Kyungsoo LEE, Hideki TAKASE and Tohru ISHIHARA1.2V 1.2V PLL 100MHz CPU GBI core DMAC Level Shifter...

1
Results: 20~70% Reduction of power loss Charger DC-DC DC-DC Load Load Energy harvesting DC-DC Energy Harvesting Board Application Board 2. Simple control with MPPT - Power pass configuration - Amount of charge/discharge control 1. The voltage of energy source - Dynamic array configuration - Solar cell and supercapacitor array 3. I/O aware task scheduling A Holistic Approach to Power Management for Energy Harvesting Embedded Systems Kyungsoo LEE, Hideki TAKASE and Tohru ISHIHARA Multiple-Performance Processor Dynamic Voltage and Frequency Scaling Dynamic Reconfigurable Cache Structure Grant: Japan Cabinet Funding Program for Next Generation World-Leading Researchers Target: Embedded computer system Goal: Battery-less operation of the system Approach: improving the efficiency of energy generation, transfer and consumption, MPP (multi-performance processor) Project Overview Research Topics Onodera-Laboratory OS-based Energy Management PV VI curve Efficiency of DC-DC converter Output voltage (V) Output current (mA) IV curve PV curve Output power (mW) 400 0 100 200 300 500 80 0 20 40 60 100 MPP (5.08V, 81.8mA) Power loss (mW) Voltage dierence (V in - V out ) Efficiency (%) 100 75 50 25 0 100 75 50 25 0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 Power loss at 10 mA output Power loss at 100 mA output Efficiency at 10 mA output Efficiency at 100 mA output Energy Harvesting System High efficiency by concerning the transferring efficiency Reduce voltage difference by the array reconfiguration I/O aware task scheduling GBI DMAC Global Bus 8KB 4KB D-SPM I-SPM I-cache 4-way 50MHz Tag 2KB 2KB 2KB 2KB 4KB 200MHz CPU core 8KB 0.7V (based on AHB) 1.2V 1.2V PLL 100MHz CPU core GBI DMAC Level Shifter 1.2V Low-power CPU : 1.65μs High-speed CPU : 1.48μs 0 6.25 12.50 18.75 25.00 1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1301 1401 0.7V core(mW) 1.2V core (mW) 3.3V IO(mW) Nonmanage Static Dynamic Policy 0.7V CPU 1.2V CPU 3.3V I/O Total (mW) Nonmanage 0.38 11.80 8.26 20.45 Static 0.58 9.50 5.80 15.88 Dynamic 0.73 7.47 2.66 10.87 31.6% 23.3% Processor Operation DVFS time Transmeta Crusoe 1.1V – 1.65V 300μs AMD Mobile K6 0.9V – 2.0V 200μs Intel PXA250 0.85V – 1.3V 500μs TI TMS320C55x 1.1V – 1.6V 3.2ms (1.6V 1.1V) 300μs (1.1V 1.6V) UCB [1] 1.2V – 3.8V 520μs *from Shin, D. and Kim, J., IEEE Trans. on CAD, 2005. [1] Burd, T. and Brodersen, R. W., ISLPED, 2000. Proposed MPP architecture Configurat tion Power (m mW) Core Cache Low voltage High voltage 3.3V I/O Total 1.2V, 200MHz 4-way 1.68 34 5.89 41.96 1.2V, 200MHz 1-way 1.65 16.2 6.11 23.93 0.7V, 100MHz 4-way 2.65 18 5.88 26.4 0.7V, 100MHz 1-way 2.51 10.0 6.12 18.65 0.48V, 6MHz 1-way 0.04 0.18 0.66 0.88

Transcript of Kyungsoo LEE, Hideki TAKASE and Tohru ISHIHARA1.2V 1.2V PLL 100MHz CPU GBI core DMAC Level Shifter...

Page 1: Kyungsoo LEE, Hideki TAKASE and Tohru ISHIHARA1.2V 1.2V PLL 100MHz CPU GBI core DMAC Level Shifter 1.2V Low-power CPU : 1.65µs High-speed CPU : 1.48µs 0 6.25 12.50 18.75 25.00 1

Results: 20~70% Reduction of power loss

Charger DC-DC

DC-DC

… Load

Load

Energy harvesting

DC-DC

Energy HarvestingBoard

Application Board

2. Simple control with MPPT - Power pass configuration - Amount of charge/discharge control

1. The voltage of energy source - Dynamic array configuration - Solar cell and supercapacitor array

3. I/O aware task scheduling

A Holistic Approach to Power Managementfor Energy Harvesting Embedded Systems

Kyungsoo LEE, Hideki TAKASE and Tohru ISHIHARA

Multiple-Performance Processor• Dynamic Voltage and Frequency Scaling• Dynamic Reconfigurable Cache Structure

Grant: Japan Cabinet Funding Program for Next Generation World-Leading Researchers

Target: Embedded computer systemGoal: Battery-less operation of the system

Approach: improving the efficiency of energy generation, transfer and consumption, MPP (multi-performance processor)

Project Overview

Research Topics

Onodera-Laboratory

OS-based Energy Management

PV VI curve Efficiency of DC-DC converter

0 2 4 6 8Output voltage (V)

Out

put c

urre

nt (m

A)

IV curve

PV curve

Out

put p

ower

(mW

)400

0

100

200

300

500

80

0

20

40

60

100 MPP (5.08V, 81.8mA)

Pow

er lo

ss (m

W)

Voltage di↵erence (Vin

� Vout

)

Effic

ienc

y (%

)

100

75

50

25

0

100

75

50

25

00

25

50

75

100

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5

Power loss at 10 mA outputPower loss at 100 mA outputEfficiency at 10 mA outputEfficiency at 100 mA output

Energy Harvesting System• High efficiency by concerning the transferring efficiency Reduce voltage difference by the array reconfiguration I/O aware task scheduling

GBIDMAC

Glob

al B

us

8KB

4KB

D-SPM

I-SPM

I-cache4-way

50MHz

Tag2KB2KB2KB2KB

4KB

200MHzCPUcore

8KB

0.7V

(bas

ed o

n AH

B) 1.2V

1.2V

PLL

100MHzCPUcoreGBI

DMAC

Level Shifter

1.2V Low-power CPU : 1.65µs High-speed CPU : 1.48µs

0

6.25

12.50

18.75

25.00

1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1301 1401

0.7V core(mW)1.2V core (mW)3.3V IO(mW)

Nonmanage Static Dynamic

Policy 0.7V CPU 1.2V CPU 3.3V I/O Total (mW)

Nonmanage 0.38 11.80 8.26 20.45

Static 0.58 9.50 5.80 15.88

Dynamic 0.73 7.47 2.66 10.87 31.6%

23.3%

Processor Operation DVFS timeTransmeta Crusoe 1.1V – 1.65V 300μs

AMD Mobile K6 0.9V – 2.0V 200μs

Intel PXA250 0.85V – 1.3V 500μs

TI TMS320C55x 1.1V – 1.6V 3.2ms (1.6V → 1.1V)300μs (1.1V → 1.6V)

UCB[1] 1.2V – 3.8V 520μs

*from Shin, D. and Kim, J., IEEE Trans. on CAD, 2005.[1] Burd, T. and Brodersen, R. W., ISLPED, 2000.

• Proposed MPP architecture

ConfigurationConfiguration Power (mW)Power (mW)Power (mW)Power (mW)Core Cache Low voltage High voltage 3.3V I/O Total

1.2V, 200MHz 4-way 1.68 34 5.89 41.961.2V, 200MHz 1-way 1.65 16.2 6.11 23.930.7V, 100MHz 4-way 2.65 18 5.88 26.40.7V, 100MHz 1-way 2.51 10.0 6.12 18.650.48V, 6MHz 1-way 0.04 0.18 0.66 0.88

ishihara
タイプライターテキスト
ishihara
タイプライターテキスト
ishihara
タイプライターテキスト
ishihara
タイプライターテキスト
ishihara
タイプライターテキスト
Layout Image