Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE...

54
Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011- 01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Networks (WPANs) Submission Title: STM_CEA-LETI_CWC_AETHERWIRE 15.4aCFP response Date Submitted: January 4th, 2005 Source: Ian Oppermann (1), Mark Jamtgaard (2), Laurent Ouvry (3), Philippe Rouzet (4) Companies: (1) CWC-University of Oulu, Tutkijantie 2 E, 90570 Oulu, FINLAND (2) Æther Wire & Location, Inc., 520 E. Weddell Drive, Suite 5, Sunnyvale, CA 94089, USA (3) CEA-LETI, 17 rue des Martyrs 38054, Grenoble Cedex, FRANCE (4) STMicroelectronics, CH-1228, Geneva, Plan-les-Ouates, SWITZERLAND Voice: (1) +358 407 076 344, (2) 408 400 0785 (3) +33 4 38 78 93 88, (4) +41 22 929 58 66 E-Mail: (1) [email protected], (2) [email protected](3) [email protected], (4) [email protected], Abstract: UWB proposal for 802.15.4a alt-PHY Purpose: Proposal based on UWB impulse radio for the IEEE 802.15.4a CFP Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributors acknowledge and accept that this contribution becomes

Transcript of Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE...

Page 1: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 1

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: STM_CEA-LETI_CWC_AETHERWIRE 15.4aCFP responseDate Submitted: January 4th, 2005Source: Ian Oppermann (1), Mark Jamtgaard (2), Laurent Ouvry (3), Philippe Rouzet (4)Companies:

(1) CWC-University of Oulu, Tutkijantie 2 E, 90570 Oulu, FINLAND (2) Æther Wire & Location, Inc., 520 E. Weddell Drive, Suite 5, Sunnyvale, CA 94089, USA (3) CEA-LETI, 17 rue des Martyrs 38054, Grenoble Cedex, FRANCE (4) STMicroelectronics, CH-1228, Geneva, Plan-les-Ouates, SWITZERLAND

Voice: (1) +358 407 076 344, (2) 408 400 0785 (3) +33 4 38 78 93 88, (4) +41 22 929 58 66 E-Mail: (1) [email protected], (2) [email protected](3) [email protected], (4) [email protected],

Abstract: UWB proposal for 802.15.4a alt-PHY

Purpose: Proposal based on UWB impulse radio for the IEEE 802.15.4a CFP

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributors acknowledge and accept that this contribution becomes the property of IEEE and may be made publicly available by P802.15

Page 2: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 2

List of Authors

• CWC – Ian Oppermann, Alberto Rabbachin (1)

• AetherWire – Mark Jamtgaard, Patrick Houghton (2)

• CEA-LETI – Laurent Ouvry, Samuel Dubouloz, Sébastien de Rivaz, Benoit Denis, Michael Pelissier, Manuel Pezzin et al. (3)

• STMicroelectronics – Gian Mario Maggio, Chiara Cattaneo, Philippe Rouzet & al. (4)

Page 3: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 3

Outline• Introduction

• Transmitter

• Receiver architectures

• System performances

• Link budget

• Framing, throughput

• Power Saving

• Ranging

• Proof of concept

• Conclusions

Page 4: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 4

Introduction (1/2)

• Proposal main features:1. Impulse-radio based (pulse-shape

independent)2. Support for different receiver architectures

(coherent/non-coherent)3. Flexible modulation format4. Support for multiple rates5. Enables accurate ranging/positioning6. Support for multiple SOP

Page 5: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 5

Introduction (2/2)• Motivation for (2-4):

• Supports homogenous and heterogeneous network architectures

• Different classes of nodes, with different reliability requirements (and cost) must inter-work

Page 6: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 6

Commonalities with Other Proposals

• Many commonalities exist between the CWC/Aetherwire/LETI/STM proposal and other proposals, including FT and Mitsubishi:

– UWB technology– Modulation features– Bandwidth usage– Ranging approach

• Discussions are under way for future collaborations and merging

Page 7: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 7

UWB Technology

• Impulse-Radio (IR) based:– Very short pulses Reduced ISI– Robustness against fading– Episodic transmission (for LDR) allowing

long sleep-mode periods and energy saving

• Low-complexity implementation

Page 8: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 8

Modulation Features

• Simple, scalable modulation format

• Flexibility for system designer

• Modulation compatible with multiple coherent/non-coherent receiver schemes

• Time hopping (TH) to achieve multiple access

Page 9: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 9

Bandwidth Usage (1/2)

• Flexible use of (multi-)bands depending on application and regulatory environment

• Use of TH and/or polarity randomization for spectral smoothing

• Noise-like interference towards existing radio services

Page 10: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 10

Bandwidth Usage (2/2)

0.96 3.1 5.1 6.0 8.0 8.1 10.1 GHz

ISM Band

Upper Band 1

Upper Band 2

Upper Band 3Lower band

ISM Band

Page 11: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 11

Ranging Approach

• Signal bandwidth ≥ 1GHz for very good location accuracy

• Two-way ranging protocol to avoid synchronization between nodes

• Location based on ranging from several nodes on a higher layer

Page 12: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 12

Preliminaries (1/2)

• Definitions:– Coherent RX: The phase of the received carrier

waveform is known, and utilized for demodulation– Differentially-coherent RX: The carrier phase of

the previous signaling interval is used as phase reference for demodulation

– Non-coherent RX: The phase information (e.g. pulse polarity) is unknown at the receiver -operates as an energy collector

Page 13: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 13

Preliminaries (2/2)

• Pros (+) and cons (-) of RX architectures:– Coherent

• + : Sensitivity• + : Use of polarity to carry data• + : Optimal processing gain achievable• - : Complexity of channel estimation and RAKE receiver• - : Longer acquisition time

– Differential (or using Transmitted Reference)• + : Gives a reference for faster channel estimation (coherent approach)• + : No channel estimation (non-coherent approach)• - : Asymptotic loss of 3dB for transmitted reference (not for DPSK)

– Non-coherent• + : Low complexity• + : Acquisition speed• - : Sensitivity, robustness to SOP and interferers

Page 14: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 14

½ PRP ½ PRP

« 1 »

« 0 » TR-BPSK

D

« 1 »

« 0 » DBPSK (one pulse per PRP )

« 1 »

« 0 » BPPM

TX: Modulation Formats« 1 »

« 0 »OOK

PRP

Page 15: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 15

½ PRP ½ PRP

« 1 »

« 0 » TR-BPSK

D

« 1 »

« 0 » DBPSK

« 1 »

« 0 » BPPM

TX: Multi-pulse Modulation Formats« 1 »

« 0 »OOK

Scope for Adding more information with multi-pulse

PRP

Page 16: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 16

Transmitted Reference (TR)

• TR schemes simplify the channel estimation process• Reference waveform available for synchronisation• Potentially more robust (than non-coherent) under SOP

operation• Supports both coherent/differentially-coherent demodulation• Reference waveform averaging (non-coherent integration);

– see also GLRT [Franz, Mitra; Globecom’03, pp. 744-748, Dec 2003]

• Implementation challenges:– Analogue: Implementing delay value, – delay mismatch, jitter

Page 17: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 17

TR Schemes (1/3)• GTR (Generalized Transmitted Reference) BPSK

• Concept: Multi-level version of the TR scheme, where the energy associated with the reference pulse is “shared” to improve efficiency

« A »

« B »

« C »

« D »

D D

PRP

Extension to N-ary TR

Page 18: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 18

TR Schemes (2/3)

• TR-BPPM (with/without BPAM)

• Concept: Transmitted-reference version of BPPM, with BPAM [Zasowski, Althaus and Wittneben, Proc. IWUWBS/UWBST’04, Kyoto, Japan]• TR-BPPM (non-coherent): Binary symbols restricted to “A” and “B”

D1

D2

« A »

« B »

« C »

« D »

PRP

Extension to N-ary TR

CoherentDetection

Page 19: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 19

TR Schemes (3/3)

• TR-PCTH (pseudo-chaotic time hopping) [Maggio, Reggiani, Rulkov; IEEE Trans. CAS-I, v. 48, no. 12, p. 1424, Dec 2001]

• Concept: Random TH Smoothes spectral lines in the PSD • Modulation: Pulses in the first ½ PRP correspond to “0” and vice versa for “1”• Demodulation: Similar to PPM, but more flexible (threshold or Viterbi detector)

½ PRP ½ PRP

« 0 »

« 1 »

Random inter-pulse interval Extension to N-ary TR

D

Page 20: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 20

Transmission

• Combine BPPM with more sophisticated TR scheme– Non-coherent receiver sees BPPM with pulse stream per bit– More sophisticated receiver sees BPPM (1 bit) plus bits

carried in more sophisticated modulation scheme (e.g. extended TR)

• Advantages: – Differential and non-coherent receiver may coexist– reference can be used for synch and threshold estimation

• Concept can be generalized to N-ary TR-BPSK

Page 21: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 21

Design Parameters (1/6) • Motivation:

– Flexible waveform – Still simple– Compatible with multiple coherent/non-coherent receiver schemes

• Limitations (compliant with FCC)– Increased Bandwidth (pros/cons)

• (+) High transmit power• (+) High time resolution• (-) Increased design complexity• (-) Less stringent requirements on out of band interference filtering Signal BW of 500 MHz - 2 GHz in Upper bands

Signal BW of 700 MHz in 0 to 960 MHz Lower band (low band)

– Increased Pulse Repetition Period (pros/cons)• (+) more energy per pulse (easier to detect single pulse)• (+) Lower inter-channel interference due to channel delay spread• (-) Transmitter peak voltage compatible with technology• (-) Acquisition time PRP (chip period) Between 250ns and 500ns

Page 22: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 22

• Simple modulation schemes:• BPPM combined with Transmitted Reference min 1 bit/symbol for non-coherent, 2 bits/symbol for TR (more for GTR)

• Channelization :• Coherent schemes: Use of TH codes and polarity codes• Non-coherent schemes: Use of TH codes (polarity codes for spectrum smoothing

only)

• Increased TH code length (pros/cons):• (+) higher processing gain, robustness to SOP operation• (-) Lower bit-rate• (-) Faster acquisition, shorter frame size (synch. phase) TH code length 8 or 16

TX: Design Parameters (2/6)

Page 23: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 23

•Basic Mode - Upper-bands (XH0=250 Kbps):– PRP = 250 ns, binary modulation, TH code length of 16chips

– N pulses per symbol (1 < N < 124)

– PHY-SAP payload bit rate (Xo) is 250 kbps

•Enhanced Mode 1 - Upper-bands (XH1=500 Kbps):– PRP = 250 ns, 4-level modulation, TH code length of 16chips

– N pulses per symbol (1 < N < 124)

– PHY-SAP payload bit rate (Xo) is 500 kbps

•Enhanced Mode 2 - Upper-bands (XH2=1000 Kbps):– PRP = 250 ns, 8-level modulation, TH code length of 16chips

– N pulses per symbol (1 < N < 40)

– PHY-SAP payload bit rate (Xo) is 1000 kbps

TX: Design Parameters (3/6)

Page 24: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 24

TX: Design Parameters (4/6)« 1 »

« 0 »Basic Mode

D

« 1 1 »

« 1 0 »

Enhanced Mode 1«0 1 »

«0 0 »

« 1 0 1 0 »

½ PRP ½ PRP

« 1 1 1 1»

Enhanced Mode 2

Page 25: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 25

« 1 0 » Enhanced Mode 1

TX: Design Parameters (5/6)

TH Pattern

« 1 1 »

Basic Mode(as seen by receiver)

« 1 »

Need not fill entire slot

TH Code 1,1 1,1 0,1 0,0 1,0 0,1Data 1,1 1,1 1,1 1,1 1,1 1,1

Position Swap, polarity invert

« 1 1 »Enhanced Mode 1 (randomising code)

Page 26: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 26

•Basic Mode - Lower-band (XL0=250 Kbps):– PRP = 500 ns, binary modulation, TH code length of 8 chips

– N pulses per symbol (1 < N < 120)

– PHY-SAP payload bit rate (Xo) is 250 kbps

•Enhanced Mode 1 - Lower-band (XL1=500 Kbps):– PRP = 500 ns, 4-level modulation, TH code length of 8 chips

– N pulses per symbol (1 < N < 120)

– PHY-SAP payload bit rate (Xo) is 500 kbps

•Enhanced Mode 2 - Lower-band (XL2=1000 Kbps):– PRP = 500 ns, 8-level modulation, TH code length of 8 chips

– N pulses per symbol (1 < N < 40)

– PHY-SAP payload bit rate (Xo) is 1000 kbps

TX: Design Parameters (6/6)

Page 27: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 27

Coherent Receiver Architecture

LNALNALNALNA BPFBPF ADCADC BufferBuffer

Band MatchedBand Matched

Estimated CIR

Estimated CIR

Integration / Decision

Integration / Decision

SynchronizationSynchronizationClock TrackingClock Tracking

Thresholds settingThresholds settingChannel EstimationChannel Estimation

SynchronizationSynchronizationClock TrackingClock Tracking

Thresholds settingThresholds settingChannel EstimationChannel Estimation

Coefficients

Trig

Threshold

Page 28: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 28

Band MatchedBand Matched

LNALNALNALNA BPFBPF

SynchroSynchroTrackingTracking

ThresholdThresholds settings setting

SynchroSynchroTrackingTracking

ThresholdThresholds settings setting

DumpDumpLatchLatchDumpDumpLatchLatch

RA

ZR

AZ

DUMPDUMP

ControlledControlledIntegratorIntegrator

ADCADC

BPPM Demodulation BPPM Demodulation branchbranch

RAZRAZ

TriggerTrigger

Time baseTime baseTime baseTime base

THRESHOLDTHRESHOLD

ADCADC

ComparatorComparatorComparatorComparator

IntegratorIntegrator

Ranging Ranging branchbranch

Differentially-Coherent/Non-Coherent Receiver Architecture Basic Mode and Enhanced Mode 1

x2 x2r(t)

Recyle this branch for Enhanced Mode 2

DelayDelayDelayDelay

TR Demodulation TR Demodulation

branchbranch

DumpDumpLatchLatchDumpDumpLatchLatchADCADC

ControlledControlledIntegratorIntegrator BPPM BPPM

Synch Synch TriggerTrigger

TRTR

Page 29: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 29

Band MatchedBand Matched

LNALNALNALNA BPFBPF

De-spreading TH Codes

r(t) TH Sequence Matched

Filter

Bit Demodulation Bit Demodulation

Band MatchedBand Matched

LNALNALNALNA BPFBPFr(t) TH

Sequence Matched Filter

Bit Demodulation Bit Demodulation

Case I - Coherent TH despreading

ADCADC

ADCADCb(t)

soft info

Case II – Non-coherent / differential TH despreading

Page 30: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 30

PER in 15.4a Channel Model Non-Coherent (Energy Collection) BPPM

Framing format:

PreamblePreamble(32 bits)(32 bits)

SFDSFD(8 bits)(8 bits)

LENLEN(8 bits)(8 bits)

MHR+MSDUMHR+MSDU(240 bits)(240 bits)

CRCCRC(16 bits)(16 bits)

• Simulations over 1000 channel responses • BW = 2GHz – Integration Time = 80ns• Implementation loss + Noise figure margin : 11 dB• Max range is determined from:

Required Eb/N0, Implementation margin Path loss characteristics

X1 (CM8) X2 (CM1) X3 (CM5) X4 (CM9)

Required Eb/N0 19.5 dB 20 dB 21 dB 21.5 dB

Max Range (I) 10.78 m 84.61 m 86.72 m 58.67 m

Max Range (II) 7.33 m 53.25 m 54.15 m 34.72 m

16 17 18 19 20 21 22

10-2

10-1

100

2PPM - PER vs. Eb / N

0 - 15.4a Channel Models

Eb / N

0 [dB]

Pac

ket

Err

or R

ate

X1-CM8: industrial NLOSX2-CM1: Residential LOSX3-CM5: Outdoor LOSX4-CM9: Agricultural Areas

Case I: 250 kbps – PRP 250 ns with 16 pre-integrations = 4 µs

Case II: 250 kbps – PRP 500 ns with 8 post-integrations

Page 31: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 31

PER/BER in 15.4a Channel Model DBPSK (RAKE)

10 11 12 13 14 15 16 17 18 19 2010

-3

10-2

10-1

100

PE

R

X1X2X3X4

Eb/N0 (dB)

DBPSK – PER vs. Eb/N0 – 15.4a Channel Models

X1 (CM8) X2 (CM1) X3 (CM5) X4 (CM9)

Required Eb/N0 18 dB 17.5 dB 18.5 dB 18.5 dB

Max Range (I) 12.66 m 116.70 m 120.27 m 90.84 m

Max Range (II) 9.18 m 79.34 m 81.23 m 58.67 m

Implementation loss and Noise figure margin : 11 dB

Theoretical BER Curves – Integration Time = 50 ns

0 5 10 1510

-5

10-4

10-3

10-2

10-1

Eb/N0 (dB)

BE

R

BER vs Eb/N0 for binary modulations - 100 equivalent uncorrelated samples

ideal MRC BPAM solutionDifferentially coherent BPAM

Case I: 250 kbps – PRP 250 ns with 16 pre-integration = 4 µs

Case II: 250 kbps – PRP 500 ns with 8 post-integrations

Page 32: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 32

Link Budget: Non-Coherent (Energy Collection) BPPM

ParameterMandatory Value

(PRP = 4 µs) Optional Value

(PRP = 500ns - 8 integrations)

Peak Payload bit rate (Rb) 250 kb/s 250 kb/s

Average Tx Power Gain (PT) -10.64 dBm -10.64 dBm

Tx antenna gain (GT) 0 dBi 0 dBi

f’c: (geometric frequency) 3.873 GHz 3.873 GHz

Path Loss @ 1m: L1 = 20log10(4..f’c / c) 44.20 dB 44.20 dB

Path Loss @ d m: L2 = 20log10(d) 29.54 dB @ d = 30 m 29.54 dB @ d = 30 m

Rx Antenna Gain (GR) 0 dBi 0 dBi

Rx Power (PR = PT + GT + GR – L1 – L2) -84.38 dBm -84.38 dBm

Average noise power per bit: N = -174 + 10log10(Rb) -120.02 dBm -120.02 dBm

Rx noise figure (NF) 7 dB 7 dB

Average noise power per bit (PN = N + NF) -113.02 dBm -113.02 dBm

Minimum Eb/N0 (S) 14 dB 17.6 dB

Implementation Loss (I) 5 dB 5 dB

Link Margin (M = PR - PN – S – I) 9.64 dB 6.04 dB

Proposed Min. Rx Sensitivity Level -94.02 dBm -90.42 dBm

Page 33: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 33

Link Budget: DBPSK (RAKE)

ParameterMandatory Value

(PRP = 4 µs)Optional Value

(PRP = 500ns - 8 integrations)

Peak Payload bit rate (Rb) 250 kb/s 250 kb/s

Average Tx Power Gain (PT) -10.64 dBm -10.64 dBm

Tx antenna gain (GT) 0 dBi 0 dBi

f’c: (geometric frequency) 3.873 GHz 3.873 GHz

Path Loss @ 1m: L1 = 20log10(4..f’c / c) 44.20 dB 44.20 dB

Path Loss @ d m: L2 = 20log10(d) 29.54 dB @ d = 30 m 29.54 dB @ d = 30 m

Rx Antenna Gain (GR) 0 dBi 0 dBi

Rx Power (PR = PT + GT + GR – L1 – L2) -84.38 dBm -84.38 dBm

Average noise power per bit: N = -174 + 10log10(Rb) -120.02 dBm -120.02 dBm

Rx noise figure (NF) 7 dB 7 dB

Average noise power per bit (PN = N + NF) -113.02 dBm -113.02 dBm

Minimum Eb/N0 (S) 13 dB 16 dB

Implementation Loss (I) 5 dB 5 dB

Link Margin (M = PR - PN – S – I) 10.64 dB 7.64 dB

Proposed Min. Rx Sensitivity Level -95.02 dBm -92.02 dBm

Page 34: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 34

Framing – 802.15.4 Compatible

CAP CFP IPBP

Beacon Interval

BP : Beacon Period

CAP : Contention Access Period

CFP : Contention Free Period

IP : Inactive Period (optional)

Superframe Duration

Beacon slot CAP slot CFP slot

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Preamble SFD PSDU = MPDUPHY layer

PPDU (PHY Protocol Data Unit)

PSDU (PHY Service Data Unit)SHR

Octets 324 1

Frame length

PHR

1

Page 35: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 35

Throughput

Preamble SFD PSDU = MPDUPHY layer

PPDU (PHY Protocol Data Unit)

PSDU (PHY Service Data Unit)SHR

Bytes 324 1

Frame length

PHR

1

Preamble SFD PSDUPHY layer

PPDU (PHY Protocol Data Unit)

PSDUSHR

Bytes 54 1

Frame length

PHR

1

Data Frame (32 octet PSDU) ACK Frame (5 octet PSDU)

Tdata TackT_ACK

• Numerical example (high-band)

• Preamble + SFD + PHR = 6 octets

• Tdata = 1.216 ms

• T_ACK = 50 s (turn around time requested by IEEE 802.15.4 is 192s)

• Tack = 0.352 ms

• IFS = 100μs

Throughput = 32 octets/1.718 ms = 149 kb/s Average data-rate at receiver PHY-SAP 250 kb/s (Basic Mode)

IFS

Page 36: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 36

Saving Power• Power Saving techniques achieved by combining advantages offered at 3 levels:

– Technology (best if CMOS)

– Architecture (flexible schemes provided by the TH+pulse modulation)

– System level (framing, protocol usage)

• Selected techniques used in one existing realization (see proof of concept slides) – Low-duty cycle Episodic transmission/reception

• Scheduled wake-up

• 80s RTOS tick

– Ad-hoc networking using multi-hop• Special rapid acquisition codes / algorithm

• Matchmaking further reduces acquisition time

– Multi-stage time-of-day clock• Synchronous counter / current mode logic for highest speed stages

• Ripple counter / static CMOS for lowest speed stages

– Compute-intensive correlation done in hardware

Page 37: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 37

Ranging

• Motivation :– Benefit from high time resolution (thanks to signal bandwidth):

• Theoretically: 2GHz provides less than 20cm resolution

• Practically: Impairments, low cost/complexity devices should support ~50cm accuracy with simple detection strategies (better with high resolution techniques)

• Approach :– Use Two Way Ranging between 2 devices with no network

constraint (preferred); no need for time synchronization among nodes

– Use One Way Ranging and TDOA under some network constraints (if supported)

Page 38: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 38

Two Way Ranging (TWR)

Terminal B

Request

Prescribed Protocol

Delay and/or Processing

Time

To

TReply

T1

Terminal A TX/RX

Terminal B RX/TX

TOF TOF

cTd

TTTT

AOFAB

AOF

.~~2

1~Reply01

TOF EstimationTerminal A

Page 39: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 39

Two Way Ranging (TWR)

B

BAAAOFAOF f

fTfTT

12

1~ Reply

Main Limitations / Impact of Clock Drift on Perceived Time

Range estimation is affected by :

• Relative clock drift between A and B

• Prescribed response delay

• Clock accuracy in A and B

• Channel response (weak direct path)

Is the frequency offset relative to the nominal ideal frequency 0f0. f

Relaxing constraints on clock accuracy is possible by

• Performing fine drift estimation/compensation

• Benefiting from cooperative transactions (estimated clock ratios …)

• Adjusting protocol durations (time stamp…)

f/f \ Treply (max error)

192 s 10 s

4 ppm 0.23 m 0.01 m

40 ppm 2.30 m 0.12 m

Example using Imm-ACK SIFS of 15.4 and 15.3

Page 40: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 40

20dB SNR, 3ns Integration Non-Coherent Energy Detection

TOA estimation with serial search. Parameters: uncertainty region of 13 ns, search region 20 ns, integration window 3 ns, SNR of 20 dB, CM1 (802.15.3a)

Page 41: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 41

TOA Error CDF (CM1 802.15.3a)

TOA error CDF for serial search. Integration window of 3 and 4 ns.

Page 42: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 42

Antenna Feasibility Capacitive Dipole and Various Bowtie Antennas

Bowtie antenna

55 mm

40 mm

Page 43: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 43

“Proof-of-Concept” (1) Non-coherent Transceiver

5 Mbps BPPM 350 ps pulse train

with long scrambling code

UWBANTENNA

DLLCM

Oscilator Generator

x16528 MHz

Flagrst8....

Flagrst1

RX

Controlline

Energycollection

DIGITALCONTROL

LOGIC

DLLPG

-DIGITALLOGIC UWB

PG

TX

Fref33 MHz

BASEBANDDSP

(decision logic)

DETECTIONBIT

DECISION

(digital)

2

( )

LNAVGA

GAIN SELECTION

A/DConverter

SWITCH

/2

Non-coherent, Energy Collection Receiver

Page 44: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 44

“Proof-of-Concept” (2) Non-coherent Transceiver

UWB Transmitter400 μm x 400 μm

0.35 μm CMOS

UWB TransceiverTest architecture <10 mm2

0.35 μm SiGe Bi-CMOS

UWB-IR BPPM Non-Coherent Transceiver Implementation

Page 45: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 45

“Proof-of-Concept” (3): Transmitter - Lower Band

UWB Transmitter chip for generating impulse doublets

Del

ayD

elay

Buf

fers

Buf

fers

N-CN-Channel DriversN-Channel Drivers

P-Channel DriversP-Channel Drivers

Page 46: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 46

“Proof-of-Concept” (4): Receiver - Lower Band

Coherent UWB Receiver withmultiple time integrating correlators

32

Tim

e-I

nte

gra

ting

32

Tim

e-I

nte

gra

ting

Co

rre

lato

rsC

orr

ela

tors

PL

L L

oo

p F

ilte

rP

LL

Lo

op

Filt

er

VG

C A

mp

VG

C A

mp

CodeCodeSequenceSequenceGeneratorsGenerators

LF RTCLF RTC

DA

Cs

DA

Cs

““ Ra

ils”

for

test

ing

R

ails

” fo

r te

stin

g

an

alo

g c

ircu

itsa

na

log

cir

cuitsDA

Cs

DA

Cs

Hig

h-F

requ

ency

Hig

h-F

requ

ency

Rea

l Tim

e C

lock

Rea

l Tim

e C

lock

Page 47: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 47

“Proof-of-Concept” (5) High Speed Coherent Circuit Elements

3-5 GHz LNAChip and layout

20 GHz digitizer for UWB

20 GHz DLL for UWB

RF front end chips in CMOS 0.13m, 1.2V

Page 48: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 48

Conclusions• Proposal based upon UWB impulse radio

– High time resolution suitable for precise ranging using TOA– Modulation:

• Pulse-shape independent• Robust under SOP operation• Facilitates synchronization/tracking• Supports multiple coherent/non-coherent RX architectures

• System tradeoffs– Modulation optimized for several aspects (requirements, performances, flexibility,

technology)– Trade-off complexity/performance RX

• Flexible implementation of the receiver– Coherent, differential, non-coherent (energy collection)– Analogue, digital

• Fits with multiple technologies– Easy implementation in CMOS– Very low power solution (technology, architecture, system level)

Page 49: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 49

Backup Slides

Page 50: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 50

BER Performance in AWGN Channel

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10-5

10-4

10-3

10-2

10-1

Eb/N0

BE

R

MRC Solution (coherent)Differential SolutionEnergy Collection solution in OOK

Transmitted Reference (one pulse)

-3 dB : the “reference” is not in the same PRP !

PER = 1% with 32 bytes PSDU acceptable BER 4x10-5 with no channel coding

Nerrorbiterrorpacketp 11

Page 51: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 51

BER Performance in AWGN Channel

Page 52: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 52

Antenna Practicality• Bandwidth: 3 GHz-10 GHz

• Form factor

• Omni-directionaly

x

z

7 mm

ground plane Ø 80 mm

antenna hat Ø 24 mm

-26

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2 3 4 5 6 7 8 9 10 11 12

|S11| (d

B)

frequency (GHz)

M.S.measured

Page 53: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 53

Time Difference Of Arrival (TDOA) & One Way Ranging (OWR)

To

Mobile TX

Anchor 1 RX

TOF,1

T1

Anchor 2 RX

TOF,2

T2

Anchor 3 RX

TOF,3

T3

Anchor 1

Anchor 2

Anchor 3

Mobile

Isochronous

Info T2

Info T3

Info T2

Info T3

TOA EstimationTDOA Estimation

cTdTTT

cTdTTT

.~~~

.~~~

23232323

21212121

TDOA Estimation

Passive Location

321 ,, TTT

TOA Estimation

Isochronous

Page 54: Jan. 2005 CWC/AETHERWIRE/CEA-LETI/STM doc.: IEEE 802. 15-05-0011-01-004a Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Jan. 2005

CWC/AETHERWIRE/CEA-LETI/STM

doc.: IEEE 802. 15-05-0011-01-004a

Slide 54

Mobile (xm,ym)

Anchor 1 (xA1,yA1)

Anchor 2 (xA2,yA2)

Anchor 3 (xA3,yA3)

Positioning from TDOA

3 anchors with known positions (at least) are

required to find a 2D-position from a couple of TDOAs

2222

31

222232

1133

2233

MAMAMAMA

MAMAMAMA

yyxxyyxxd

yyxxyyxxd

3132

~,

~dd

Measurements Estimated Position

MM yx ~,~Specific Positioning Algorithms