Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the...

33
Kostka, Polini, Wallny DIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini , R. Wallny DIS 2009 Madrid April 25-30 2009

description

Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 3 Kostka, Polini, Wallny LHeC Kinematics 20 ◦ 170 ◦ 179 ◦ 170 ◦ 10 ◦ 1◦1◦ 90 ◦ High x and high Q 2 : few TeV HFS scattered forward:  Need forward calorimeter of few TeV energy range down to 10 o and below █. Mandatory for charged currents. Strong variations of cross section at high x demand hadronic energy calibration as good as 1% Scattered electron:  need very bwd angle acceptance for accessing low x and Q 2 █.

Transcript of Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the...

Page 1: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th 1

Proposal and Ideas for Detector Design at the LHeC

P. Kostka, A. Polini, R. Wallny

DIS 2009 Madrid April 25-30 2009

Page 2: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th 2

• Physics Requirements and Running Scenarios• Machine and Infrastructure Boundaries, Interaction

Region• Detector Options: Magnets, Beam Pipe, Tracker,

Calorimeter …• Monte Carlo Tools - framework to be chosen

Outline

Page 3: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th

3

Kostka, Polini, Wallny

LHeC Kinematics

20◦

170◦

179◦ 179◦ 17

0◦

10◦

1◦

90◦

• High x and high Q2: few TeV HFS scattered forward: Need forward calorimeter of few TeV energy range down to 10o and below █. Mandatory for charged currents. Strong variations of cross section at high x demand hadronic energy calibration as good as 1%

• Scattered electron: need very bwd angle acceptance for accessing low x and Q2 █.

Page 4: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th

Physics Requirements• Hadronic energy calibration known to be better than 1% (even at

very large Eh)• Electromagnetic energy calibration down to 0.2%• Acceptance in particular at small (forward and backward) angles – resolving 0.1mrad

• Identify by – detector setup / particle/data flow algorithms: – particle ID / flavour ID / jet characteristics• Leptons• High-mass resonances• Heavy quarks

• Excellent track definition• Measure (isolated) photon energy• Separate charged/neutral hadron showers• Electron, muon, tau • b tagging – even in dense jet environment ….. etc.

Page 5: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th 5

Infrastructure ALICE• Round access shaft of 23m diameter • Aperture of 15m x 15m which is consistent with a diameter of 23m

Page 6: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th 6

• Shaft: 100m depth, 10.10m diameter, very slightly non vertical• Experiment: length 19.90m from IP, max width at the muon station 12m• Cavern: 50m x 20m

Infrastructure LHCb

Page 7: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th 7

•Given the time constraints - CMS-type logistics to be considered? •Assembling in surface level hall (building(s)

sufficient?)• ~5 years before real installation in or near to the beam line - start of assembling•2-3 years for installation, tests

Implication:Modular Experiment Set Up

Page 8: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th

**

l l

β0

*

2*)(

ls

222221

02

**2

1

yeypxexpb

IInfe

L

100

10

IP

Beam Optics and Detector Acceptance

Two detector options• Low Lumi, Low x high acceptance detector 10

•High Lumi,High Q2 Main detector 100 aperture

Page 9: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th 9

Beam Pipe Considerations

d = 6.0 d = 5.0 d = 4.0d = 3.0d = 2.0

Trac

k An

gle

[°]

z-Distance to Vertex [cm]

Distance Detector-Beam-Line d [cm]

Pipe dimensions – very essential choice: to large extent it determines thesize of the detector.Strong implicationsin terms of costsand acceptance

• Conservative elliptical Be beam pipe radii for now: ry=3.4cm and rx=5.4cm• Dimensions should be minimized Dedicate simulation of Interaction region needed

Page 10: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th

The detector …

Page 11: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th

The detector …

…a very first draft

Page 12: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th 12

1⁰ and 179⁰ 2⁰ and 178⁰ 3⁰ and 177⁰ 4⁰ and 176⁰ 5⁰ and 175⁰ 10⁰ and 170⁰

250217 250 250 217

17740 40

177

289

112

402060

[cm]

HaC-BarrelModules

EmC-BarrelEmC-Barrel-Ext

EmC-insert-1/2

EmC-Endcap

HaC-insert-1/2

Bwd TrackingFwd Tracking

Central Tracking

L1 - Low Q2 Setup

EmC-Barrel-Ext

EmC-insert-1/2

EmC-Endcap

(to be optimised)

- Solenoid surrounding the HAC modules- Outer detectors (HAC tailcatcher/muon detectors not shown) Not discussed either: very forward detector setup – very essential – but postponed

Page 13: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th 13

1⁰ and 179⁰ 2⁰ and 178⁰ 3⁰ and 177⁰ 4⁰ and 176⁰ 5⁰ and 175⁰ 10⁰ and 170⁰

250217 250 250 217

17740 40

177

[cm]

289

112

4020

L1 - High Q2 Setup

HaC-BarrelModules

EmC-Barrel

Central TrackingHaC-insert-2

EmC-insert-2

L1 Low Q2 SetUp High Q2 SetUp- Fwd/Bwd Tracking & EmC-Extensions, HaC-Insert-1 removed -Calo-Inserts in position-Strong Focussing Magnet installed

Strong FocussingMagnet

(to be optimised)

Page 14: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th

Angles for inner cone radius 8.5cm (6cm) 4.1 (2.9)˚

4.6 (3.2)˚5.2 (3.6)˚

5.9 (4.2)˚

9.2˚11.0˚

13.5˚17.5˚

24.8˚

0.9˚1.2˚

1.4˚1.9˚

2.9˚9.1˚16.7˚32.2˚41.2˚

46.2˚50.2˚

Track Angleslayer 5

layer 4layer 3

layer 2layer 1

B-layer

Container ModelOne option: GAS-Si Tracker - GOSSIP Type NIKHEF

Gas On Slimmed Silicon Pixels (or Strixels/Pads)

Tracking(to be optimised)

Forward and backward (red) disks to be removedFor the High Lumi-High Q2 running.

Alternative technologies: Pixels, lMAPS, DEPFET etc.*) see Divonne 2008 workshop

Page 15: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28thKostka, Polini, Wallny LHeC Convenor Meeting, 15-16th December 2008

NIKHEF

∅60mm Beampipeinner layer for ATLAS!7 double strings

NIKHEF

Gossip detector unitGossip readout

CO2 cooling channels

P-string conductor(+voltage)

G-string conductor(+voltage)

InGrid

Drift gap: 1 mmMax drift time: 16 ns

Avalanche over 50 μmGain ~ 1000

Cathode foil

HV

CMOS chip‘slimmed’ to 30 μm

GAS-Si Tracker - GOSSIP Type*

Page 16: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th

SolenoidModular structure: assembly on surface level or in the experimental areadepending on time constraints and access shaft opening

Solenoid dimensions:

• 480~594 cm half length

• 291 cm inner radius

• B field > 2 TGeometry constraints:

• Current beam pipe dimensions

• Requirement of 10 tracking coverage

• Homogeneous B field in the tracking area

Page 17: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th 17

Solenoid continued• Two Coil Solution (4th concept - ILC)• 4th almost exactly the dimensions for L1 (current design)no-iron magnetic field configuration with flux return by a second

solenoid allowing better muon measurement, open-detector survey and alignment, quick push-pull and (re)installations

Page 18: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th 18

Magnets - Essentials• Conservative Solenoid with B field > 2 T• Attractive design with a 2 solenoid solution,

tracking: +5T and -1.5T in the muon area if 4th concept design followed.

Decide after detailed machine/physics studies and cost considerations

• Option for a dipole field added to solenoidal field (ep beam separation has to be evaluated *) *) Solenoid with Dipole integrated - Brett Parker und Uwe Schneekloth discussed that for eRHIC already.

• The High Lumi detector setup requires strong focussing magnet at ~120 cm from IP. Severe acceptance limitations. Dimensions of strong focussing magnets ( = 30cm now)∅

Instrumentation of focussing magnets - tracking/calorimeter device *) T.Greenshaw, Divonne LHeC workshop 2008

Page 19: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th 19

Calorimeter• Collecting information from ongoing developments:• Energy Flow Calorimetry*:• Acceptance - Calorimeter - LowQ2

• EmC-insert-1 θ ( 1.1° - 178.9° ), ɳ ( ±4.7 ) • HaC-insert-1 θ ( 0.9° - 179.1° ), ɳ ( ±4.8 )• EmC-insert-2 θ ( 3.2° - 176.8° ), ɳ ( ±3.6 )• HaC-insert-2 θ ( 2.8° - 177.2°), ɳ ( ±3.7 )

• Acceptance - Calorimeter - HighQ2

• EmC-insert-2 θ ( 9.4° - 171.6 °), ɳ ( ±2.5 ) • HaC-insert-2 θ ( 7.2° - 172.8 °), ɳ ( ±2.8 )

• For the geometry given (conservative):• Electromagnetic Calorimeter 20 x X0 Pb/W & different det./R/O• Hadronic Calorimeter 6 - 9.2 x λI Fe/Cu & different det./R/O

• Asymmetry fwd/bwd calorimetry more in functionality/responds rather then in geometry

• LAR is a working backup although problematic for infrastructure and modularity boundaries

• Other very interesting developments exists (DREAM Dual Readout Calorimeter module, “4th concept”). PID and energy measurement.

• see talk of F.Simon: CALICE - Calorimeters for the ILC, LHeC workshop, Divonne Sept. 2008

(to be optimised)

Page 20: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th 20

Detector Simulation• What you have seen so far is a detector drawing• Precise detector simulations are needed: (see: http://confluence.slac.stanford.edu/display/ilc/ILC+Detector+Simulation+FAQ)

• optimize full detector designs for physics performance on mission critical processes

• optimize the designs of subsystems and subdetectors• compare proposed detector technologies with each other (in

concert with test beam)• calorimeter concepts - DREAM (4th concept ILC Calorimeter)

RPC, GEM, scintillator, Silicon, lead tungstate, hybrid (see also F.Simon *)

• tracking devices e.g. - Si, diamonds (see talks M.Moll & N.Wermes *), - Si-Gas (talk by E.Koffeman *), - Driftchamber with novel readout

systems e.g. TPC + SiGas-Det. *) Divonne LHeC Workshop 2008

•The hardware selection aspect makes use of world wide efforts for the preparation of ILC and sLHC experiments

•The hope is that the developers involved there will share there knowledge/ experience with us and new centre's are attracted to help developing the most advanced detector technologies - synergy wanted

Page 21: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th 21

• Establish a framework which will ease work and information exchange.• Several tools on the market. Use a homogeneous, powerful and and widespread• One framework has come to our attention

• 4th concept - IlCRoot - ILC evolved from: AliRoot - Alice - LHC

Based on CERN software root with so-called Virtual Monte Carlo interface. • allows the use root using Geant3/4 and Fluka• (e.g.: Pandora-Pythia, Whizard, Sherpa, CompHEP, GuineaPig to generate events)

Done so far:• Set up of ILCRoot with: ROOT + VMC started on a few systems• Good connection to “4th concept” collaboration C.Gatto and ILCRoot

developer V. di Benedetto• Several simulations, detector geometries etc. already exists

Input from physics group needed/wanted

Simulation Framework

Page 22: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th

SummaryStatus• A very first design of a detector for LHeC presented• Modular structure detector• 2 configurations Low Q2 and high Lumi-high Q2

• Fwd/bwd plug modules: precision tracking or strong focussing magnets. • Time constraints allows to follow developments from SLHC/ILC:• Promising detector technologies available

Next Steps• Description of the interaction region magnets, beampipe• Detector description and simulations of detector details (+ very forward)• This requires choosing an appropriate framework for simulation - essential

decision. ILCRoot might be a good candidate.

• Collaboration to existing projects is mandatory as resources and• manpower are low. • Interested people are very welcome. Design still very preliminary and open to

new ideas.• Looking forward to fruitful collaboration and attractive developments• aiming at Conceptual Design Report in 2010

Page 23: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th

backup

Page 24: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28thFrank Simon: CALICE - Calorimeters for the ILC 02.09.2008Kostka, Polini, Wallny LHeC Convenor Meeting, 15-16th December 2008

CALICE: Technology• All calorimeters designed for Particle Flow

•high granularity: unprecedented longitudinal and transverse segmentation

• Compact devices to accommodate large channel count•integrated electronics on detector

where possible:•ASICs mounted on active material•photon sensors directly on

scintillator tiles

• Investigation of different technologies:•silicon vs scintillators•scintillators vs gaseous detectors•analog vs digital

24

CALICE Hardware: Outlook• Proof of Concept of highly granular

calorimeters with present setup• Comparison of technologies:

• Si-W vs Scint-W ECAL• Analog vs Digital HCAL

• Next steps:• Development of next-generation prototypes

within the EUDET framework:• realistic ECAL and HCAL modules

Page 25: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28thKostka, Polini, Wallny LHeC Convenor Meeting, 15-16th December 2008

Detector Track Resolution i.e. assuming / using (Glückstern relation): with

N track points on L; length of track perpendicular to field B, accuracy σ(x) B = 2 T

Nmin= 56 track points (2 x 5 (min. hits per layer) x 5 + 2 x 3 B-layer hits ) s-gas modul ~100 inclined

more track points for inclined tracks - extended track segments ΔpT/pT2 = 0.05%

Calorimetry•A dense EmCAL with high granularity (small transverse size cells),

high segmentation (many thin absorber layers), and with ratio λI/X0 large, is optimal for E-Flow measurement -> 3-D shower reconstruction

•Example Fe, W

•brass (Cu) an option also ( CMS ), λI =15.1cm - denser than Fe (adding λI)

Some Details

Page 26: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th

Instrumented MagnetsTim Greenshaw

Page 27: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th

Instrumented Magnets (cont’d)

Tim Greenshaw

Page 28: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th

The gaseous pixel detector GOSSIP for the Atlas SLHC

B-layer

Victor Blanco Carballo,Yevgen Bilevych, Martin Fransen, Harry van der Graaf, Fred Hartjes, Wilco Koppert, Michael Rogers, Sander Smits,

Rob VeenhofAtlas Upgrade Week

CERN, February 23, 2009

Proposal

Page 29: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28thKostka, Polini, Wallny LHeC Convenor Meeting, 15-16th December 2008

Tracking sensor material: gas versus Si- Gas in a tracking detector

• Amplification of primary electrons in gas– No bias current– Low capacitance (10 fF) per pixel

• No radiation damage of sensor– Operation at room (or any other) temperature

• Low sensitivity for neutron and X-ray background

• δ-rays can be recognized• High ion & electron mobility: fast

signals, high count rates are possible

This may result in a design with:

1. Less power consumption2. Less cooling3. Reduced complexity

(wafer processing instead of bumping)

4. Less material

Els Koffeman - LHeC- 2008

Page 30: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th

Functioning Gossip• Electron from traversing particle drifts towards grid and is focused into

one of the holes• Thereafter a gas avalanche is induced ending at the anode pad of the pixel chip

Page 31: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th

Silicon Pixel Detector (cont’d)

Page 32: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28thKostka, Polini, Wallny 3rd September 2008

Trigger• The b-tagging in dense jet environment is a very demanding task

•on higher level trigger or on level 1?• level 1 - implications for R/O electronic, data transfer, decision

logic near to the tracker hardware• Trigger and Displaced Vertexing the CDF Silicon Vertex Tracker -

see talk by Alessandro Cerri (CERN)•SVT: hardware for high resolution tracking at early trigger

stagesUse cases: Need for fast pattern recognition on large amounts of data (of different detectors):Fine detector segmentationHigh-occupancy

Heavy flavor physics (b, c)New physics coupled to 3rd family (e.g. H->bb, ττ etc.)

•How to measure tracks in ~20 μs/event, when software takes typically ~1s (Associative Memory - predefined roads - BINGO)

Page 33: Kostka, Polini, WallnyDIS 2009, Madrid, April 28th 1 Proposal and Ideas for Detector Design at the LHeC P. Kostka, A. Polini, R. Wallny DIS 2009 Madrid.

Kostka, Polini, Wallny DIS 2009, Madrid, April 28th

Displaced VertexingAlessandro Cerri