Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of...

33
Lagrange’s Equation chp3 1

Transcript of Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of...

Page 1: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Lagrange’s Equation

chp3 1

Page 2: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Lagrange’s Method

• Newton’s method of developing equations of

motion requires taking elements apart

• When forces at interconnections are not of

primary interest, more advantageous to derive

equations of motion by considering energies in

the system

• Lagrange’s equations:

– Indirect approach that can be applied for other types

of systems (other than mechanical)

– Based on calculus of variations – finding extremums

of quantifies expressible as integrals

chp3 2

Page 3: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Lagrange’s Equations

chp3

friction viscous toduen dissipatioenergy :)(

itiesular veloclinear/ang inertias, mass

masses, system of in termsenergy kinetic: )(

scoordinate of in termsenergy potential :)(

coordinateeach in loading ingcorrespond:Q

instantany at motion ssystem' describe

tonecessary scoordinatet independen:

:

2

3

2

2

1

i

i

i

i

i

i

iiii

qfR

qfT

qfU

q

where

Qq

U

q

R

q

T

q

T

dt

d

3

Page 4: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Deriving Equations of Motion via

Lagrange’s Method

1. Select a complete and independent set of

coordinates qi’s

2. Identify loading Qi in each coordinate

3. Derive T, U, R

4. Substitute the results from 1,2, and 3 into

the Lagrange’s equation.

chp3 4

Page 5: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Example 11: Spring-Mass-Damper

System

chp3

Independent coordinate: q = x

Substitute into Lagrange’s equation:

5

Page 6: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Example 12: Pair-Share:

Restrained Plane Pendulum

• A plane pendulum (length

l and mass m), restrained

by a linear spring of

spring constant k and a

linear dashpot of dashpot

constant c, is shown on

the right. The upper end

of the rigid massless link

is supported by a

frictionless joint. Derive

the equation of motion.

chp3 6

Page 7: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Example 12: Pair-Share:

Restrained Plane Pendulum

chp3 7

0

sin

0sin

)(2

1cos

)(2

1

2

1

)(2

1

,0,

222

222

2

22

2

kbmglcaml

smallforLinearize

kbmglcaml

QURT

)T

(dt

d

bkmglmglU

lmmvT

acR

Qq

Page 8: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

chp3

• One degree of freedom, q1=angle as an independent coordinate

• Velocity of bead: ; Velocity of hoop:

• Kinetic energy:

• Potential energy relative to its position at the bottom of

the hoop (when the hoop is not rotating and = 0), is

• R = 0, Q = 0

• Substitute into Lagrange’s equation:

• Solving for the angular acceleration:

Example 13: Bead on a Spinning Wire Hoop

sinR

R

.R

2 cos sin .g

R

8

2

2

1mvT 22

sin2

1 RRm

cosmgRmgRU

0sincossin222

mgRmRmR

QURT

)T

(dt

d

Page 9: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Example 14: Pair-Share: Copying machine

• Use Lagrange’s equation to derive

the equations of motion for the

copying machine example,

assuming potential energy due to

gravity is negligible.

chp3

Q1 = F, Q2 = 0

9

q1=y, q2= θ

y

θ

Page 10: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Example 14: Pair-Share: Copying machinechp3 10

Page 11: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Example 15: Mass Spring Dashpot

Subsystem in Falling Container

• A mass spring dashpot subsystem

in a falling container of mass m1 is

shown. The system is subject to

constraints (not shown) that

confine its motion to the vertical

direction only. The mass m2,

linear spring of undeformed length

l0 and spring constant k, and the

linear dashpot of dashpot constant

c of the internal subsystem are

also shown.

• Derive equation(s) of motion for

the system using

– x1 and x2 as independent coordinates

– y1 and y2 as independent coordinates

chp3 11

Page 12: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Example 15: Mass Spring Dashpot

Subsystem in Falling Container

chp3 12

0)()(

0)()(

:'

)(2

1

)(2

1

2

1

2

1

0

.,

2121221

2

2222

1212111

1

1111

2

21

2211

2

21

2

22

2

11

2,1

212211

gmxxkxxcxm

Qx

U

x

R

x

T)

x

T(

dt

d

gmxxkxxcxm

Qx

U

x

R

x

T)

x

T(

dt

d

EquationsLagrangeintoSubstitute

xxcR

gxmgxmxxkU

xmxmT

Q

groundhorizontaltorespectwithmandmofpositionsbexqxqLet

Page 13: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Example 15: Mass Spring Dashpot

Subsystem in Falling Container

chp3 13

0

0)(

:'

2

1

)(2

1

)(2

1

2

1

0

2222212

2

2222

2122121

1

1111

2

2

21211

2

2

2

212

2

11

2,1

1222

111

gmkyycymym

Qy

U

y

R

y

T)

y

T(

dt

d

gmgmymymm

Qy

U

y

R

y

T)

y

T(

dt

d

EquationsLagrangeintoSubstitute

ycR

yygmygmkyU

yymymT

Q

springoflengthdunstretchefromandmtorelativemofpositionbeyq

groundhorizontaltorespectwithmofpositioninertialbeyqLet

Page 14: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

• Block mass m sliding down a wedge mass M

• Independent coordinates, q1 and q2, are shown, q1 is along the plane and

is measured relative to the (moving) wedge.

• Velocity of the wedge is , but

velocity of the block has components from both

q1 and q2:

• Total kinetic energy is

• The potential energy of the wedge can be taken as zero, and the block is

• Substitute into Lagrange’s equations and differentiate wrt to q1 and q2

chp3

Example 16: A Block Sliding on a Wedge

q2

q1

a

2q

2 1 cos .m

q qM m

a

12

sin.

1 cos

gq

m

M m

a

a

14

2

1

2

12

222sincos aa qqqvvv yxblock

2

1

2

12

2

2 sincos2

1

2

1aa qqqmqMT

α

asin1mgqU

Page 15: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Example 17: Pair-Share:

Mass Pendulum Dynamic System

chp3 15

• A simple plane pendulum of mass m0 and

length l is suspended from a cart of mass m as

sketched in the figure. The motion of the cart

is restrained by a spring of spring constant k

and a dashpot constant c; and the angle of the

pendulum is restrained by a torsional spring of

spring constant k, and a torsional dashpot of

dashpot constant ct. Note that the constitutive

relations for the torsional spring and torsional

dashpot are linear expressions τ=ktθ and τ=ctθ,

respectively, where τ is the torque and θ is the

change in the angle across the element from its

undeformed configuration.

• The torsional spring is undeformed when the pendulum is in its downward-

hanging equilibrium position. Also, m0 is acted upon by a known dynamic

force F0sinωt, which remains horizontal, regardless of the angle θ and the

motion of the cart. The system is constrained to remain in the plane of the

sketch and the cart remains on the bed throughout its motion. Derive the

equation(s) of motion for the system.

.

Page 16: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Example 16: Pair-Share:

Mass Pendulum Dynamic System

chp3

cos)sin(cos sin

sin)sincos()(m

:Equations sLagrange' into Substitute

cos2)(2

1)sin()cos(

2

1

2

1

)cos1(2

1

2

1

2

1

2

1

cos)sin(sin

, :scoordinatetindependenwo

0000

0

2

00

22

0

22

0

2

0

22

22

0201

21

ltFlxmglmkclm

tFlmkxxcxm

lxlxmllxmT

xmT

TTT

glmkkxU

cRandxcR

ltFQandtFQ

qxqT

tt

pendulum

cart

pendulumcart

t

tx

16

Page 17: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Comparison of Newton’s and

Lagrange’s MethodsNewton’s (Direct Approach) Lagrange’s (Indirect Approach)

Accelerations required Velocities required

Generally vectors required Generally scalars required

Free-body Diagrams useful Free-body diagrams not useful

All forces considered Workless forces (constraints) forces

not considered

All forces handled via same

expression

Conservative and non-conservative

forces handled separately

Intermediate forces more readily

available

Intermediate forces less readily

available

chp3 17

Page 18: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Case Study: Feasibility Study of a

Mobile Robot Design

chp3 18

Page 19: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Preliminary Design Model

• Read Handout 1

• Develop a simplified model of the base

and the arm by neglecting the reaction

forces that occur at the pivot

• When do the reaction forces become

significant?

=> at high accelerations and speeds of the

base and the arm

chp3 19

Page 20: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Preliminary Design Modelchp3 20

Page 21: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Preliminary Design Modelchp3 21

Page 22: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Motion Profiles

• Read Handout 2

• Plot the motor force versus time, and

motor torque versus time, and determine

whether the motor is powerful enough

chp3 22

Page 23: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Motion Profileschp3 23

Page 24: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

A More Detailed Model

• The simplified model appears feasible

• Develop a detailed model, including the

reaction forces to see whether they

significantly change the results

chp3 24

Page 25: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

A More Detailed Modelchp3 25

Page 26: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

A More Detailed Modelchp3 26

Page 27: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

A More Detailed Modelchp3 27

Page 28: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Matlab Simulation Example:

Solving Systems of Equations

• From Matlab website: http://www.mathworks.com/support/tech-notes/1500/1510.html#time

chp3 28

Page 29: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Matlab Simulation Example:

Solving Systems of Equations

• From Matlab website: http://www.mathworks.com/support/tech-notes/1500/1510.html#time

• More on ode45 commands: http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ode45.html

chp3 29

Page 30: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Homework 3: chapter 3

• 3.14, 3.21,3.24,3.25,3.31,3.33,3.36

• Case study simulation:

– Simulate the detailed model for 10 seconds with initial

conditions and for three

cases:

1. T = 0, f =0

2. T=370 Nm, f = 0

3. T=0, f = 263 N

– For each case, plot state vector versus time

– Describe the behavior of the system for each case

and discuss the stability of the system

chp3 30

0,10,0,0 0

0

000 xx

Page 31: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Case Study Simulation Model

chp3 31

coscos

sincossincossin

coscos

sincossin

sin;cos);(

sincos)(

sin;cos;

sincos

2

2

2

2

mLmLMmI

mglTmLfmLI

I

mL

I

mglT

ebad

ecag

a

b

a

c

mLmLMmI

mglTmLfmLI

ebad

ecagx

andxforSolve

fmLgmLeMmdwhere

gexd

or

fmLmLxMm

mglTcmLbIa

where

cxba

or

mglTxmLI

p

p

pp

p

p

p

p

Page 32: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

Matlab Simulationchp3 32

);**/()**(*)/(/)4(

);4()3(

);**/()**()2(

);2()1(

)]'4()3()2()1([]'[%

;)4(*)4(*))3(sin(**

));3(cos(**

);(

));3(sin(***

));3(cos(**

;

;0

;0

2^/%;81.9

%;100

%;40

%;8/7

2^%;5.47

%

);1,4(

),(

%

bedacegaabacdy

ydy

bedacegady

ydy

yyyyxxyvectorState

fyyyLmg

yLme

Mmd

ylgmTc

yLmb

Ia

f

T

smg

kgM

kgm

mL

mkgI

parametersDefine

zerosdy

ytsecondodedyfunction

integratedbetofunction

p

p

)]'[,('

)]'/[,('

),(

)224(

)]'[,('

)]'[,('

),(

)223(

)]'[,('

)]'/[,('

),(

)222(

)]'[,('

)]'[,('

),(

)221(

%

);4(:,);3(:,);2(:,);1(:,

);0,,(@45],[

;]'0180/*1000[0

]'[%

%];30[

stxlabel

sradphidotylabel

phidottplot

subplot

stxlabel

mphiylabel

phitplot

subplot

stxlabel

smxdotylabel

xdottplot

subplot

stxlabel

mxylabel

xtplot

subplot

figure

timeagainstvectorstatePlot

yphidotyphiyxdotyx

ytspansecondodeodeyt

piy

xxyvectorState

vectortimesimulationtspan

Page 33: Lagrange’s Equationnhuttho/me584/Chapter 3...Lagrange’s Method •Newton’s method of developing equations of motion requires taking elements apart •When forces at interconnections

References

• Woods, R. L., and Lawrence, K., Modeling and

Simulation of Dynamic Systems, Prentice Hall, 1997.

• Williams, J. H., Fundamentals of Applied Mechanics,

Wiley, 1996

• Close, C. M., Frederick, D. H., Newell, J. C., Modeling

and Analysis of Dynamic Systems, Third Edition, Wiley,

2002

• Lecture notes: web.njit.edu/~gary/430/

• Palm, W. J., Modeling, Analysis, and Control of Dynamic

Systems

chp3 33