriam Höhn, and Ernst Wagner. Molecular Pharmaceutics. 2014, 11 (8) pp 2631-2639. April 22, 2014. DOI: 10.1021/MP500017u.

.

Combinatorial optimization of sequence-defined oligo(ethanamino)amides for folate receptor-targeted pDNA and siRNA delivery. Dongsheng He, Katharina Muller, Ana Krhac, Petra Kos, Ulrich Lachelt, and Ernst Wagner. Bioconjugate Chemistry. 2016, January 3, 2016. DOI: 10.1021/acs.bioconjchem.5b00649.

.

Design of a Heterobivalent Ligand to Inhibit IgE Clustering on Mast Cells. Michael W. Handlogten, Tanyel Kiziltepe, Demetri T. Moustakas, and Basxar Bilgicer. Chemistry & Biology. 2011, 18 (9) pp 1179–1188. September 23, 2011. DOI: 10.1016/j.chembiol.2011.06.012.

.

Solid-phase-assisted synthesis of targeting peptide–PEG–oligo(ethane amino) amides for receptor-mediated gene delivery. Irene Martin, Christian Dohmen, Carlos Mas-Moruno, Christina Troiber, Petra Kos, David Schaffert, Ulrich Lächelt, Meritxell Teixidó, Michael Günther, Horst Kessler, Ernest Giralt and Ernst Wagner. Organic & Biomolecular Chemistry. 2012, 10 pp 3258-3268. February 23, 2012. DOI: 10.1039/C2OB06907E.

.

Defined Folate-PEG-siRNA Conjugates for Receptor-specific Gene Silencing. Christian Dohmen, Thomas Fröhlich, Ulrich Lächelt, Ingo Röhl, Hans-Peter Vornlocher, Philipp Hadwiger and Ernst Wagner. Molecular Therapy Nucleic Acids. 2012, 1 (e7) January 31, 2012. DOI: 10.1038/mtna.2011.10.

.

Oligaminoamide-Based siRNA Formulations for Folate Receptor-Directed Tumor Targeting and Gene Silencing. Dian-Jang Lee. The Faculty of Chemistry and Pharmacy. 2016, pp 1-107. March 11, 2016.

.

Monodispersed DOTA-PEG-Conjugated Anti-TAG-72 Diabody Has Low Kidney Uptake and High Tumor-to-Blood Ratios FResulting in Improved Cu PET. Lin Li, Fabio Turatti, Desiree Crow, James R. Bading, Anne-Line Anderson, Erasmus Poku, Paul J. Yazaki, Lawrence E. Williams, Debra Tamvakis, Paul Sanders, David Leong, Andrew Raubitschek, peter J. Hudson, David Colcher, and John E. Shively. Journal of Nuclear Medicine. 2010, 51 (7), pp 1139-1146. June 16, 2010. DOI: 10.2967/jnumed.109.074153.

.

Protein Transduction by Lipo-Oligoaminoamide Nanoformulations. Peng Zhang. Dissertation zur Erlangung des Doktorgrades der Fakultat fur Chemie and Pharmazie der Ludwig-Maximilians-Universitat Munchen. 2017, pp 1-102. July 25, 2017. https://edoc.ub.uni-muenchen.de/21022/1/Zhang_Peng.pdf

.

Site-Specific Conjugation of Monodispersed DOTA-PEGn to a Thiolated Diabody Reveals the Effect of Increasing PEG Size on Kidney Clearance and Tumor Uptake with Improved 64-Copper PET Imaging. Lin Li,Desiree Crow, Fabio Turatti, James R. Bading, Anne-Line Anderson, Erasmus Poku, Paul J. Yazaki, Jenny Carmichael, David Leong, Michael P. Wheatcroft,Andrew A. Raubitschek, Peter J. Hudson,David Colcher, and John E. Shively.Bioconjugate Chemistry. 2011, 22 (4), pp 709–716 March 12, 2011. DOI: 10.1021/bc100464e.

.

Dual-Targeted Polyplexes Based on Sequence-Defined Peptide–PEG–Oligoamino Amides. Petra Kos,Ulrich Lächelt, Dongsheng He, Yu Nie, Zhongwei Gu, and Ernst Wa. Journal of Pharmaceutical Sciences. 2014, 104 (2) pp 464-475. 9/29/2014. DOI: 10.1002/jps.24194.

.

Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer. Petra Kos, Ulrich Lachelt, Annika Herrmann, Fruke Martina Mickler, Markus Doblinger, Dongsheng He, Ana Krhac Levacic, Stephan Morys, Christoph Brauchle, and Ernst Wagner. Nanoscale. 2015, 7 (12), pp 5350-5362 February 15, 2015. DOI: 10.1039/c4nr06556e.

.

Tumoral gene silencing by receptor-targeted combinatorial siRNA polyplexes. Dian-Jang Lee, Dongsheng He, Eva Kessel, Kärt Padari, Susanne Kempter, Ulrich Lächelt, Joachim O. Rädler, Margus Pooga, Ernst Wagner. Journal of Controlled Release. 2016, 244 (B) pp 280-291. 12/28/2016. DOI: 10.1016/j.jconrel.2016.06.011.

.

Effect of PEGylation of N-WASP181-200 on the Inhibitory Potency for Renal Aminoglycoside Accumulation. Kenju Fujii, Junya Nagai, Takeshi Sawada, Ryko Yumoto, and Mikihisa Takano, Bioconjugate Chemistry. 2009, 20 (8), pp 1553–1558 July 2, 2009. DOI: 10.1021/bc900094g.

.

Combinal optimization of nucleic acid carriers for folate-targeted delivery. Dongsheng He. 2016..

Peptide Inhibitor of Complement C1 Inhibits the Peroxidase Activity of Hemoglobin and Myoglobin. Pamela S. Hair, Kenji M. Cunnion, and Neel K. Krishna. Hindawi International Journal of Peptides. 2017, 2017(9454583) pp 1-10. September 10, 2017. http://doi.org/10.1155/2017/9454583.

.

Synthesis of the Cyanine 7 labeled neutrophil-specific agents for noninvasive near infrared fluorescence imaging. Xiao L, Zhang Y, Liu Z, Yang M, Pu L, Pan D. Bioorganic & Medicinal Chemistry Letters. 2010, 20 (12) pp 3515-3517. June 15, 2010. DOI: 10.1016/j.bmcl.2010.04.136.

.

Calcium Condensed LABL-TAT Complexes Effectively Target Gene Delivery to ICAM-1 Expressing Cells. Supang Khondee, Abdulgader Baoum, Teruna J. Siahaan, and Cory Berkland. Molecular Pharmaceutics. 2011, 8 (3), pp 788–798. April 7, 2011. DOI: 10.1021/mp100393j.

.

Influence of Defined Hydrophilic Blocks within Oligoaminoamide Copolymers: Compaction versus Sheilding of pDNA Nanoparticles. Stephan Morys, Ana Krhac Levacic, Sarah Urnauer, Susanne Kempter, Sarah Kern, Joachim O Radler, Christine Spitzweg, Ulrich Lachelt, and Ernst Wagner. Polymers. 2017, 9 (4) pp 1-20. April 19, 2017. DOI: 10.3390/polym9040142.

.

Development of Peptide Nucleic Acid Probes for Detection of the HER2 Oncogene.Belhu Metaferia., Jun S. Wei., Young K. Song, Jennifer Evangelista, Konrad Aschenbach, Peter Johansson, Xinyu Wen, Qingrong Chen, Albert Lee, Heidi Hempel, Jinesh S. Gheeya, Stephanie Getty, Romel Gomez, Javed Khan. PLoS ONE. 2012, 8 (4) e58870. April 10, 2013. DOI: 10.1371/journal.pone.0058870.

.

Membrane-Fusogen Distance Is Critical for Efficient Coiled-Coil-Peptide-Mediated Liposome Fusion. Geert A. Daudey, Harshal R. Zope, Jens Voskuhl, Alexander Kros , and Aimee L. Boyle. Langmuir. 2017, 33 (43) pp 12443-12452. 10/5/2017. DOI: 10.1021/acs.langmuir.7b02931.

.

Two 90Y-Labeled Multimeric RGD Peptides RGD4 and 3PRGD2 for Integrin Targeted Radionuclide Therapy. Zhaofei Liu, Jiyun Shi, Bing Jia, Zilin Yu, Yan Liu, Huiyun Zhao, Fang Li, Jie Tian, Xiaoyuan Chen, Shuang Liu, and Fan Wang.Two 90Y-Labeled Multimeric RGD Peptides RGD4 and 3PRGD2 for Integrin Targeted Radionuclide Therapy. Zhaofei Liu, Jiyun Shi, Bing Jia, Zilin Yu, Yan Liu, Huiyun Zhao, Fang Li, Jie Tian, Xiaoyuan Chen, Shuang Liu, and Fan Wang. Mol. Pharmaceutics. 2011, 8 (2) pp 591–599. January 19, 2011. DOI: 10.1021/mp100403y.

.

PulmoBind, an Adrenomedullin-Based Molecular Lung Imaging Tool. Myriam Létourneau, Quang Trinh Nguyen, Francois Harel, Alain Fournier, and Jocelyn Dupuis. J Nucl Med. 2013, 54 (10) pp 1789-1796. October 1, 2013. DOI:10.2967/jnumed.112.118984.

.

Improving Tumor Uptake and Pharmacokinetics of 64Cu-Labeled Cyclic RGD Peptide Dimers with Gly3 and PEG4 Linkers. Jiyun Shi, Young-Seung Kim, Shizhen Zhai, Zhaofei Liu, Xiaoyuan Chen and Shuang Liu. Bioconjugate Chemistry. 2009, 20 (4) pp 750–759. March 25, 2009. DOI: 10.1021/bc800455p.

.

Multimodal Assessment of Mesenchymal Stem Cell Therapy for Diabetic Vascular Complications. Jamila Hedhli, Christian J. Konopka, Sarah Schuh, Hannah Bouvin, John A. Cole, Heather D. Huntsman, Kristopher A. Kilian, Iwona T. Dobrucki, Marni D. Boppart, and Lawrence W. Dobrucki. Theranostics. 2017, 7(16) pp 3876-3888. September 5, 2017. DOI: 10.7150/thno.19547.

.

Radionuclides in Targeted Therapy of Cancer. Adina Elena STANCIU. Rev. Roum. Chim. 2012, 57 (1) pp 5-13. May 27, 2011. DOI: http://web.icf.ro/rrch/.

.

Impact of PKM Linkers on Biodistribution Characteristics of the 99mTc-Labeled Cyclic RGDfK Dimer. Shuang Liu, Zhengjie He, Wen-Yuan Hsieh, Young-Seung Kim, and Young Jiang. Bioconjugate Chem. 2006, 17 (6) pp 1499–1507. November 1, 2006. DOI: 10.1021/bc060235l.

.

Expanding the Scope of Biocatalysis: Oxidative Biotransformations on Solid-Supported Substrates. Sarah J. Brooks, Lydie Coulombel, Disha Ahuja, Douglas S. Clark, and Jonathan S. Dordick. Advanced Synthesis &Catalysis. 2008, 350 (10), pp 1517–1525. July 7, 2008. DOI:10.1002/adsc.200800188.

.

Molecular Imaging of the Human Pulmonary Vascular Endothelium Using an Adrenomedullin Receptor Ligand. Francois Harel, Xavier Levac, Quang T. Nguyen, Myriam Le´tourneau, Sophie Marcil, Vincent Finnerty, Marie`ve Cossette, Alain Fournier, and Jocelyn Dupuis. Molecular Imaging. 2015, pp 1-9. March 1, 2015. DOI: 10.2310/7290.2015.00003.

.

132To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 139: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Spring-Loaded Model Revisited: Paramyxovirus Fusion Requires Engagement of a Receptor Binding Protein beyond Initial Triggering of the Fusion Protein. Matteo Porotto, Ilaria DeVito, Samantha G. Palmer, Eric M. Jurgens, Jia L. Yee, Christine C. Yokoyama, Antonello Pessi and Anne Moscona. J. Virol. 2011, 85 (24) pp 12867-12880. DOI: 10.1128/JVI.05873-11.

.

Toward the Optimization of Bombesin-Based Radiotracers for Tumor Targeting. Ibai E. Valverde, Sandra Vomstein, and Thomas L. Mindt. Journal of Medicinal Chemistry. 2016, April 7, 2016. DOI: 10.1021/acs.jmedchem.6b00025.

.

2-Mercaptoacetylglycylglycyl (MAG2) as a Bifunctional Chelator for 99mTc-Labeling of Cyclic RGD Dimers: Effect of Technetium Chelate on Tumor Uptake and Pharmacokinetics. Jiyun Shi, Young-Seung Kim, Sudipta Chakraborty, Bing Jia, Fan Wang and Shuang Liu. Bioconjugate Chemistry. 2009, 20(8) pp 1559–1568. July 15, 2009. DOI: 10.1021/bc9001739.

.

Optical Imaging of Integrin αv β3 Expression with Near-Infrared Fluorescent RGD Dimer with Tetra(ethylene glycol) Linkers. Zhaofei Liu, Shuanglong Liu, Gang Niu, Fan Wang, Shuang Liu, Xiaoyuan Chen. Mol Imaging. 2010, 9 (1) pp 21-29. February 1, 2010. DOI: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3629979/.

.

99mTc-Galacto-RGD2: A Novel 99mTc-Labeled Cyclic RGD Peptide Dimer Useful for Tumor Imaging. Shundong Ji, Andrzej Czerwinski, Yang Zhou, Guoqiang Shao, Francisco Valenzuela, Paweł Sowiński, Satendra Chauhan, Michael Pennington, and Shuang Liu. Mol. Pharmaceutics. 2013, 10 (9) pp 3304–3314. July 22, 2013. DOI: 10.1021/mp400085d.

.

Novel Synthetic Route to Peptide-Capped Gold Nanoparticles. Takeshi Serizawa, Yu Hirai, and Mamoru Aizawa. Langmuir. 2009, 25 (20), pp 12229–12234. September 21, 2009. DOI: 10.1021/la9021799.

.

In vitro and in vivo efficacy, toxicity, bio-distribution and resistance selection of a novel antibacterial drug candidate. Jlenia Brunetti, Chiara Falciani, Giulia Roscia, Simona Pollini, Stefano Bindi, Silvia Scali, Unai Cossio Arrieta, Vanessa Gomez-Vallejo, Leila Quercini, Elisa Lbba, Marco Prato, Gian Maria Rossolini, Jordi Llop, Luisa Bracci, and Alessandro Pini. Scientific Reports. 2016, 6 (26077). May 12, 2016. DOI: 10.1038/srep26077.

.

Controlling HBV Replication in Vivo by Intravenous Administration of Triggered PEGylated siRNA-Nanoparticles. Sergio Carmona, Michael R. Jorgensen, Soumia Kolli, Carol Crowther, Felix H. Salazar, Patricia L. Marion, Masato Fujino, Yukikazu Natori, Maya Thanou, Patrick Arbuthnot, and Andrew D. Miller. Mol. Pharmaceutic., 2009, 6 (3), pp 706–717. January 21,2009. DOI: 10.1021/mp800157x.

.

Evaluation of 99mTc-Labeled Cyclic RGD Peptide with a PEG4 Linker for Thrombosis Imaging: Comparison with DMP444. Wei Fang, Jia He, Young-Seung Kim, Yang Zhou, and Shuang Liu. Bioconjugate Chem. 2011, 22 (8), pp 1715–1722. July 24, 2011. DOI: 10.1021/bc2003742.

.

Species Differences of Bombesin Analog Interactions with GRP-R Define the Choice of Animal Models in the Development of GRP-R-Targeting Drugs. Theodosia Maina, PhD; Berthold A. Nock, PhD; Hanwen Zhang, Anastasia Nikolopoulou, Msci, Beatrice Waser, PhD; Jean Claude Reubi, MD; and Helmut R. Maecke, PhD. Journal of Nuclear Medicine. 2005, 46 (5) pp. 823-830. January 23, 2005.

.

Trivalent PEGylated Platform for the Conjugation of Bioactive Compounds. Angela Torres, Carlos Mas-Moruno, Enrique Perez-Paya, Fernando Albericio, and Miriam Royo. Bioconjugate Chem. 2011, 22 (10), pp 2172–2178. August 25, 2011. DOI: 10.1021/bc100393g.

.

Design and Evaluation of Novel Polymyxin Fluorescent Probes. Bo Yun , Kade D. Roberts, Philip E. Thompson, Roger L. Nation, Tony Velkov, and Jian Li. Sensors. 2017, 17 (11) pp 2598. 11/11/2017. DOI: 10.3390/s17112598.

.

Evaluation of the Pharmacokinetic Effects of Various Linking Group Using the 111In-DOTA-X-BBN(7−14)NH2 Structural Paradigm in a Prostate Cancer Model. Jered C. Garrison, Tammy L. Rold, Gary L. Sieckman, Farah Naz, Samantha V. Sublett, Said Daibes Figueroa, Wynn A. Volkert and Timothy J. Hoffman. Bioconjugate Chem. 2008, 19 (9) pp 1803–1812. August 20, 2008. DOI: 10.1021/bc8001375.

.

Selective photocrosslinking of functional ligands to antibodies via the conserved nucleotide binding site. Nathan J. Alves, Matthew M. Champion, Jared F. Stefanick, Michael W. Handlogten, Demetri T. Moustakas, Yunhua Shi, Bryan F. Shawd, Rudolph M. Navari, Tanyel Kiziltepe, Basar Bilgicer. Biomaterials. 2013, 34 (22) pp 5700–5710. April 16, 2013. DOI:.org/10.1016/j.biomaterials.2013.03.082.

.

Membrane-Fusogen Distance Is Critical for Efficient Coiled-Coil-Peptide-Mediated Liposome Fusion. Geert A. Daudey, Harshal R. Zope, Jens Voskuhl, Alexander Kros , and Aimee L. Boyle. Langmuir. 2017, 33 (43) pp 12443-12452. 10/5/2017. DOI: 10.1021/acs.langmuir.7b02931.

.

Design, Synthesis and Evaluation of a Neurokinin 1 Receptor-Targeted Near IR Dye for Fluorescence Guided Surgery of Neuroendocrine Cancers. Ananda Kumar Kanduluru, Madduri Srinivasarao, and Philip S. Low. Bioconjugate Chemistry. 2016, pp 1-20. August 16, 2016. DOI: 10.1021/acs.bioconjchem.6b00374.

.

Tumor Uptake of the RGD Dimeric Probe 99mTc-G3-2P4-RGD2 is Correlated with Integrin rv_3 Expressed on both Tumor Cells and Neovasculature. Zhaofei Liu, Bing Jia, Jiyun Shi, Xiaona Jin, Huiyun Zhao, Fang Li, Shuang Liu, and Fan Wang. Bioconjugate Chem. 2010, 21 (3) pp 548-555. February 25, 2010. DOI: 10.1021/bc900547d.

.

Polyproline-Rod Approach to Isolating Protein Targets of Bioactive Small Molecules: Isolation of a New Target of Indomethacin. Shin-ichi Sato, Youngjoo Kwon, Shinji Kamisuki, Neeta Srivastava, Quian Mao, Yoshinori Kawazoe, and Motonari Uesugi. Journal of the American Chemical Society. 2007, 129 (4), pp 873–880. January 4, 2007. DOI: 10.1021/ja0655643.

.

Controlled liposome fusion mediated by SNARE protein mimics. Hana Robson Marsden, Alexander V. Korobko,Tingting Zheng, Jens Voskuhla and Alexander Kros. Biomaterials Science. 2013, 1 (10) pp 1046-1054. June 4, 2013. DOI: 10.1039/C3BM60040H.

.

SNARE protein analog-mediated membrane fusion. Pawan Kumar, Samit Guha and Ulf Diederichsen. Journal of Peptide Science. 2015, April 7, 2015. DOI: 10.1002/psc.2773.

.

In Situ Modification of Plain Liposomes with Lipidated Coiled Coil Forming Peptides Induces Membrane Fusion. Frank Versluis , Jens Voskuhl , Bartjan van Kolck , Harshal Zope , Marien Bremmer , Tjerk Albregtse and Alexander Kros. Journal of the American Chemical Society. 2013, 135 (21), pp 8057–8062. May 9, 2013. DOI: 10.1021/ja4031227.

.

Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length. Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer. ACS Nano. 2013, 7 (9) pp 8115–8127. August 29, 2013. DOI: 10.1021/nn4033954.

.

New Enzyme-Activated Solubility-Switchable Contrast Agent for Magnetic Resonance Imaging: From Synthesis to in Vivo Imaging. Beata Jastrzabska, Rejean Lebel, Helene Therriault, J. Oliver McIntyre, Emanuel Escher, Briggitte Guerin, Benoit Paquette, Witold A. Neugebauer, and Martin Lepage. Journal of Medicinal Chemistry. 2009, 52 (6) pp 1576–1581. February 19, 2009. DOI: 10.1021/jm801411h.

.

Design of a Heterotetravalent Synthetic Allergen That Reflects Epitope Heterogeneity and IgE Antibody Variability to Study Mast Cell Degranulation. Michael W. Handlogten, Tanyel Kiziltepe and Basar Bilgicer. Biochem. J. 2013, 449 (1) pp 91–99. January 1, 2013. DOI: 10.1042/BJ20121088.

.

A Non-Chromatographic Method for the Purification of a Bivalently Active Monoclonal IgG Antibody from Biological Fluids. Basar Bilgicer, Samuel W. Thomas III, Bryan F. Shaw, George K. Kaufman, Vijay M. Krishnamurthy, Lara A. Estroff, Jerry Yang, and George M. Whitesides. Journal of the American Chemical Society. 2009, 131 (26) pp 9361–9367. June 17, 2009. DOI: 10.1021/ja9023836.

.

Novel solubility-switchable MRI agent allows the noninvasive detection of matrix metalloproteinase-2 activity In vivo in a mouse model. Rejean Lebel, Beata Jastrzebska, Helene Therriault, Marie-Michele Cournoyer, J. Oliver McIntyre, Emanuel Escher, Witold Neugebauer, Benoit Paquette, and Martin Lepage. Magnetic Resonance in Medicine. 2008, 60 (5) pp 1056–1065. October 27, 2008. DOI: 10.1002/mrm.21741.

.

Design of a Heterobivalent Inhibitor of Allergy and More Physiologically Relevant Allergy Models. Michael William Handlogten. University of Notre Dame. 2013, March 28, 2013.

.

Evaluation of the Pharmacokinetic Effects of Various Linking Group Using the 111In-DOTA-X-BBN(7−14)NH2 Structural Paradigm in a Prostate Cancer Model. Jered C. Garrison, Tammy L. Rold, Gary L. Sieckman, Farah Naz, Samantha V. Sublett, Said Daibes Figueroa, Wynn A. Volkert and Timothy J. Hoffman. Bioconjugate Chem. 2008, 19 (9) pp 1803–1812. August 20, 2008. DOI: 10.1021/bc8001375.

.

Positron Emission Tomographic Imaging of Copper 64– and Gallium 68–Labeled Chelator Conjugates ofthe Somatostatin Agonist Tyr3-Octreotate. Jessie R. Nedrow, Alexander G. White, Jalpa Modi, Kim Nguyen, Albert J. Chang and Carolyn J. Anderson. Molecular Imaging. 2014, 13 pp 1-13. Decebmer 14, 2014. DOI: 10.2310/7290.2014.00020.

.

PEG-Peptide Conjugates. Ian W Hamley. Biomacromolecules. 2014. April 1, 2014. DOI: 10.1021/bm500246w.

.

A Systematic Analysis of Peptide Linker Length and Liposomal Polyethylene Glycol Coating on Cellular Uptake of Peptide-Targeted Liposomes. Jared F. Stefanick, Jonathan D. Ashley, Tanyel Kiziltepe, and Basar Bilgicer. ACS Nano. 2013, 7 (4) pp 2935–2947. February 19, 2013. DOI: 10.1021/nn305663e.

.

Design and Synthesis of Multifunctional Gold Nanoparticles Bearing Tumor-Associated Glycopeptide Antigens as Potential Cancer Vaccines. Raymond P. Brinas, Andreas Sundgren, Padmini Sahoo, Susan Morey, Kate Rittenhouse-Olson, Greg E. Wilding, Wei Deng, and Joseph J. Barchi, Jr. Bioconjugate Chem. 2012, 23 (8), pp 1513-1523. July 19, 2012. DOI: 10.1021/bc200606s.

.

Mechanistic Studies of a Peptidic GRP78 Ligand for Cancer Cell-Specific Drug Delivery. Ying Liu, Sebastian C.J. Steiniger, YoungSoo Kim, Gunnar F. Kaufmann, Brunhilde Felding-Habermann, and Kim D. Janda.Molecular Pharmaceutics 2007 4(3) p 435-447. January 2007. DOI:10.1021/mp060122j.

.

Membrane-Fusogen Distance Is Critical for Efficient Coiled-Coil-Peptide-Mediated Liposome Fusion. Geert A. Daudey, Harshal R. Zope, Jens Voskuhl, Alexander Kros , and Aimee L. Boyle. Langmuir. 2017, 33 (43) pp 12443-12452. 10/5/2017. DOI: 10.1021/acs.langmuir.7b02931.

.

Site-Dependent Degradation of a Non-Cleavable Auristatin-Based Linker-Payload in Rodent Plasma and Its Effect on ADC Efficacy. Magdalena Dorywalska, Pavel Strop, Jody A. Melton-Witt, Adela Hasa-Moreno, Santiago E. Farias, Meritxell Galindo Casas, Kathy Delaria, Victor Lui, Kris Poulsen, Janette Sutton, Gary Bolton, Dahui Zhou, Ludivine Moine, Russell Dushin, Thomas-Jaume Pons, Arvind Rajpal. Plos One. 2015, 10 (7) e0132282. July 10, 2015. DOI: 10.1371/journal.pone.0132282.

.

Peripheral administration of a long-acting peptide OT receptor agonist inhibits fear induced freezing. Meera E. Modi, Mark J. Majchrzak, Kari R. Fonseca, Angela Doran, Sarah Osgood, Michelle Vanase-Frawley, Eric Feyfant, Heather McInnes, Ramin Darvari, Derek L. Buhl, and Natasha M. Kablaoui. JPET. 2016, 357 (3). May 23, 2016. DOI: 10.1124/jpet.116.232702.

.

Novel Monodisperse PEGtide Dendrons: Design, Fabrication, and Evaluation of Mannose Receptor-Mediated Macrophage Targeting. Jieming Gao, Peiming Chen, Yashveer Singh, Xiaoping Zhang, Zoltan Szekely, Stanley Stein, and Patrick J. Sinko. Bioconjugate Chem. 2013, 24 (8) pp 1332–1344. June 29, 2013. DOI: 10.1021/bc400011v.

.

B-Peptide Conjugates: Syntheses and CD and NMR Investigations of B/a-Chimeric Peptides, of a DPA-B-Decapeptide, and of a PEGylated b-Heptapeptide. James Gardiner, Raveendra I. Mathad, Berhard Jaun, Jurg V. Schreiber, Oliver Flogel, and Dieter Seebach. Helvetica Chimica Acta. 2009, 92 (12) pp 2698-2721.December 17, 2009. DOI: 10.1002/hlca.200900325.

.

A Synthetic Virus-Like Particle Streptococcal Vaccine Candidate Using B-Cell Epitopes from the Proline-Rich Region of Pneumococcal Surface Protein A. Marco Tamborrini, Nina Geib, Aniebrys Marrero-Nodarse, Maja Jud, Julia Hauser, Celestine Aho, Araceli Lamelas, Armando Zuniga, Gerd Pluschke, Arin Ghasparian and John A. Robinson. Vaccines. 2015, 3 (4), pp 850-874, October 16, 2015. DOI: 10.3390/vaccines3040850.

.

Nanoallergens: A multivalent platform for studying and evaluating potency of allergen epitopes in cellular degranulation. Peter E Deak, Maura R Vrabel, Vincenzo J Pizzuti, Tanyel Kiziltepe, and Basar Bilgicer. Experimental Biology and Medicine. 2016, 0 pp 1-11. April 13, 2016. DOI: 10.1177/1535370216644533.

.

Photocleavable peptide-oligonucleotide conjugates for protein kinase assays by MALDI-TOF MS. Guangchang Zhou, Faraz Khan, Qing Dai, Juliesta E Sylvester and Stephen J Kron. Molecular BioSystems. 2012, 8 (9), pp 2395-2404. June 13, 2012. DOI: 10.1039/C2MB25163A.

.

A Synthetic Trivalent Hapten that Aggregates anti-2,4-DNP IgG into Bicyclic Trimers. Başar Bilgiçer, Demetri T. Moustakas, and George M. Whitesides. Journal of the American Chemical Society. 2007, 129 (12) pp 3722-3728. February 28, 2007. DOI: 10.1021/ja067159h.

.

Synthetic Allergen Design Reveals the Significance of Moderate Affinity Epitopes in Mast Cell Degranulation. Michael W. Handlogten, Tanyel Kiziltepe, Nathan J. Alves, and Basar Bilgicer. ACS Chemical Biology. 2012, 7 (11) pp 1796–1801. August 10, 2012. DOI: 10.1021/cb300193f.

.

Multifunctional nanoparticles as simulants for a gravimetric Immunoassay. Scott A. Miller, Leslie A. Hiatt, Robert G. Keil, David W. Wright, and David E. Cliffel. Analytical and Bioanalytical Chemistry. 2011, 399 (3) pp 1021-1029 January 1, 2011. DOI:10.1007/s00216-010-4419-8.

.

133To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 140: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Fmoc-N-amido-dPEG®x-NHS ester

Design of a modular tetrameric scaffold for the synthesis of membrane-localized D-peptide inhibitors of HIV-1 entry. J. Nicholas Francis, Joseph S Redman, Debra M Eckert, and Michael S. Kay. Bioconjugate Chemistry, 2012, 23 (6), pp 1252-1258, May 1, 2012. DOI: 10.1021/bc300076f.

.

Novel water-soluble amphotericin B-PEG conjugates with low toxicity and potent in vivo efficacy. Assaf V Halperin, Yana Shadkchan, Evgeni Pisarevsky, Alex Martin Szpilman, Hana Sandovsky, Nir Osherov, and Itai Benhar. Journal of Medicinal Chemistry. 2016, 59 (3), pp 1197–1206. DOI: 10.1021/acs.jmedchem.5b01862.

.

Methoxytrityl-S-dPEG®x-acid

Gold Nanoparticles Functionalized with Peptides for Specific Affinity Aggregation Assays of Estrogen Receptors and Their Agonists. Yoshiyuki Takatsuji, Shinya Ikeno and Tetsuya Haruyama. Sensors. 2012, 12 (4), pp 4952-4961. April 18, 2012. DOI: 10.3390/s120404952.

.

t-boc-N-amido-dPEG®x-acid

Covalently deposited dyes: a new chromogen paradigm that facilitates analysis of multiple biomarkers in situ. William A Day, Mark R Lefever, Robert L Ochs, Anne Pedata, Lauren J Behman, Julia Ashworth-Sharpe, Donald D Johnson, Eric J May, James G Grille, Esteban A Roberts, Jerry W Kosmeder, and Larry E Morrison. Laboratory Investigation. 2016, 00 pp 1-10. November 21, 2016. DOI: 10.1038/labinvest.2016.115.

.

134To place an order, call 614-792-2958 or visit www.quantabiodesign.com

Page 141: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

INDEX 4-formyl-benzamido-dPEG

®12-EDA-MAL ................................ 57

4-formyl-benzamido-dPEG®

12-TFP ester................................. 56 4-formyl-benzamido-dPEG

®24-TFP ester................................. 56

A Acid-dPEG

®13-NHS ester ......................................................... 78

Acid-dPEG®

25-NHS ester ......................................................... 78 Acid-dPEG

®5-NHS ester ........................................................... 78

Acid-dPEG®

9-NHS ester ........................................................... 78 Amino-dPEG

®11-ONH-t-boc .................................................... 79

Amino-dPEG®

12-acid ............................................................... 35 Amino-dPEG

®12-ODMT ......................................................... 109

Amino-dPEG®

12-OH ................................................................. 49 Amino-dPEG

®12-t-boc-hydrazide ............................................ 84

Amino-dPEG®

12-t-butyl ester .................................................. 47 Amino-dPEG

®12-Tris(dPEG

®12-Tris(m-dPEG

®11)3)3 .................... 25

Amino-dPEG®

12-Tris(-dPEG®

24-t-butyl ester)3 ......................... 25 Amino-dPEG

®12-Tris(m-dPEG

®24)3 ........................................... 25

Amino-dPEG®

24-acid ............................................................... 35 Amino-dPEG

®24-amido-dPEG

®24-acid ...................................... 35

Amino-dPEG®

24-OH ................................................................. 49 Amino-dPEG

®24-t-butyl ester .................................................. 47

Amino-dPEG®

24-Tris(-dPEG®

24-Tris(m-dPEG®

24)3)3 ................... 25 Amino-dPEG

®2-t-butyl ester ................................................... 47

Amino-dPEG®

36-acid ............................................................... 35 Amino-dPEG

®36-OH ................................................................. 49

Amino-dPEG®

36-t-butyl ester .................................................. 47 Amino-dPEG

®4-acid ................................................................ 34

Amino-dPEG®

4-OH .................................................................. 49 Amino-dPEG

®4-t-boc-hydrazide .............................................. 84

Amino-dPEG®

4-t-butyl ester ................................................... 47 Amino-dPEG

®6-acid ................................................................ 34

Amino-dPEG®

6-t-butyl ester ................................................... 47 Amino-dPEG

®8-acid ................................................................ 34

Amino-dPEG®

8-OH .................................................................. 49 Amino-dPEG

®8-t-boc-hydrazide .............................................. 84

Amino-dPEG®

8-t-butyl ester ................................................... 47 Azido-dPEG

®11-amine ............................................................. 68

Azido-dPEG®

12-acid ................................................................. 67 Azido-dPEG

®12-NHS ester ....................................................... 65

Azido-dPEG®

12-OH .................................................................. 50 Azido-dPEG

®12-TFP ester ........................................................ 66

Azido-dPEG®

23-amine ............................................................. 68 Azido-dPEG

®24-acid ................................................................. 67

Azido-dPEG®

24-OH .................................................................. 50 Azido-dPEG

®24-TFP ester ........................................................ 66

Azido-dPEG®

35-amine ............................................................. 68 Azido-dPEG

®36-OH .................................................................. 50

Azido-dPEG®

36-TFP ester ........................................................ 66 Azido-dPEG

®3-amine ............................................................... 68

Azido-dPEG®

4-acid .................................................................. 67 Azido-dPEG

®4-NHS ester ......................................................... 65

Azido-dPEG®

4-OH .................................................................... 50

Azido-dPEG®

4-TFP ester ......................................................... 66 Azido-dPEG

®7-amine .............................................................. 68

Azido-dPEG®

8-acid .................................................................. 67 Azido-dPEG

®8-NHS ester ........................................................ 65

Azido-dPEG®

8-OH ................................................................... 50

B Bioconjugate Techniques ......................................................... 5 Biotin-dPEG

®11-azide .............................................................. 96

Biotin-dPEG®

11-Lipoamide ...................................................... 44 Biotin-dPEG

®11-MAL ............................................................... 94

Biotin-dPEG®

11-NH2 ................................................................ 92 Biotin-dPEG

®11-oxyamine. HCl ............................................... 93

Biotin-dPEG®

12-DBCO ............................................................. 11 Biotin-dPEG

®12-TFP ester ........................................................ 88

Biotin-dPEG®

23-azide .............................................................. 96 Biotin-dPEG

®23-Lipoamide ...................................................... 44

Biotin-dPEG®

23-MAL ............................................................... 94 Biotin-dPEG

®23-NH2 ................................................................ 92

Biotin-dPEG®

24-TFP ester ........................................................ 88 Biotin-dPEG

®3- Lipoamide ...................................................... 44

Biotin-dPEG®

3-cyanocobalamin.............................................. 97 Biotin-dPEG

®3-MAL ................................................................ 94

Biotin-dPEG®

3-NH3+TFA¯ ......................................................... 92

Biotin-dPEG®

3-oxyamine. HCl ................................................. 93 Biotin-dPEG

®3-TFPA ................................................................ 95

Biotin-dPEG®₄-amido-dPEG®₂₄-amido-dPEG®₂₄-DSPE ........... 22 Biotin-dPEG

®4-hydrazide ........................................................ 91

Biotin-dPEG®

4-TFP ester ......................................................... 88 Biotin-dPEG

®7-azide ............................................................... 96

Biotin-dPEG®

7-NH2.................................................................. 92 Bis-Bromoacetamido-dPEG®₁₁ ............................................... 72 Bis-dPEG®₁₁-DBCO .................................................................. 70 Bis-dPEG

®13-NHS ester ........................................................... 62

Bis-dPEG®

13-PFP ester ............................................................ 64 Bis-dPEG

®17-NHS ester ........................................................... 62

Bis-dPEG®

17-PFP ester ............................................................ 64 Bis-dPEG

®21-NHS ester ........................................................... 62

Bis-dPEG®

21-PFP ester ............................................................ 64 Bis-dPEG

®25-NHS ester ........................................................... 62

Bis-dPEG®

25-TFP ester ............................................................ 64 Bis-dPEG

®2-NHS ester ............................................................. 61

Bis-dPEG®

2-PFP ester .............................................................. 63 Bis-dPEG

®3-biotin ................................................................... 97

Bis-dPEG®

3-NHS ester ............................................................. 61 Bis-dPEG

®3-PFP ester .............................................................. 63

Bis-dPEG®

4-PFP ester .............................................................. 63 Bis-dPEG

®5, half benzyl half NHS ester ................................... 79

Bis-dPEG®

5-PFP ester .............................................................. 64 Bis-dPEG

®7-NHS ester ............................................................. 61

Bis-dPEG®

7-PFP ester .............................................................. 64 Bis-dPEG

®9-NHS ester ............................................................. 62

Bis-dPEG®

9-PFP ester .............................................................. 64

Page 142: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Bis-MAL-dPEG®

11 .................................................................... 72 Bis-MAL-dPEG

®3 ...................................................................... 72

Bis-Maleimide amine, TFA salt ............................................... 81 Bis-MAL-Lysine-dPEG

®4- dPEG

®12-Tris(-dPEG

®24-acid)3 ............ 26

Bis-MAL-Lysine-dPEG®

4-acid ................................................... 82 Bis-MAL-Lysine-dPEG

®4-dPEG

®12-Tris(m-dPEG

®24)3 ................. 26

Bis-MAL-Lysine-dPEG®

4-TFP ester .......................................... 83 Bromoacetamido-dPEG

®11-azide ...................................... 11, 68

Bromoacetamido-dPEG®

12-amido-DBCO ................................ 10 Bromoacetamido-dPEG

®12-amido-DBCO ................................ 55

Bromoacetamido-dPEG®

12-TFP ester ..................................... 55 Bromoacetamido-dPEG

®12-Tris(-dPEG

®11-bromoacetamide)3 74

Bromoacetamido-dPEG®

23-azide ...................................... 11, 68 Bromoacetamido-dPEG

®24-amido-DBCO ................................ 10

Bromoacetamido-dPEG®

24-amido-DBCO ................................ 55 Bromoacetamido-dPEG

®24-TFP ester ..................................... 55

Bromoacetamido-dPEG®

3-azide ....................................... 11, 68 Bromoacetamido-dPEG

®4-amido-DBCO ................................. 10

Bromoacetamido-dPEG®

4-amido-DBCO ................................. 55 Bromoacetamido-dPEG

®4-TFP ester ....................................... 55

C Carboxyfluorescein-dPEG

®12-NHS ester ................................. 99

Carboxyfluorescein-dPEG®₂₄-amido-dPEG®₂₄-DSPE .............. 22 CBZ-amido-dPEG

®24-amido-dPEG

®24-acid ............................. 107

CBZ-N-amido-dPEG®

12-acid .................................................. 107 CBZ-N-amido-dPEG

®24-acid .................................................. 107

CBZ-N-amido-dPEG®

36-acid .................................................. 107 CBZ-N-amido-dPEG

®3-amine .................................................. 77

CBZ-N-amido-dPEG®

4-acid .................................................... 107 CBZ-N-amido-dPEG

®6-acid .................................................... 107

CBZ-N-amido-dPEG®

8-acid .................................................... 107

D DBCO-acid ................................................................................ 9 DBCO-amine ............................................................................. 9 DBCO-dPEG

®12-carboxyfluorescein ........................................ 11

DBCO-dPEG®

12-MAL ................................................................ 10 DBCO-dPEG

®12-meso-TP-IR775 ............................................... 11

DBCO-dPEG®

12-TFP ester .......................................................... 9 DBCO-dPEG®₂₄-amido-dPEG®₂₄-DSPE .................................... 21 DBCO-dPEG

®24-MAL ................................................................ 10

DBCO-dPEG®

24-TFP ester .......................................................... 9 DBCO-dPEG

®4-MAL ................................................................. 10

DBCO-dPEG®

4-TFP ester ........................................................... 9 DBCO-TFP ester ........................................................................ 9 Diamido-dPEG

®11-diamine ...................................................... 76

DNP-dPEG®

12-acid ................................................................... 99 DNP-dPEG

®12-NHS ester ......................................................... 98

DNP-dPEG®

4-acid .................................................................... 99 DNP-dPEG

®4-NHS ester ........................................................... 98

DOTA-tris(acid)-amido-dPEG®

11-bromoacetamide .................. 8 DOTA-tris(acid)-amido-dPEG

®11-MAL ....................................... 7

DOTA-tris(acid)-amido-dPEG®

12-TFP ester ............................... 6

DOTA-tris(acid)-amido-dPEG®

23-bromoacetamide .................. 8 DOTA-tris(acid)-amido-dPEG

®23-MAL ....................................... 7

DOTA-tris(acid)-amido-dPEG®₂₄-amido-dPEG®₂₄-DSPE ......... 21 DOTA-tris(acid)-amido-dPEG

®24-TFP ester ............................... 6

DOTA-tris(acid)-amido-dPEG®

3-bromoacetamide.................... 8 DOTA-tris(acid)-amido-dPEG

®4-TFP ester ................................ 6

DOTA-tris(TBE)-amido-dPEG®

11-MAL ....................................... 7 DOTA-tris(TBE)-amido-dPEG

®12-TFP ester ................................ 6

DOTA-tris(TBE)-amido-dPEG®

23-MAL ....................................... 7 DOTA-tris(TBE)-amido-dPEG

®24-TFP ester ................................ 6

DOTA-tris(TBE)-amido-dPEG®

4-TFP ester ................................. 6 dPEG

®12-biotin acid ................................................................ 87

dPEG®

12-diol ........................................................................... 51 dPEG

®12-SATA (S-acetyl-dPEG

®12-NHS ester) ......................... 46

dPEG®

24-biotin acid ................................................................ 87 dPEG

®24-SATA (S-acetyl-dPEG

®24-NHS ester) ......................... 46

dPEG®

48-biotin acid ................................................................ 87 dPEG

®4-biotin acid .................................................................. 87

dPEG®

4-SATA (S-acetyl-dPEG®

4-NHS ester) ............................ 46 dPEG

®8-SATA (S-acetyl-dPEG

®8-NHS ester) ............................ 46

F Fmoc-amido-dPEG

®24-amido-dPEG

®24-acid .......................... 101

Fmoc-amidooxy-dPEG®

12 acid .............................................. 106 Fmoc-N-amido-dPEG

®12-acid................................................ 101

Fmoc-N-amido-dPEG®

12-NHS ester ...................................... 102 Fmoc-N-amido-dPEG

®12-TFP ester ....................................... 103

Fmoc-N-amido-dPEG®

24-acid................................................ 101 Fmoc-N-amido-dPEG

®24-TFP ester ....................................... 103

Fmoc-N-amido-dPEG®

2-acid ................................................. 100 Fmoc-N-amido-dPEG

®36-acid................................................ 101

Fmoc-N-amido-dPEG®

36-TFP ester ....................................... 103 Fmoc-N-amido-dPEG

®3-acid ................................................. 100

Fmoc-N-amido-dPEG®

4-acid ................................................. 100 Fmoc-N-amido-dPEG

®4-NHS ester ....................................... 102

Fmoc-N-amido-dPEG®

4-t-boc-hydrazide ................................ 85 Fmoc-N-amido-dPEG

®4-TFP ester......................................... 103

Fmoc-N-amido-dPEG®

5-acid ................................................. 100 Fmoc-N-amido-dPEG

®6-acid ................................................. 100

Fmoc-N-amido-dPEG®

8-acid ................................................. 101 Fmoc-N-amido-dPEG

®8-NHS ester ....................................... 102

Fmoc-N-amido-dPEG®

8-TFP ester......................................... 103 Fmoc-N-Lys-(dPEG

®12-biotin)-OH-(acid) .............................. 104

Fmoc-N-Lys-(dPEG®

4-biotin)-OH-(acid) ............................... 104

H Hexa(-amido-dPEG®₁₁-MAL)dipentaerythritol ....................... 75 Hydroxy-dPEG

®12-t-butyl ester ............................................... 48

Hydroxy-dPEG®

12-TFP ester .............................................. 12, 27 Hydroxy-dPEG

®24-t-butyl ester ............................................... 48

Hydroxy-dPEG®

24-TFP ester .............................................. 12, 27 Hydroxy-dPEG

®4-t-butyl ester ................................................ 48

Hydroxy-dPEG®

4-TFP ester ............................................... 12, 27 Hydroxy-dPEG

®6-t-butyl ester ................................................ 48

Page 143: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

Hydroxy-dPEG®

8-t-butyl ester ................................................ 48

L Lipoamido-dPEG

®12-acid ......................................................... 43

Lipoamido-dPEG®

12-TFP ester ............................................... 42 Lipoamido-dPEG

®24-acid ......................................................... 43

Lipoamido-dPEG®

24-TFP ester ................................................ 42 Lipoamido-dPEG

®36-TFP ester ................................................ 42

Lipoamido-dPEG®

4-acid .......................................................... 43 Lipoamido-dPEG

®4-TFP ester .................................................. 42

Lipoamido-dPEG®

8-acid .......................................................... 43 Lipoamido-dPEG

®8-TFP ester .................................................. 42

Lissamine Rhodamine B sulfonamide-dPEG®

4-acid ................ 98

M MAL-[NH-dPEG

®4-Glu(TFP ester)]3-NH-m-dPEG

®24 ................. 16

MAL-dPEG®

12-acid .................................................................. 54 MAL-dPEG

®12-DSPE ................................................................. 20

MAL-dPEG®

12-NHS ester ......................................................... 52 MAL-dPEG

®12-TFP ester .......................................................... 53

MAL-dPEG®

12-Tris(-dPEG®

11-amido-MAL)3 .............................. 73 MAL-dPEG

®12-Tris(dPEG

®12-Tris (m-dPEG

®11)3)3 ...................... 24

MAL-dPEG®

12-Tris(-dPEG®

24-acid)3 .......................................... 24 MAL-dPEG

®12-Tris(m-dPEG

®24)3 ............................................... 24

MAL-dPEG®

24-acid .................................................................. 54 Mal-dPEG®₂₄-amido-dPEG®₂₄-amido-dPEG®₂₄-DSPE ............. 22 MAL-dPEG®₂₄-amido-dPEG®₂₄-DSPE ...................................... 20 MAL-dPEG

®24-amido-dPEG

®24-TFP ester ................................. 53

MAL-dPEG®

24-NHS ester ......................................................... 52 MAL-dPEG

®24-TFP ester .......................................................... 53

MAL-dPEG®

24-Tris(-dPEG®

24-Tris (m-dPEG®

24)3)3 ..................... 24 MAL-dPEG

®2-acid .................................................................... 54

MAL-dPEG®

2-NHS ester .......................................................... 52 MAL-dPEG

®2-TFP ester ........................................................... 53

MAL-dPEG®

36-TFP ester .......................................................... 53 MAL-dPEG

®3-Lipoamide ......................................................... 44

MAL-dPEG®

4-(m-dPEG®

11)3 ...................................................... 38 MAL-dPEG

®4-(m-dPEG

®12)3 ...................................................... 38

MAL-dPEG®

4-(m-dPEG®

24)3 ...................................................... 38 MAL-dPEG

®4-(m-dPEG

®4)3 ....................................................... 38

MAL-dPEG®

4-acid .................................................................... 54 MAL-dPEG

®4-Glu(OH)-NH-m-dPEG

®24 ..................................... 15

MAL-dPEG®

4-Glu(TFP ester)-NH-dPEG®

4-Glu(TFP ester)-NH-m-dPEG

®24 .............................................................................. 15

MAL-dPEG®

4-Glu(TFP ester)-NH-m-dPEG®

24 ........................... 15 MAL-dPEG

®4-Lys(-5(6)-carboxyfluorescein)-NH-m-dPEG

®24 ... 18

MAL-dPEG®

4-Lys(t-boc)-NH-m-dPEG®

24 .................................. 16 MAL-dPEG

®4-Lys(TFA-)-NH-m-dPEG

®24 ................................... 16

MAL-dPEG®

4-NHS ester .......................................................... 52 MAL-dPEG

®4-TFP ester ........................................................... 53

MAL-dPEG®

6-acid .................................................................... 54 MAL-dPEG

®6-NHS ester .......................................................... 52

MAL-dPEG®

6-TFP ester ........................................................... 53 MAL-dPEG

®8-acid .................................................................... 54

MAL-dPEG®

8-NHS ester .......................................................... 52 MAL-dPEG

®8-TFP ester ........................................................... 53

m-dPEG®

12-acid ...................................................................... 30 m-dPEG

®12-amido-dPEG

®12-acid ............................................. 29

m-dPEG®

12-amido-dPEG®

24-DSPE ........................................... 19 m-dPEG

®12-amine ................................................................... 33

m-dPEG®

12-Azide (Azido-m-dPEG®

12) ..................................... 39 m-dPEG

®12-DBCO.................................................................... 36

m-dPEG®

12-DSPE ..................................................................... 19 m-dPEG

®12-Lipoamide ............................................................ 45

m-dPEG®

12-MAL ..................................................................... 37 m-dPEG

®12-NHS ester ............................................................. 27

m-dPEG®

12-Propionaldehyde ................................................. 32 m-dPEG

®12-TFP ester .............................................................. 28

m-dPEG®

12-Thiol ..................................................................... 41 m-dPEG

®13-NHS ester ............................................................. 28

m-dPEG®

13-TFP ester .............................................................. 28 m-dPEG

®15-amine ................................................................... 33

m-dPEG®

24 Azide (Azido-m-dPEG®

24) ...................................... 39 m-dPEG

®24 Azide (Azido-m-dPEG

®36) ...................................... 39

m-dPEG®

24-amine ................................................................... 33 m-dPEG

®24-DBCO.................................................................... 36

m-dPEG®

24-DSPE ..................................................................... 19 m-dPEG

®24-Lipoamide ............................................................ 45

m-dPEG®

24-MAL ..................................................................... 37 m-dPEG

®24-NHS ester ............................................................. 28

m-dPEG®

24-Propionaldehyde ................................................. 32 m-dPEG

®24-TFP ester .............................................................. 28

m-dPEG®₂₅-acid...................................................................... 30 m-dPEG

®25-amido-dPEG

®24-acid ............................................. 29

m-dPEG®

25-amido-dPEG®

24-DSPE ........................................... 19 m-dPEG

®25-amido-dPEG

®24-TFP ester ..................................... 29

m-dPEG®

25-NHS ester ............................................................. 28 m-dPEG

®25-TFP ester .............................................................. 28

m-dPEG®

2-acid ........................................................................ 30 m-dPEG

®2-NHS ester .............................................................. 27

m-dPEG®

36-amine ................................................................... 33 m-dPEG

®36-MAL ..................................................................... 37

m-dPEG®

37-acid ...................................................................... 30 m-dPEG

®37-NHS ester ............................................................. 28

m-dPEG®

48-amine ................................................................... 33 m-dPEG

®48-CO(CH2)3-acid ....................................................... 30

m-dPEG®

48-MAL ..................................................................... 37 m-dPEG

®48-NH-CO(CH2)3CO-TFP ester ................................... 29

m-dPEG®

4-acid ........................................................................ 30 m-dPEG

®4-amine .................................................................... 33

m-dPEG®

4-Azide (Azido-m-dPEG®

4) ....................................... 39 m-dPEG

®4-Lipoamide ............................................................. 45

m-dPEG®

4-MAL ....................................................................... 37 m-dPEG

®4-NHS ester .............................................................. 27

m-dPEG®

4-Propionaldehyde ................................................... 32 m-dPEG

®4-Thiol ...................................................................... 41

m-dPEG®

8-acid ........................................................................ 30 m-dPEG

®8-amine .................................................................... 33

m-dPEG®

8-Azide (Azido-m-dPEG®

8) ........................................ 39 m-dPEG

®8-DSPE ...................................................................... 19

m-dPEG®

8-Lipoamide ............................................................. 45

Page 144: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

m-dPEG®

8-MAL ....................................................................... 37 m-dPEG

®8-NHS ester .............................................................. 27

m-dPEG®

8-Propionaldehyde ................................................... 32 m-dPEG

®8-Thiol....................................................................... 41

Methoxy-dPEG®₂₅-DSPE ......................................................... 21 Methoxytrityl-S-dPEG

®12-acid ............................................... 108

Methoxytrityl-S-dPEG®

4 acid ................................................. 108 Methoxytrityl-S-dPEG

®8 acid ................................................. 108

MPS (NHS-3-maleimidopropionate) ..................................... 80 MPS-Acid ................................................................................ 80 MPS-EDA.TFA ......................................................................... 80

N NH2-dPEG

®4-Glu(OH)-[NH-dPEG

®4-Glu(OH)]2-NH-m-dPEG

®24 . 17

NH2-dPEG®

4-Glu(OH)-NH-dPEG®

4-Glu(OH)-NH-m-dPEG®

24 ..... 17 NH2-dPEG

®4-Glu(OH)-NH-m-dPEG

®24 ...................................... 17

NH2-dPEG®

4-Lys(t-boc)-NH-m-dPEG®

24 ................................... 18 NHS -dPEG

®4-(m-dPEG

®12)3-ester ............................................ 31

NHS ester-dPEG®₂₅-amido-dPEG®₂₄-DSPE ............................. 21 NHS-biotin .............................................................................. 97 NHS-dPEG

®12-biotin ................................................................ 86

NHS-dPEG®

24-biotin ................................................................ 86 NHS-dPEG

®4 -biotinidase resistant biotin ............................... 90

NHS-dPEG®

4-biotin ................................................................. 86 NHS-S-S-dPEG

®4-biotin (cleavable) ........................................ 89

P Phthalimidooxy-dPEG

®12 NHS ester........................................ 58

Phthalimidooxy-dPEG®

4 NHS ester ......................................... 58 Propargyl amine ..................................................................... 69 Propargyl-dPEG

®1-NHS ester .................................................. 69

S S-acetyl-dPEG

®12-OH ............................................................... 51

S-acetyl-dPEG®

4-OH ................................................................ 51 S-acetyl-dPEG

®8-OH ................................................................ 51

SPDP-dPEG®

12-NHS ester ........................................................ 59 SPDP-dPEG

®24 -NHS ester ....................................................... 59

SPDP-dPEG®

36-NHS ester ........................................................ 59 SPDP-dPEG

®4-NHS ester ......................................................... 59

SPDP-dPEG®

8-NHS ester ......................................................... 59

T t-boc-N-amido-dPEG

®11-amine ............................................... 76

t-boc-N-amido-dPEG®

12-acid ................................................ 105 t-boc-N-amido-dPEG

®12-OH .................................................... 49

t-boc-N-amido-dPEG®

23-amine ............................................... 76 t-boc-N-amido-dPEG

®24-acid ................................................ 105

t-boc-N-amido-dPEG®

36-acid ................................................ 105 t-boc-N-amido-dPEG

®3-amine ................................................ 76

t-boc-N-amido-dPEG®

4-acid ................................................. 105 t-boc-N-amido-dPEG

®4-OH ..................................................... 49

t-boc-N-amido-dPEG®

8-acid ................................................. 105

t-boc-N-EDA ........................................................................... 77 Tetra(-amido-dPEG®11-MAL)pentaerythritol ......................... 73 Tetra(-amido-dPEG®24-MAL)pentaerythritol ......................... 73 Tetra(-dPEG®₁₁-DBCO)pentaerythritol ................................... 71 TFP-dPEG

®12-biotinidase resistant biotin ............................... 90

TFP-dPEG®

13-DSPE .................................................................. 20 TFP-dPEG

®4 -Lys-(dPEG

®4-biotin)2 ........................................... 89

TFP-dPEG®

4-(m-dPEG®

11)3-ester ............................................. 31 TFP-dPEG

®4-biotinidase resistant biotin ................................ 90

Thiol-dPEG®

12-acid.................................................................. 40 Thiol-dPEG

®4-acid ................................................................... 40

Thiol-dPEG®

8-acid ................................................................... 40 Tris (2-carboxyethyl) phosphine hydrochloride (TCEP) ........ 60

Page 145: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

10001 ....................................................................................... 5 10007 ..................................................................................... 88 10008 ..................................................................................... 88 10009 ..................................................................................... 88 10011 ..................................................................................... 58 10014 ..................................................................................... 60 10015 ..................................................................................... 64 10033 ................................................................................... 100 10041 ..................................................................................... 84 10043 ..................................................................................... 85 10053 ................................................................................... 100 10061 ..................................................................................... 47 10063 ................................................................................... 100 10064 ..................................................................................... 52 10065 ..................................................................................... 54 10066 ................................................................................... 107 10067 ..................................................................................... 34 10075 ..................................................................................... 57 10081 ..................................................................................... 56 10082 ..................................................................................... 56 10085 ..................................................................................... 63 10092 ..................................................................................... 64 10093 ..................................................................................... 76 10109 ..................................................................................... 78 10119 ..................................................................................... 78 10127 ..................................................................................... 78 10140 ..................................................................................... 78 10142 ..................................................................................... 30 10143 ..................................................................................... 29 10148 ..................................................................................... 29 10149 ..................................................................................... 29 10156 ..................................................................................... 51 10160 ..................................................................................... 51 10166 ................................................................................... 108 10170 ..................................................................................... 49 10171 ..................................................................................... 49 10172 ..................................................................................... 76 10175 ..................................................................................... 33 10177 ..................................................................................... 80 10181 ..................................................................................... 46 10183 ..................................................................................... 40 10184 ..................................................................................... 46 10185 ..................................................................................... 48 10188 ..................................................................................... 46 10193 ..................................................................................... 92 10194 ..................................................................................... 89 10195 ..................................................................................... 94 10196 ..................................................................................... 92 10197 ..................................................................................... 87 10198 ..................................................................................... 86 10199 ..................................................................................... 87 10200 ..................................................................................... 86 10201 ..................................................................................... 94 10202 ..................................................................................... 90 10203 ..................................................................................... 90 10204 ..................................................................................... 90 10205 ..................................................................................... 97

10211 ..................................................................................... 27 10213 ................................................................................... 100 10214 ..................................................................................... 52 10215 ..................................................................................... 72 10217 ..................................................................................... 80 10218 ..................................................................................... 97 10219 ..................................................................................... 91 10220 ................................................................................... 105 10221 ..................................................................................... 47 10223 ..................................................................................... 48 10225 ..................................................................................... 76 10226 ..................................................................................... 77 10229 ..................................................................................... 98 10232 ..................................................................................... 81 10234 ..................................................................................... 30 10237 ..................................................................................... 79 10240 ..................................................................................... 49 10243 ................................................................................... 100 10244 ..................................................................................... 34 10246 ..................................................................................... 62 10247 ..................................................................................... 40 10249 ..................................................................................... 49 10250 ..................................................................................... 49 10260 ..................................................................................... 27 10261 ..................................................................................... 51 10262 ..................................................................................... 27 10264 ..................................................................................... 47 10265 ..................................................................................... 54 10266 ..................................................................................... 52 10268 ................................................................................... 107 10269 ..................................................................................... 77 10271 ..................................................................................... 47 10273 ................................................................................... 101 10274 ..................................................................................... 52 10275 ..................................................................................... 54 10276 ................................................................................... 107 10277 ..................................................................................... 34 10278 ..................................................................................... 33 10281 ..................................................................................... 47 10283 ................................................................................... 101 10284 ..................................................................................... 52 10285 ..................................................................................... 54 10286 ................................................................................... 107 10287 ..................................................................................... 35 10288 ..................................................................................... 33 10289 ..................................................................................... 37 10298 ..................................................................................... 33 10301 ................................................................................... 108 10303 ..................................................................................... 28 10304 ..................................................................................... 28 10306 ..................................................................................... 28 10308 ..................................................................................... 95 10311 ..................................................................................... 47 10313 ................................................................................... 101 10314 ..................................................................................... 52 10315 ..................................................................................... 54 10316 ................................................................................... 107

Page 146: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

10317 ..................................................................................... 35 10318 ..................................................................................... 33 10319 ..................................................................................... 37 10323 ..................................................................................... 80 10324 ..................................................................................... 30 10325 ..................................................................................... 97 10326 ..................................................................................... 30 10327 ..................................................................................... 27 10328 ..................................................................................... 30 10338 ..................................................................................... 54 10340 ..................................................................................... 50 10342 ................................................................................... 109 10346 ..................................................................................... 99 10347 ..................................................................................... 98 10361 ..................................................................................... 76 10362 ..................................................................................... 32 10363 ..................................................................................... 32 10364 ..................................................................................... 32 10374 ..................................................................................... 59 10376 ..................................................................................... 59 10378 ..................................................................................... 59 10379 ..................................................................................... 59 10397 ..................................................................................... 72 10398 ..................................................................................... 99 10399 ..................................................................................... 98 10401 ..................................................................................... 31 10406 ..................................................................................... 38 10409 ..................................................................................... 89 10416 ..................................................................................... 38 10424 ..................................................................................... 32 10456 ..................................................................................... 38 10482 ..................................................................................... 25 10484 ..................................................................................... 24 10501 ..................................................................................... 65 10502 ..................................................................................... 67 10503 ..................................................................................... 65 10505 ..................................................................................... 65 10510 ..................................................................................... 69 10511 ..................................................................................... 69 10512 ..................................................................................... 67 10513 ..................................................................................... 67 10514 ..................................................................................... 67 10522 ..................................................................................... 68 10523 ..................................................................................... 68 10524 ..................................................................................... 68 10525 ..................................................................................... 68 10526 ..................................................................................... 68 10531 ..................................................................................... 39 10532 ..................................................................................... 39 10534 ..................................................................................... 39 10536 ..................................................................................... 39 10540 ..................................................................................... 39 10541 ..................................................................................... 50 10542 ..................................................................................... 50 10543 ..................................................................................... 50 10544 ..................................................................................... 50 10549 ..................................................................................... 53

10551 ..................................................................................... 53 10552 ..................................................................................... 53 10553 ..................................................................................... 53 10554 ..................................................................................... 53 10555 ..................................................................................... 53 10556 ..................................................................................... 53 10567 ..................................................................................... 66 10569 ..................................................................................... 66 10571 ..................................................................................... 66 10573 ..................................................................................... 66 10583 ..................................................................................... 36 10592 ..................................................................................... 10 10593 ..................................................................................... 10 10594 ..................................................................................... 10 10596 ..................................................................................... 36 10613 ................................................................................... 104 10615 ................................................................................... 104 10630 ..................................................................................... 82 10631 ..................................................................................... 83 10641 ..................................................................................... 42 10642 ..................................................................................... 42 10643 ..................................................................................... 42 10644 ..................................................................................... 42 10717 ..................................................................................... 48 10719 ..................................................................................... 48 10722 .................................................................................... 48 10724 ..................................................................................... 61 10726 ..................................................................................... 61 10745 ..................................................................................... 37 10746 ..................................................................................... 37 10760 ................................................................................... 105 10761 ................................................................................... 105 10763 ................................................................................... 105 10773 ..................................................................................... 87 10774 ..................................................................................... 86 10776 ..................................................................................... 87 10784 ..................................................................................... 96 10785 ..................................................................................... 94 10786 ..................................................................................... 92 10787 ..................................................................................... 96 10792 ..................................................................................... 41 10793 ..................................................................................... 41 10794 ..................................................................................... 41 10799 ..................................................................................... 45 10800 ..................................................................................... 45 10801 ..................................................................................... 45 10804 ..................................................................................... 45 10806 ..................................................................................... 43 10807 ..................................................................................... 43 10808 ..................................................................................... 43 10811 ..................................................................................... 43 10814 ..................................................................................... 42 10817 ..................................................................................... 44 10819 ..................................................................................... 44 10820 ..................................................................................... 44 10822 ..................................................................................... 44 10825 ..................................................................................... 96

Page 147: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

10826 ..................................................................................... 92 10828 ..................................................................................... 44 10846 ................................................................................... 108 10849 ................................................................................... 106 10850 ..................................................................................... 40 10852 ..................................................................................... 46 10867 ..................................................................................... 59 10868 ..................................................................................... 49 10869 ..................................................................................... 49 10885 ..................................................................................... 99 10901 ..................................................................................... 47 10902 ................................................................................... 105 10903 ................................................................................... 101 10906 ................................................................................... 107 10907 ..................................................................................... 35 10908 ..................................................................................... 33 10909 ..................................................................................... 30 10910 ..................................................................................... 28 10918 ..................................................................................... 33 10931 ..................................................................................... 37 10932 ..................................................................................... 37 10939 ..................................................................................... 51 10954 ..................................................................................... 62 10956 ..................................................................................... 62 10957 ..................................................................................... 84 10958 ..................................................................................... 84 10968 ..................................................................................... 62 10979 ..................................................................................... 62 10980 ..................................................................................... 64 10981 ..................................................................................... 63 10982 ..................................................................................... 63 10983 ..................................................................................... 64 10984 ..................................................................................... 64 10985 ..................................................................................... 64 10987 ..................................................................................... 64 10988 ..................................................................................... 61 10994 ................................................................................... 102 10995 ................................................................................... 102 10996 ................................................................................... 102 11000 ................................................................................... 103 11005 ................................................................................... 103 11006 ................................................................................... 103 11007 ................................................................................... 103 11008 ................................................................................... 103 11024 ..................................................................................... 19 11025 ..................................................................................... 19 11026 ..................................................................................... 19 11028 ..................................................................................... 20 11029 ..................................................................................... 20 11086 ..................................................................................... 28 11087 ..................................................................................... 28 11093 ..................................................................................... 20 11094 ..................................................................................... 19 11095 ..................................................................................... 19 11096 ..................................................................................... 29 11097 ..................................................................................... 29 11100 ..................................................................................... 93

11102 ..................................................................................... 93 11112 ..................................................................................... 79 11135 ..................................................................................... 58 11150 ....................................................................................... 8 11152 ....................................................................................... 8 11154 ....................................................................................... 8 11155 ....................................................................................... 6 11157 ....................................................................................... 6 11158 ....................................................................................... 6 11160 ....................................................................................... 6 11162 ....................................................................................... 6 11163 ....................................................................................... 6 11166 ....................................................................................... 7 11167 ....................................................................................... 7 11170 ....................................................................................... 7 11171 ....................................................................................... 7 11200 ..................................................................................... 55 11202 ..................................................................................... 55 11203 ..................................................................................... 55 11204 ............................................................................... 11, 68 11205 ............................................................................... 11, 68 11217 ............................................................................... 11, 68 11221 ............................................................................... 10, 55 11223 ............................................................................... 10, 55 11224 ............................................................................... 10, 55 11289 ..................................................................................... 30 11290 ..................................................................................... 28 11291 ..................................................................................... 28 11301 ................................................................................... 101 11303 ..................................................................................... 53 11304 ................................................................................... 107 11305 ..................................................................................... 35 11338 ..................................................................................... 72 11341 ............................................................................... 12, 27 11345 ............................................................................... 12, 27 11349 ............................................................................... 12, 27 11362 ....................................................................................... 9 11366 ....................................................................................... 9 11370 ....................................................................................... 9 11371 ..................................................................................... 71 11372 ..................................................................................... 70 11373 ..................................................................................... 21 11382 ..................................................................................... 21 11383 ..................................................................................... 21 11384 ..................................................................................... 21 11385 ..................................................................................... 22 11386 ..................................................................................... 22 11388 ..................................................................................... 22 11401 ..................................................................................... 31 11406 ..................................................................................... 38 11414 ..................................................................................... 73 11433 ..................................................................................... 73 11434 ..................................................................................... 74 11435 ..................................................................................... 73 11436 ..................................................................................... 75 11449 ..................................................................................... 25 11451 ..................................................................................... 24

Page 148: Leading Innovator, producer and commercial provider of ...€¦ · drugs, medical devices, cosmetics or commercial use. Customer represents and warrants to Quanta BioDesign, Ltd.

11471 ..................................................................................... 24 11474 ..................................................................................... 25 11486 ..................................................................................... 25 11487 ..................................................................................... 24 11575 ..................................................................................... 16 11576 ..................................................................................... 16 11577 ..................................................................................... 18 11580 ..................................................................................... 15 11581 ..................................................................................... 15 11597 ..................................................................................... 16 11598 ..................................................................................... 18 11624 ..................................................................................... 17 11626 ..................................................................................... 15 11630 ..................................................................................... 26 11633 ..................................................................................... 26 11643 ..................................................................................... 17 11644 ..................................................................................... 17 11750 ....................................................................................... 9 11811 ..................................................................................... 11 11812 ..................................................................................... 11 11813 ..................................................................................... 11 11814 ....................................................................................... 9 11815 ....................................................................................... 9

April 23, 2018