Kelly Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

41
Program Name or Ancillary Text eere.energy.gov Industrial Assessment Center One-Day Assessment Kelly Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A. U.S.-Brazil Industrial Energy Efficiency Workshop Rio de Janeiro, Brazil August 8-11, 2011

description

Kelly Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A. I ndustrial Assessment Center One-Day Assessment. U.S.-Brazil Industrial Energy Efficiency Workshop Rio de Janeiro , Brazil August 8-11, 2011. Industrial Assessment Center Program . - PowerPoint PPT Presentation

Transcript of Kelly Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

Page 1: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

Program Name or Ancillary Text eere.energy.gov

Industrial Assessment Center One-Day Assessment

Kelly KissockDirector: University of DaytonIndustrial Assessment CenterDayton, Ohio U.S.A.

U.S.-Brazil Industrial Energy Efficiency WorkshopRio de Janeiro, Brazil August 8-11, 2011

Page 2: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

2 | Industrial Energy Efficiency eere.energy.gov

• Sponsored by U.S. Department of Energy– Program began during

1970s “energy crisis”– 26 centers at universities

throughout the U.S.– 25 no-cost assessments per

year for mid-sized industries• Goals:

– Help industry be more resource-efficient and competitive

– Train new engineers in industrial best-practices

– Improve practice and science of energy efficiency

Industrial Assessment Center Program

Page 3: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

3 | Industrial Energy Efficiency eere.energy.gov

Eligibility for IAC Assessment

• Manufacturing facility SIC: 20 to 39

• Annual energy costs: $100,000 - $2,500,000

Page 4: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

4 | Industrial Energy Efficiency eere.energy.gov

Structure of IAC Assessment

• Gather and analyze data before visit

• Team of faculty and students visit plant for one day

• Work closely with clients to identify and quantify energy saving opportunities

• Write custom, confidential, independent report with specific savings suggestion

• Call after 9-months to see what was implemented

Page 5: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

5 | Industrial Energy Efficiency eere.energy.gov

University of Dayton Industrial Assessment Center

• Performed over 825 assessments since 1981

• Check implementation results after one year – Half of recommendations

implemented– Energy use reduction

~5%

Page 6: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

6 | Industrial Energy Efficiency eere.energy.gov

Recruiting the Student Team

• 5 undergraduate and graduate engineering students

• Senior students mentor junior students

• Require specific classes– Energy Efficient

Manufacturing– Energy Efficient Buildings– Design of Thermal

Systems

Page 7: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

7 | Industrial Energy Efficiency eere.energy.gov

Embed Energy Management into IAC Report

• Develop baseline

• Identify and quantify saving opportunities

• Measure savings to sustain efficiency efforts

Table of Contents I. Executive Summary ............................................................................................................ 6

Corporate Data .................................................................................................................................................. 9 Utility Summary ................................................................................................................................................. 9 Summary of Assessment Recommendations (ARs) ........................................................................................... 10 Summary of Selected Exemplary Practices (EPs) ............................................................................................... 16

II. Baseline ........................................................................................................................... 17

Current Electric Rate Structure – Main Plant ............................................................................................... 18 Electricity Use – Total .................................................................................................................................. 19 Natural Gas Use - Total ............................................................................................................................... 20 Water and Sewer Use .................................................................................................................................. 21 Marginal Costs ............................................................................................................................................ 22

Lean Energy Analysis ........................................................................................................................................ 23 Lean Energy Analysis of Electricity Use ........................................................................................................ 24 Lean Energy Analysis of Natural Gas Use .................................................................................................... 30

Plant Energy Balance........................................................................................................................................ 36 Electricity Use by Equipment ....................................................................................................................... 36 Natural Gas Use by Equipment.................................................................................................................... 38

Plant Description .............................................................................................................................................. 40 Plant Layout ................................................................................................................................................ 40 Process Description ..................................................................................................................................... 40

III. Assessment Recommendations (ARs) .............................................................................. 41

AR 1: Consolidate Electricity Meters and Switch to Primary Rate Structure ................................................. 42 AR 2: Install Capacitors to Improve Power Factor ........................................................................................ 44 Comment 1: Consider Consolidating Electricity Meters ............................................................................... 47

Energy Efficient Lighting ................................................................................................................................... 49 Current Plant Lighting ................................................................................................................................. 51 AR 3: Replace 400-W Metal Halide Fixtures in Manufacturing Areas with 4-lamp T5 High Bay Fluorescent Fixtures .................................................................................................................................... 53 AR 4: Replace 400-W Metal Halide Fixtures in Distribution Center with 4-lamp T5 High Bay Fluorescent Fixtures with Occupancy Sensors .............................................................................................. 57 AR 5: Replace 4-lamp 40-W T12 Fluorescent Fixtures in Offices, Fabrication and Paint Areas with 4-lamp 32-W T8 Fluorescent Fixtures ............................................................................................................. 61

Energy Efficient Motor Systems ........................................................................................................................ 64 AR 6: Turn off Stamping Presses When Not in Use ...................................................................................... 65

Energy Efficient Compressed Air Systems ......................................................................................................... 69 Current Compressed Air System .................................................................................................................. 72 AR 7: Establish Preventative Maintenance Program to Identify and Fix Compressed Air Leaks ................... 73 AR 8: Install Air-Saver Nozzles on Machine Continuous Blowoff .................................................................. 75 AR 9: Reduce Pressure Loss through Custom Compressed Air Dryer ........................................................... 77 AR 10: Replace Compressed Air Grinders with Electric Grinders .................................................................. 79

Energy-Efficient Fluid Flow ............................................................................................................................... 82 AR 11: Install VFDs on Pumps and Open Throttling Valves on Pretreatment Line ........................................ 83

IV. Measuring Savings .......................................................................................................... 87

V. Appendix ......................................................................................................................... 88

Page 8: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

8 | Industrial Energy Efficiency eere.energy.gov

Baseline

Four Components of Plant Baseline

1. Process Description and Plant Layout2. Utility Analysis3. Plant Energy Balance4. Lean Energy Analysis

Page 9: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

9 | Industrial Energy Efficiency eere.energy.gov

Process Description and Plant Layout

Process Description Plant Layout

Wax Tree Preparation

Refractory Dip

Flash Fire Furnace

Inspection

Baking

Liquid Wax

Liquidized Sand, Binders

Wax

Refractory Tree

1,600 F

Foam Padding

Foundation Making

Foam Pad Removing

Pouring

Baking

Wood Pattern, Foam

Refractory

Zircon Slurry Foam

1,400 F

Pattern Making

Settling

Flask, Wood Pattern, Binders Sand

Pre-heating Ladle, Gas

Burners

Weighing Alloy Steels

Cleaning Melting

Pouring

Knocking

Cleaning

Shot Blasting

Sand

Cope

Raw Material

Drag

Molds

Sand Recycling

Annealing Finishing

Heat Treating

Inspection Packaging Shipping

Steel Shots Steel Shots

Metal Scrap

Quenching Nitrogen Vacuum

1,500 F ~ 2,240 F

1,600 F

Page 10: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

10 | Industrial Energy Efficiency eere.energy.gov

Utility Billing Analysis

• Analyze rate schedule• Verify billing amounts• Check for saving

opportunities:– Primary/secondary– Power factor correction– Meter consolidation– Demand reduction

potential• Benchmark costs

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

1/24/0

2

2/25/0

2

3/25/0

2

4/25/0

2

5/24/0

2

6/25/0

2

7/25/0

2

8/26/0

2

9/25/0

2

10/24

/02

11/22

/02

12/23

/02

1/24/0

3

2/24/0

3

3/25/0

3

4/24/0

3

5/23/0

3

6/24/0

3

7/25/0

3

8/26/0

3

Actu

al D

eman

d (k

W)

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Cons

umpt

ion

(kW

h/da

y)

Actual Demand (kW) Consumption (kWh/day)

0

20

40

60

80

100

120

140

160

3/6/02

4/6/02

5/6/02

6/6/02

7/6/02

8/6/02

9/6/02

10/6/

02

11/6/

02

12/6/

021/6

/032/6

/033/6

/034/6

/035/6

/036/6

/037/6

/038/6

/03

Cons

umpt

ion

(ccf

/day

)

Page 11: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

11 | Industrial Energy Efficiency eere.energy.gov

Lean Energy Analysis

• Model energy use as functions of weather and production

• Decompose energy into:– Production-dependent– Weather-dependent– Independent

• Use models for:– Quantify “Leanness”– Identify savings

opportunities– Measuring savings

Page 12: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

12 | Industrial Energy Efficiency eere.energy.gov

Disaggregate Energy Use

Page 13: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

13 | Industrial Energy Efficiency eere.energy.gov

Quantify Energy “Leaness”

Production39%

Independent51%

Weather10%

“Independent” is energy not added to productLEA = (1 – Independent)

Electricity LEA = 49%

Page 14: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

14 | Industrial Energy Efficiency eere.energy.gov

Average LEA Scores

39%

58%

Page 15: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

15 | Industrial Energy Efficiency eere.energy.gov

Calibrated Energy Use Breakdowns

• Use plant-supplied lists of:– Major elec equip– Major gas equip– Estimated operating hours

• Create energy breakdown by equipment

• Calibrate breakdown against:– Lean energy analysis– Plant energy bills

Natural Gas Breakdown 

Electrical Energy Breakdown

CompTech/Shaffer

21%

CompAir Machining Equipment

13%

Dynos8%

Compressors10%

Lighting27%Fans

4%

Air Conditioning

1%

Other16%

Gas Fired Make-up Air Unit

10%

Error due to change in outdoor

temp.4%

Parts Washer9%

Paint Dryer9%

Space Heaters (supplied by

boilers)59%

Powder Washer9%

Page 16: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

16 | Industrial Energy Efficiency eere.energy.gov

Approach for Identifying Savings

• Each manufacturing process is unique• Can’t become experts in every manufacturing

process• Found that manufacturing processes comprised

of different sequences of same “building blocks”• Developed:

“Integrated Systems + Principles Approach”

Page 17: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

17 | Industrial Energy Efficiency eere.energy.gov

Energy Systems

– Lighting– Motor drive– Fluid flow– Compressed air– Steam and hot water– Process heating– Process cooling– Heating, ventilating and air

conditioning– Combined heat and power

Page 18: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

18 | Industrial Energy Efficiency eere.energy.gov

Principles of Energy Efficiency

• Inside Out Analysis• Understand Control Efficiency• Think Counter-flow• Avoid Mixing• Match Source Energy to End Use• Whole-system, Whole-time Frame Analysis

Page 19: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

19 | Industrial Energy Efficiency eere.energy.gov

1. Inside-out Approach

Conversion Distribution UseEnergySupply

Energy Use

Inside-Out Analysis ApproachEnergy flow from outside to inside plant

Page 20: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

20 | Industrial Energy Efficiency eere.energy.gov

Inside-out Approach

Conversion Distribution Use

EnergySupplySavings

Energy End–Use Savings

Inside-Out Analysis Approach

Page 21: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

21 | Industrial Energy Efficiency eere.energy.gov

2. Understand Control Efficiency

• All systems sized for peak-load, but operate at part-load

• Control efficiency quantifies loss from controlling system to operate at part-load

Energy

Production

Poor

Excellent

Page 22: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

22 | Industrial Energy Efficiency eere.energy.gov

3. Think Counter Flow

Q

T

T

x

x

Q

Parallel Flow

Counter Flow

Page 23: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

23 | Industrial Energy Efficiency eere.energy.gov

4. Avoid Mixing

• Availability analysis tells us– Useful work destroyed with mixing

• Examples– CAV/VAV air handlers– Separate hot and cold wells– Material reuse/recycling

Page 24: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

24 | Industrial Energy Efficiency eere.energy.gov

5. Match Source Energy to End Use

Page 25: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

25 | Industrial Energy Efficiency eere.energy.gov

6. Whole-system Whole-timeframe Design

• Dopt = 200 mm when Tot Cost = NPV(Energy)+Pipe • Dopt = 250 mm when Cost= NPV(Energy)+Pipe+Pump• Energy250 = Energy200 / 2

Page 26: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

26 | Industrial Energy Efficiency eere.energy.gov

Integrated Systems + Principles Approach

Electrical Lighting Motors Fluid FlowCompress

Air SteamProcess Heating

Process Cooling HVAC CHP

Lean Energy Analysis BaselineInside Out AnalysisMinimum Theoretical EnergyConversion and Control EfficiencyMatch Source Energy to End UseMaximize Counter-flowAvoid MixingWhole-system, Whole-time Frame Analysis

Page 27: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

27 | Industrial Energy Efficiency eere.energy.gov

Assessment Day

• Briefing • Plant tour

to identify opportunities

• Meet to prioritize

• Gather data to quantify

• Debrief

Page 28: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

28 | Industrial Energy Efficiency eere.energy.gov

Lighting

• Maximize day lighting

• Illumination survey and light inventory

• Placement• Distribution

efficiency• Control• Upgrades

Page 29: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

29 | Industrial Energy Efficiency eere.energy.gov

Motor Drive Systems

• Minimize end-use• Reduce

transmission losses

• Optimize repair/replace policy

Page 30: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

30 | Industrial Energy Efficiency eere.energy.gov

Fluid Flow

• Minimize friction losses

• Efficient flow control– Slow fans– Trim pump

impellors– Employ VFDs for

variable flow• Pump-slow pump-

long

Page 31: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

31 | Industrial Energy Efficiency eere.energy.gov

Compressed Air Systems

• Minimize air use• Minimize leakage

losses• Minimize pressure• Compress outside air• Optimize control mode• Optimize multi-

compressor operation• Reclaim heat

Page 32: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

32 | Industrial Energy Efficiency eere.energy.gov

Boiler / Steam Systems

• Match energy source/use

• Insulate hot surfaces, pipes and open tanks

• Maintain steam traps• Maximize combustion

efficiency• Preheat boiler feed

water• Explore combined

heat and power

Page 33: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

33 | Industrial Energy Efficiency eere.energy.gov

Process Heating

• Maximize heat delivery efficiency (heat product not air)

• Minimize batch heating losses

• Minimize air leakage and openings

• Insulate hot surfaces• Maximize combustion

efficiency• Reclaim heat to preheat

combustion air or charge

Page 34: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

34 | Industrial Energy Efficiency eere.energy.gov

Process Cooling

• Heat-exchanger networks to minimize cooling loads

• Maximize temperature set points

• Maximize use of cooling tower

• Replace air-cooled with water-cooled chillers

• Stage chillers or employ VFD chillers

• Use absorption chillers if waste heat is available

• Employ VFDs cooling tower fans

Page 35: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

35 | Industrial Energy Efficiency eere.energy.gov

Heating, Ventilating, Air Conditioning

• Employ temperature setback

• Insulate un-insulated envelope

• Minimize ventilation loads and balance plant air pressure

• Outside air:– If needed, use 100% eff MAU– In unneeded, use 80% eff

unit heater• Employ economizers for

year-long cooling loads• Improve distribution

effectiveness

Page 36: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

36 | Industrial Energy Efficiency eere.energy.gov

Combined Heat and Power

• Feasibility, sizing, economics– Steam to Power– Power to Thermal– Heat to Power

Boiler

Turbine

Shaft work out

Qcoal

Pump

Electrical Generator

Electricity

Qcondensor

~ 50 - 150 psig steam to plant

Condensor Low-pressure steam

Make-up water

Combustor

Compressor Turbine

Shaft work to compressor

Shaft work out

Qnatural gas

Ambient air Boiler

Electrical Generator

Electricity

Exhaust at ~375 F

Steam Turbine exhaust at

650 – 1,000 F

Page 37: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

37 | Industrial Energy Efficiency eere.energy.gov

Prioritize Savings Opportunities

Savings by System Type Cumulative Payback and Savings

Page 38: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

38 | Industrial Energy Efficiency eere.energy.gov

Measure Energy Savings (Using LEA Baseline Model)

Pre-retrofit

Post-retrofit

Savings

Page 39: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

39 | Industrial Energy Efficiency eere.energy.gov

Track Normalized Energy Intensity

Normalized Energy Intensity

decreased 5.4%.

Page 40: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

40 | Industrial Energy Efficiency eere.energy.gov

Share Methods and Software

http://academic.udayton.edu/udiac

Page 41: Kelly  Kissock Director: University of Dayton Industrial Assessment Center Dayton, Ohio U.S.A.

41 | Industrial Energy Efficiency eere.energy.gov

Thank you!