LARGE-SIGNAL NETWORK ANALYZER … NETWORK ANALYZER MEASUREMENTS AND THEIR USE IN ... • tuning of...

24
Ewout Vandamme (Agilent Technologies, NMDG), Wladek Grabinski (Motorola, Geneva), Dominique Schreurs (K.U.Leuven), and Thomas Gneiting (ADMOS) LARGE-SIGNAL NETWORK ANALYZER MEASUREMENTS AND THEIR USE IN DEVICE MODELLING

Transcript of LARGE-SIGNAL NETWORK ANALYZER … NETWORK ANALYZER MEASUREMENTS AND THEIR USE IN ... • tuning of...

Ewout Vandamme (Agilent Technologies, NMDG),Wladek Grabinski (Motorola, Geneva),Dominique Schreurs (K.U.Leuven), andThomas Gneiting (ADMOS)

LARGE-SIGNAL NETWORK ANALYZER MEASUREMENTS AND THEIR USE IN

DEVICE MODELLING

Mixdes 2002© 2002, Agilent Technologies

2

Outline

• Large-Signal Network Analyzer (LSNA) technology• Advantages of using LSNA for device modelling engineers• LSNA measurements

• de-embedding• implementation in CAE tool (iccap)• measurement and simulation results• tuning of model parameter to LSNA measurements

• Conclusions

Mixdes 2002© 2002, Agilent Technologies

3

Agilent’s Large-Signal Network Analyzer technology

Cal Kit,e.g. LOS, LRRM, etc.

Power Std

Phase Std

Calibration Standards: a1b1

a2b2

i1v1

or, equivalently,i2

v2

(a)

• RF bandwidth: 600 MHz - 20 GHz• max RF power: 10 Watt• IF bandwidth: 8 MHz• Needs CW or periodic modulation

Mixdes 2002© 2002, Agilent Technologies

4

• 2-port Device-Under-Test (DUT) under periodic excitation• e.g. transistor excited by a 2.4 GHz tone with an arbitrary output

termination

• All current and voltage waveforms are represented by a fundamental and harmonics

• Spectral components Xh = complex Fourier Series coefficients of the waveforms

CW class of signals measured with LSNA

Freq. (f0=2.4 GHz)1*f0 2*f0 3*f0 4*f0DC

Mixdes 2002© 2002, Agilent Technologies

5

LSNA measurements: time domain, frequency domain or combination of both (e.g. envelope in modulation)

= ∑=

H

h

tfhjh eXtx

0

2Re)( π

∫−

−=1

0

2)(2f

tfhjh dtetxfX π

frequencylfundamentaperiodf == /1

Mixdes 2002© 2002, Agilent Technologies

6

Advantages of using the LSNA in device modelling

• Measure the following characteristics of your DUT making a singleconnection, using one measurement setup (the LSNA)

• DC,• Small-signal (Scattering parameters), and• Large-signal behaviour

• Verify the model accuracy of your device under realistic operation conditions

• power amplification• high-speed switching

• Identify modelling problems at a single glance• LSNA measurements, e.g., immediately reveal weaknesses in capacitance and

charge models

Mixdes 2002© 2002, Agilent Technologies

7

Use of LSNA measurements in CAE tool (iccap)⇒⇒⇒⇒ model verification, optimisation (and extraction)

ICCAP specific input

ADS netlist. Used, a.o., to impose themeasured impedance to the output ofthe transistor in simulation

sweep of Power Vgs Vds Freq

Mixdes 2002© 2002, Agilent Technologies

8

Use of LSNA measurements for simulation (1/2)

Measurements RF de-embedding

V1m,dc I1m,dcV2m,dc I2m,dc

a1c b1ca2c b2c

v1c i1cv2c i2c

calibrated

V1,dc I1,dcV2,dc I2,dc

⇒LSNA accounts forcable resistances

v1c i1cv2c i2c

v1d i1dv2d i2d

@ f0, 2*f0, …

Reference planes beforeand after de-embedding

Mixdes 2002© 2002, Agilent Technologies

9

De-embedding intermezzo (1/2)

0 0.5 1 1.5 2

- 3

- 2

- 1

0

1

2 beforeafter

de-embedding

Time/period

Gate

curre

nt / m

A

Equivalent circuit of the RF test-structure, including the DUT and layout parasitics

Mixdes 2002© 2002, Agilent Technologies

10

De-embedding intermezzo (2/2)

Detailed view on the layout of the RF MOSFET

for minimum influence of pad parasitics

Mixdes 2002© 2002, Agilent Technologies

11

Use of LSNA measurements for simulation (2/2)

RF de-embedding Simulations

v1c i1cv2c i2c

v1d i1dv2d i2d

v1d i1dv2d i2d

Comparemeasurements:

with simulations:v1s i1sv2s i2s

Rde1 and Rde2 are de-embedding resistances (in dc path)The load impedance ZL at f=n*f0 equals 50 Ω if a2n<-50 dBm

Reference planes beforeand after de-embedding

Mixdes 2002© 2002, Agilent Technologies

12

Input capacitance behaviourVgs,dc=0.9 VVds,dc=0.3 V Vds,dc=1.8 V

Input loci turn clockwise, conform i=C*dv/dt

Mixdes 2002© 2002, Agilent Technologies

13

Dynamic loadline & transfer characteristicVgs,dc=0.3 VVds,dc=0.9 V

Mixdes 2002© 2002, Agilent Technologies

14

Dynamic loadline & transfer characteristicVds,dc=0.9 V Vgs,dc=0.9 V

DC operating point if RFnot present ⇒⇒⇒⇒ self-biasing

Mixdes 2002© 2002, Agilent Technologies

15

Dynamic loadline & transfer characteristicVgs,dc=1.8 V

Cable resistance + Rde2 loss

Vds,dc=0.9 V

Mixdes 2002© 2002, Agilent Technologies

16

Intermezzo (1/2): extrapolation example SiGe HBTModel parameters extracted using DC measurements up to 1 V

100 200 300 400 500 600 700 8000 900

-0.002

-0.001

0.000

0.001

-0.003

0.002

time, psec

i1sts

i1mts_de

100 200 300 400 500 600 700 8000 900

0.6

0.7

0.8

0.9

1.0

1.1

0.5

1.2

time, psec

v1sts

v1mts_de

100 200 300 400 500 600 700 8000 900

1.3

1.4

1.5

1.6

1.2

1.7

time, psec

v2sts

v2mts_de

100 200 300 400 500 600 700 8000 900

0.000

0.002

0.004

0.006

-0.002

0.008

time, psec

i2sts

i2mts_de

SiGe HBT Vbe= 0.9 V; Vce=1.5 V; Pin= - 6 dBm; f0= 2.4 GHz

simul.meas.

Mixdes 2002© 2002, Agilent Technologies

17

Intermezzo (2/2): extrapolation example SiGe HBTMeasured and simulated DC characteristics

Measurement Simulation

SiGe HBT - DC characteristics

0.2 0.4 0.6 0.8 1.0 1.2 1.40.0 1.6

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

-0.015

0.025

VbDC

DCmeas1..Ice

0.2 0.4 0.6 0.8 1.0 1.2 1.40.0 1.6

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

-0.015

0.025

VbDC

i2.i

Alcatel Microelectronics and the Alcatel SELStuttgart Research Center teams are acknowledged

for providing these data.

Mixdes 2002© 2002, Agilent Technologies

18

AM to AM (gain) and AM to PM versus input power

Vds,dc=Vgs,dc=1.2 V

1 dBcompression

Mixdes 2002© 2002, Agilent Technologies

19

Drain current & gate voltage time domain waveforms

Vgs,dc=0.3 V

“Class C” Class AClass AB

Vgs,dc=1.2 VVgs,dc=0.9 VVds,dc=0.9 V

vinvin

vin

Mixdes 2002© 2002, Agilent Technologies

20

Effect of operating regime on dissipated power in the DUT, load, and DC power supply — class AB

Vds,dc=0.9 V, Vgs,dc=0.9 V

RFoutput powerat f=f0

Instantaneouspower dissipatedin DUT

Powerdelivered byDC supply

PAE=37 %

Mixdes 2002© 2002, Agilent Technologies

21

Effect of operating regime on dissipated power in the DUT, load, and DC power supply — “class A”

Vds,dc=0.9 V, Vgs,dc=1.8 V

RF output powerat f=f0

Instantaneouspower dissipatedin DUT

Powerdelivered byDC supply

PAE=11 %

Mixdes 2002© 2002, Agilent Technologies

22

Tuning of model parameters to LSNA measurements

before

after

Mixdes 2002© 2002, Agilent Technologies

23

LSNA measurements in device modellingConclusions:• Unique tool for complete large-signal model accuracy assessment

under realistic RF or microwave signals• information on amplitude and phase

• Reduce number of design cycles and reduce manufacturing costs through better device models, thus more optimal designs

• Optimize model parameters to LSNA measurements• Benchmark various device models, e.g.,

• BSIM, MM11, EKV, …• Gummel-Poon, VBIC, MEXTRAM, HICUM, ...

• Build confidence in your model

Mixdes 2002© 2002, Agilent Technologies

24

Contact

• For info on LSNA technology, visithttp://www.agilent.com/find/lsna

• Soon, a measurement and consulting service related to Large-Signal Network Analyzer Technology will be available through the ‘NMDG’group in Belgium. For info, you need to contact NMDG directly atemail: [email protected], ortel.: +32 - 3 - 890 46 16