Lab 1B LabVIEW Filter Signal - Florida Research...

24
myDAQ: Filter a Signal 1 Lab 1B LabVIEW Filter Signal Due Thursday, September 12, 2013 Submit Responses to Questions (Hardcopy) Equipment: LabVIEW Setup: Open LabVIEW Skills learned: Create a lowpass filter using LabVIEW and modify its parameters Measure characteristics of the filtered signal – amplitude and spectrum Learn the difference between highpass filters, lowpass filters, and bandpass filters Observe different types of filters including Butterworth and Chebyshev Further Study: Highpass filters Bandpass filters Fourier Transforms Fast Fourier Transforms

Transcript of Lab 1B LabVIEW Filter Signal - Florida Research...

Page 1: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

1    

Lab  1B  LabVIEW  Filter  Signal  

Due  Thursday,  September  12,  2013  

Submit  Responses  to  Questions  (Hardcopy)  

Equipment:  LabVIEW  

Setup:  Open  LabVIEW  

Skills  learned:  

• Create  a  low-­‐pass  filter  using  LabVIEW  and  modify  its  parameters  • Measure  characteristics  of  the  filtered  signal  –  amplitude  and  spectrum  • Learn  the  difference  between  high-­‐pass  filters,  low-­‐pass  filters,  and  band-­‐pass  filters  • Observe  different  types  of  filters  including  Butterworth  and  Chebyshev  

Further  Study:  

• High-­‐pass  filters  • Band-­‐pass  filters    • Fourier  Transforms  • Fast  Fourier  Transforms  

 

Page 2: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

2    

 

 

 

 

 

Filter  a  Signal  

What  we  are  doing:  Learning  to  filter  a  signal.    Filters  remove  a  specific  frequency  or  frequency  range  from  a  signal.    We  will  create  a  filter  and  use  it  to  filter  an  artificial  signal.  Then  we  will  observe  the  results.  This  particular  filter  will  be  a  3rd  Order  Low  Pass  Butterworth  Filter.      

Why  we  are  doing  it:  Sometimes  the  signal  we  observe  contains  noise  that  interferes  with  our  ability  to  analyze  it.    High-­‐frequency  noise  may  alias  down  into  frequencies  we  need  to  observe,  low-­‐frequency  noise  may  cause  an  inconsistent  ‘baseline’  for  the  signal,  or  a  specific  extraneous  frequency  may  be  present  (such  as  60  Hz  noise  from  United  States  powerlines).    Filters  can  help  to  condition  the  signal  prior  to  analysis.  

   

Page 3: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

3    

 

http://www.r-­‐bloggers.com/ecg-­‐signal-­‐processing/  

Page 4: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

4    

1.  Open  a  new  blank  VI.    Save  it  as  my_filter.vi  .    

2. Go  to  the  Block  Diagram  window.    From  the  Express  Pallet,  click  Signal  Analysis.  Click  Filter  and  put  it  on  the  block  diagram.      

 

 

 

Page 5: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

5    

3. A  window  will  appear  marked  Configure  Filter  [Filter].    Here  you  can  set  various  parameters  for  the  filter.    We  will  leave  it  with  the  default  values:      -­‐Filtering  Type  Lowpass    -­‐Filter  Specifications  100Hz  Cutoff  Frequency    -­‐IIR  filter,      -­‐Butterworth  Topology,      -­‐Order=3  (3rd  Order  Filter).      Click  OK.    SAVE  YOUR  WORK!!  

 

 

 

Page 6: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

6    

 

 

 

4. Create  an  input  signal.    Here  we  will  create  a  sine  wave  to  input  into  the  filter.    From  the  Express  menu,  select  Simulate  Signal.    Place  on  the  Block  Diagram,  left  of  the  Filter.    

   

 

 

 

Page 7: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

7    

 5. A  window  will  appear,  

labeled  Configure  Simulate  Signal  [Simulate  Signal].    Leave  it  at  the  default  values      -­‐Signal  type  Sine  -­‐Frequency  10.1  Hz  -­‐Amplitude  1  -­‐Samples  per  Second  1000  -­‐Number  of  Samples  100    Click  OK  

 

   

 

 

 

Page 8: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

8    

6. Wire  together  the  Sine  and  the  Signal  (input)  of  the  Filter.  

 SAVE  YOUR  WORK!!  

   

 7. To  the  right  of  ‘Filtered  

Signal’  on  the  Filter,  there  is  a  small  arrow.    Right  click  on  that  arrow,  a  menu  will  appear.    Click  on  Create,  then  click  Graph  Indicator.    A  graph  indicator  will  appear  on  the  block  diagram,  connected  to  ‘Filtered  Signal’.      

   

Page 9: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

9    

 

8. Here  we  can  change  the  label  of  our  new  graph  to  something  more  meaningful.    We  will  also  change  it  from  the  properties  menu,  so  that  the  new  name  appears  the  same  in  both  the  block  diagram,  and  in  the  front  panel.        Right-­‐click  on  the  new  ‘Filtered  Signal’  graph  in  the  block  diagram,  and  click  Properties.    A  Graph  Properties  popup  will  appear.        -­‐In  the  Label  area,  check  “Visible”    -­‐Type  into  the  box  ‘Filtered  Signal’  if  it’s  not  already  there    -­‐If  the  Caption  box  doesn’t  show  ‘Filtered  Signal’,  first  type  that  into  the  box,  THEN  uncheck  “Visible”.    NOTE:  Type  BEFORE  unchecking  Visible,  because  after  unchecking,  the  box  won’t  allow  input.    -­‐Click  OK    Note:  You  can  also  explore  other  options  for   the   graph   by   clicking   different   tabs  inside   the  Graph   Properties   box   “Display  Format”  etc.    SAVE  YOUR  WORK!!    

 

 

Page 10: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

10    

 

 

 

9. At  this  point,  we  will  go  to  the  Front  Panel  and  make  sure  everything’s  working  properly.    Then  we  will  move  on.    Go  to  the  Front  Panel  and  click  the  Run  button.    You  should  see  a  Graph,  with  a  Sine  Wave.    Otherwise,  return  to  previous  steps  and  double-­‐check  your  work.      

 

 10. Now  that  the  filter  is  working,  we  will  

also  make  an  indicator  showing  the  original  input  signal,  for  comparison.        Go  to  the  Block  Diagram  window.    Using  the  same  approach  we  applied  to  create  the  Graph  Indicator  for  the  Filtered  Signal,  right-­‐click  on  the  small  triangle  next  to  Sine  on  the  Simulate  Signal  VI.  Choose  CreateàGraph  Indicator.  A  Graph  will  appear,  drag  it  down  a  little  so  the  wires  are  visible.  

   

Page 11: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

11    

 SAVE  YOUR  WORK!!  

   

11. Go   to   the   Front   Panel.   Move   the   Sine  graph   to   the   left   of   the   Filtered   Signal.    Click   Run.     You   should   see   the   output  shown.      SAVE  YOUR  WORK!!    

 

     

   

Page 12: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

12    

12. Now   we   would   like   to   modify   some   of  the  Filter  parameters.     Let’s  make   some  indicators  on  the  front  panel,  so  that  we  can  access  them  easily.        From  the  Block  Diagram  window,  extend  the  Filter  VI  so  the  inputs  are  visible.    Do  the   same   for   the   Simulate   Signal   VI.    Move  the  Graph  Indicators  if  necessary.        

 

                                     

13. For   the   filter,   create   a   control   that   sets  the   Filter   Cut-­‐off   frequency.     Right-­‐click  on   Lower   Cut-­‐Off,   select  CreateàControl.     Move   the   Control  around  if  necessary.  

14. Create  a  control  for  the  signal  frequency  by   repeating   13   for   ‘Frequency’   in   the  Simulate  Signal  VI.  

   SAVE  YOUR  WORK!!  

     

Page 13: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

13    

15. Go   to   the   Front   Panel   and   move   the  Controls  around  to  convenient  positions.    A  suggested  layout  is  shown.    

   

SAVE  YOUR  WORK!!  

 16. Now  test  the  filter.    

 Switch   to   the   Front   Panel   window.   On  the  Tools  Palette,  switch  to  the  Operate  Value   cursor   (by   clicking   on   the   Arrow  icon).        Change   the   Frequency   to   100,   and   the  Lower  Cut-­‐Off  to  10.    Click  Run.        You  should  see  the  following  output.      

           

 

Page 14: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

14    

 17. Notice  the  Amplitude  on  the  two  graphs  

has  changed.  They  can  be  manually  fixed  to  specific  values,  by  right-­‐clicking  on  the  axis,   and   setting   the   Properties   as  shown.    -­‐unclick  Autoscale  -­‐set  Minimum  to  -­‐1  -­‐set  Maximum  to  1    Click  OK  

     

Page 15: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

15    

Now  the  chart  should  appear  as  shown.        SAVE  YOUR  WORK!!  

                                         

Page 16: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

16    

Spectral  Analysis  of  a  Pure  Tone  (Sine  Wave)    So  far,  we’ve  created  a  low-­‐pass  filter,  and  placed  graphs  so  we  can  see  the  original  signal  (the  Sine  wave)  and  the  signal  after  it  is  passed  through  the  filter  (Filtered  Signal).    Since  a  Filter  is  used  to  limit  the  frequency  content  of  a  signal,  it  might  be  helpful  to  also  provide  a  graph  showing  the  frequency  content  of  the  signal.    A  graph  that  shows  the  frequencies  in  a  signal  is  called  a  Spectrogram,  and  is  often  created  using  a  computation  called  a  Fast  Fourier  Transform  (FFT).    Look  it  up!      

 18.  Create   a   spectrogram   for   the   output  

signal  using  the  following  process:    Go   to   the   Express   palette   and   choose  Signal  Analysisà  Spectral  .    

 19. Place   the   VI   on   the   Block   Diagram,   and  

the  following  window  will  appear.    Leave  the   values   at   their   default   settings,   and  click  OK.      

 

Page 17: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

17    

20. Connect   the   Spectral   Measurements   VI  to  the  Filter  output.    -­‐Wire   the   Signals   input   to   the   Filtered  Signal  output  of  the  Filter  -­‐Right-­‐click   on   FFT-­‐RMS   and  CreateàGraph  Indicator.    SAVE  YOUR  WORK!!  

 21. Go  to  the  Front  Panel  and  move  the  new  

Graph   around   as   shown.     Change   the  title   of   the   new   graph   to   Filtered   Signal  Spectrum.    Save  and  click  Run  to  test.    Note   the   peak   at   frequency   =   100.   The  input   frequency   is   100,   so   this   is  expected.        Note  that  the  Frequency  is  not  a  spike  at  100  Hz.     There   is   a   small   but   significant  signal   spectrum   around   it,   around   80-­‐120  Hz.     This   is  due   to   the   type  of   filter  used,   and   the   shape   of   the   window.    What  would  we  expect  the  signal  to  look  like?     Let’s  make   a   spectrogram   for   the  input  signal  for  comparison.  

   

Page 18: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

18    

22. Create  a  new  spectrogram,  but  this  time,  connect   it   directly   to   the   simulated  signal.    The  Block  Diagram  should  appear  as  shown.    Remember  to  change  the  title  of   the   new   Waveform   graph   to   Input  Signal   Spectrum   by   right-­‐clicking   and  selecting  Properties.    Save  your  work.  

   

23. Adjust   the   Front   Panel   as   shown.     Save  and  run  the  VI.        

 

Page 19: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

19    

Congratulations!  You  have  built  a  low-­‐pass  filter!    This  filter  can  also  be  converted  to  a  high-­‐pass,  or  a  band-­‐pass  filter,  by  right-­‐clicking  on  the  Filter  VI  and  changing  the  parameters.      

 

Testing  the  Filter  

Now  that  you  have  a  Low-­‐Pass  Filter,  let’s  see  how  it  works!  

The  purpose  of  the  following  section  is  to  examine  the  performance  of  the  filter,  and  find  the  “3  dB”  point.    The  3dB  point  is  an  important  characteristic  of  a  filter  –  it  is  the  frequency  where  the  output  power  is  half  of  the  input  power.    For  convenience  it’s  often  referred  to  as  the  3dB  point,  because  on  the  decibel  scale,  this  half-­‐power  point  corresponds  to  -­‐3dB.  

#  of  dB  =  M  dB  =  20  log(Vout/Vin)  with  Vout<Vin  thus  Vout  =  (Vin)  *  10  (  -­‐M  /  20  )  

 Therefore,  for  an  input  signal  of  1.00  Vpp,  the  3  dB  voltage  would  be  (1.00  V)*(10^(-­‐3/20)  =  0.707  Vpp.    This  corresponds  to  +0.354V  peak  on  the  graph,  assuming  the  signal  is  centered  on  0  Volts  and  there  is  no  DC  offset  voltage  shifting  it  up  or  down.)  Different  types  of  filters  have  varying  trade-­‐offs  in  the  rate  of  cut-­‐off,  design  complexity,  implementation  cost,  etc.    Note…  in  LabVIEW  we  can  directly  plot  the  dB  output  of  the  signal!    HOWEVER…  we  are  going  to  measure  and  calculate  it  the  old-­‐fashioned  way,  so  that  we  learn  how  to  do  it.    This  will  help  us  to  understand  how  it  works,  so  we  can  develop  an  intuition  for  filter  design.    This  intuition  is  valuable  because  it  helps  us  to  notice  if  our  design  produces  unexpected  results,  so  we  can  adjust  it.    It  is  good  to  do  a  ‘sanity  check’  on  the  output  of  your  designs  and    your  equations.          

 

 

Page 20: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

20    

 

QUESTION  1.  What  do  you  see?    Anything  expected?  Anything  unexpected?    

 

 Hint:  This  is  partly  due  to  the  type  of  filter  applied,  and  the  order  of  the  filter.    Although  the  output  filtered  signal  appears  to  be  less  optimal  than  the  input,  when  we  begin  to  combine  input  signals,  and  observe  noisy  signals,  we  will  understand  why  we’d  want  to  apply  a  filter.            

QUESTION  2:  What  is  the  3  dB  Frequency  of  3rd  Order  Low-­‐Pass  Butterworth  Filter  with  a  cut-­‐off  frequency  of  1kHz?  

Hint:  take  the  VI  you  just  built,  and  set  the  Lower  Cut-­‐off  to  1  kHz.    Then  using  the  table  below,  type  the  Frequency  Measurements  into  the  Frequency  box,  and  read  the  measurements  from  the  Sine  and  Filtered  Signal  Amplitudes  (NOT  the  spectrographs!)  Also,  consider  the  sampling  theorem  and  set  the  number  of  samples  per  second  (fs)  in  the  signal  source  such  that  the  signals  are  properly  sampled  and  the  cut-­‐off  frequency  at  the  filter  is  at  least  less  than  fs/2.  You  should  check  what  the  signal  looks  like  at  the  highest  frequency  in  the  time  domain  plot  by  observing  1-­‐2  periods  of  the  signal  (change  the  x-­‐axis  ,  that  is  time,  scale).      2.1  Fill  in  the  following  table.    

Input  Frequency   Input  Amplitude   Output  (Filtered)  Amplitude  1.5  kHz      1.0  kHz      500  Hz      100  Hz      50  Hz      

Page 21: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

21    

10  Hz        

2.2  The  observed  3  dB  cut-­‐off  frequency  is:  ____________________________________________  

2.3  The  Calculated  3  dB  cut-­‐off  frequency  is:  ____________________________________________  

2.4  What  is  the  difference?  Possible  causes  for  this  difference:  ____________________________________________  

2.5  Repeat  for  a  frequency  of  your  choosing.  

Choose  your  own  frequency,  and  repeat  the  process.  

Input  Frequency   Input  Amplitude   Output  (Filtered)  Amplitude                                      

 

2.6  The  observed  3  dB  cut-­‐off  frequency  is:  ____________________________________________  

2.7  The  Calculated  3  dB  cut-­‐off  frequency  is:  ____________________________________________  

2.8  What  is  the  difference?  Possible  causes  for  this  difference:  ____________________________________________  

QUESTION  3:  What  is  the  3  dB  Frequency  of  3rd  Order  Low-­‐Pass  Chebyshev  Filter  with  a  cut-­‐off  frequency  of  1kHz?  

Hint:  take  the  VI  you  just  built,  and  set  the  Lower  Cut-­‐off  to  1  kHz.    Then  type  the  Frequency  Measurements  into  the  Frequency  box,  and  read  the  measurements  from  the  Sine  and  Filtered  Signal  Amplitudes  (NOT  the  spectrographs!)    

Page 22: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

22    

In  the  BLOCK  DIAGRAM,  RIGHT-­‐CLICK  ON  FILTER,  AND  CLICK  PROPERTIES.    CHANGE  THE  TOPOLOGY  TO  CHEBYSHEV.    RE-­‐SAVE  YOUR  VI  AS  ‘my_filter_chebyshev.vi’.        3.1  Fill  in  the  following  table.  

Input  Frequency   Input  Amplitude   Output  (Filtered)  Amplitude  1.5  kHz      1.0  kHz      500  Hz      100  Hz      50  Hz      10  Hz      

 

3.2  The  observed  3  dB  cut-­‐off  frequency  is:  ____________________________________________  

3.3  The  Calculated  3  dB  cut-­‐off  frequency  is:  ____________________________________________  

3.4  What  is  the  difference?  Possible  causes  for  this  difference:  ____________________________________________  

Spectral  Analysis  after  filtering    a  Broad  Spectrum  Signal    In  the  last  example,  we  passed  a  pure  tone  (Sine  wave)  through  a  filter.    A  sine  wave,  in  theory,  only  contains  one  frequency.  Filters  can  attenuate  pure  tones,  but  they  are  even  more  useful  for  broad  spectrum  signals  (which  have  multiple  frequencies.    We  will  now  observe  the  filter’s  effects  on  a  signal  that  contains  many  frequencies  –  a  Square  wave.    In  theory,  a  square  wave  contains  infinite  frequencies.    We  will  observe  the  change  in  the  signal  when  we  remove  some  of  those  frequencies.  

 

Page 23: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

23    

24. In   the   Block   Diagram,   right-­‐click   on   the  Simulate  Signal  VI  and  select  Properties.  

 25. The   Configure   Stimulate   Signal   window  

will   appear.     Change   the   signal   type   to  Square.        SAVE   YOUR   WORK   AS  my_filter_square.vi  !!  

     

Page 24: Lab 1B LabVIEW Filter Signal - Florida Research Instrumentsfloridaresearchinstruments.com/.../04/Lab-1B-LabVIEW-Filter-Signal.pdf · myDAQ:’Filter’aSignal’ 1’ ’ Lab$1B$LabVIEW$FilterSignal$

myDAQ:  Filter  a  Signal  

24    

26. Open  the  Front  Panel  and  run  the  filter.      

   

QUESTION  5.  What  do  you  see?    Anything  expected?  Anything  unexpected?    

 

 Hint:  Observe  the  multimodal  input  signal,  and  the  changes  in  the  different  components  in  the  output  signal.