J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

27
J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK UZH – Foundations of Human Social Behaviour, Zurich, Switzerland Dynamic Causal Modelling: basics

description

Dynamic Causal Modelling: basics. J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK UZH – Foundations of Human Social Behaviour, Zurich, Switzerland. Overview. 1 DCM: introduction 2 Neural ensembles dynamics 3 Bayesian inference 4 Conclusion. Overview. - PowerPoint PPT Presentation

Transcript of J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

Page 1: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

J. Daunizeau

Wellcome Trust Centre for Neuroimaging, London, UK

UZH – Foundations of Human Social Behaviour, Zurich, Switzerland

Dynamic Causal Modelling:basics

Page 2: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

Overview

1 DCM: introduction

2 Neural ensembles dynamics

3 Bayesian inference

4 Conclusion

Page 3: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

Overview

1 DCM: introduction

2 Neural ensembles dynamics

3 Bayesian inference

4 Conclusion

Page 4: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

Introductionstructural, functional and effective connectivity

• structural connectivity= presence of axonal connections

• functional connectivity = statistical dependencies between regional time series

• effective connectivity = causal (directed) influences between neuronal populations

! connections are recruited in a context-dependent fashion

O. Sporns 2007, Scholarpedia

structural connectivity functional connectivity effective connectivity

Page 5: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

IntroductionDCM: a parametric statistical approach

,

, ,

y g x

x f x u

• DCM: model structure

1

2

4

3

24

u

, ,p y m likelihood

• DCM: Bayesian inference

ˆ , ,p y m p m p m d d

, ,p y m p y m p m p m d d

model evidence:

parameter estimate:

priors on parameters

Page 6: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

IntroductionDCM for EEG-MEG: auditory mismatch negativity

S-D: reorganisationof the connectivity structure

rIFG

rSTG

rA1

lSTG

lA1

rIFG

rSTG

rA1

lSTG

lA1

standard condition (S)

deviant condition (D)

t ~ 200 ms

……S S S D S S S S D S

sequence of auditory stimuli

Page 7: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

Overview

1 DCM: introduction

2 Neural ensembles dynamics

3 Bayesian inference

4 Conclusion

Page 8: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

Neural ensembles dynamicssystems of neural populations

Golgi Nissl

internal granularlayer

internal pyramidallayer

external pyramidallayer

external granularlayer

mean-field firing rate synaptic dynamics

macro-scale meso-scale micro-scale

EP

EI

II

Page 9: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

Neural ensembles dynamicsfrom micro- to meso-scale: mean-field treatment

( ) ( ) ( ) ( )'

'

( )

1

1Ni i i i

jj j

i

H x t H x t p x t dxN

S

( )iS(x) H(x)

( )i

: post-synaptic potential of j th neuron within its ensemble jx t

mean-field firing rate

mean membrane depolarization (mV)

mea

n fir

ing

rate

(H

z)

membrane depolarization (mV)

ense

mbl

e de

nsi

ty p(

x)

Page 10: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

Neural ensembles dynamicssynaptic dynamics

1iK

time (ms)m

emb

rane

dep

olar

izat

ion

(mV

)1 2

2 22 / / 2 / 1( ) 2i e i e i eS

post-synaptic potential

1eK

IPSP

EPSP

Page 11: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

Neural ensembles dynamicsintrinsic connections within the cortical column

Golgi Nissl

internal granularlayer

internal pyramidallayer

external pyramidallayer

external granularlayer

spiny stellate cells

inhibitory interneurons

pyramidal cells

intrinsic connections 1 2

3 4

7 8

2 28 3 0 8 7

1 4

2 24 1 0 4 1

0 5 6

2 5

2 25 2 1 5 2

3 6

2 26 4 7 6 3

( ) 2

( ) 2

( ) 2

( ) 2

e e e

e e e

e e e

i i i

S

S

S

x

S

Page 12: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

Neural ensembles dynamicsfrom meso- to macro-scale: neural fields

22 2 2 ( ) ( )

2

( ) ( ')'

'

32 , ,

2i i

i iii

i

c t c tt t

S

r r

loca

l (ho

mog

ene

ous)

den

sity

of

conn

exi

ons

local wave propagation equation:

r1 r2

Page 13: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

Neural ensembles dynamicsextrinsic connections between brain regions

extrinsicforward

connections

spiny stellate cells

inhibitory interneurons

pyramidal cells

0( )F S

0( )LS

0( )BS extrinsic backward connections

extrinsiclateral connections

1 2

3 4

7 8

2 28 3 0 8 7

1 4

2 24 1 0 4 1

0 5 6

2 5

2 25 0 2 1 5 2

3 6

2 26 4 7 6 3

(( ) ( )) 2

(( ) ( ) ) 2

(( ) ( ) ( )) 2

( ) 2

e B L e e

e F L u e e

e B L e e

i i i

I S

I S u

S S

x

S

Page 14: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

Neural ensembles dynamicssystems of neural populations

Golgi Nissl

internal granularlayer

internal pyramidallayer

external pyramidallayer

external granularlayer

macro-scale meso-scale micro-scale

EP

EI

II

mean-field firing rate synaptic dynamics

Page 15: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

, ,

,

x f x u

y g x

likelihood function?

Neural ensembles dynamicsthe observation function

, ,p y m

Page 16: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

Overview

1 DCM: introduction

2 Neural ensembles dynamics

3 Bayesian inference

4 Conclusion

Page 17: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

Bayesian inferenceforward and inverse problems

,p y m

forward problem

likelihood

,p y m

inverse problem

posterior distribution

Page 18: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

generative model m

likelihood

prior

posterior

Bayesian inferencelikelihood and priors

,p y m

p m

,,

p y m p mp y m

p y m

u

Page 19: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

Principle of parsimony :« plurality should not be assumed without necessity »

“Occam’s razor” :

mo

de

l evi

de

nce

p(y

|m)

space of all data sets

y=f(

x)y

= f(

x)

x

Bayesian inferencemodel comparison

Model evidence:

,p y m p y m p m d

Page 20: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

ln ln , ; ,KLqp y m p y m S q D q p y m

free energy : functional of q

1 or 2q

1 or 2 ,p y m

1 2, ,p y m

1

2

approximate (marginal) posterior distributions: 1 2,q q

Bayesian inferencethe variational Bayesian approach

Page 21: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

1 2

31 2

31 2

3

time

, ,x f x u

0t

t t

t t

t

Bayesian inferencea note on causality

1 2

3

32

21

13

u

13u 3

u

u x y

Page 22: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

1 2

3

32

21

13

u

13u 3

u

Bayesian inferencekey model parameters

state-state coupling 21 32 13, ,

3u input-state coupling

13u input-dependent modulatory effect

Page 23: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

Bayesian inferencemodel comparison for group studies

m1

m2

diff

eren

ces

in lo

g- m

ode

l evi

denc

es

1 2ln lnp y m p y m

subjects

fixed effect

random effect

assume all subjects correspond to the same model

assume different subjects might correspond to different models

Page 24: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

1 DCM: introduction

2 Neural ensembles dynamics

3 Bayesian inference

4 Conclusion

Overview

Page 25: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

Conclusionback to the auditory mismatch negativity

S-D: reorganisationof the connectivity structure

rIFG

rSTG

rA1

lSTG

lA1

rIFG

rSTG

rA1

lSTG

lA1

standard condition (S)

deviant condition (D)

t ~ 200 ms

……S S S D S S S S D S

sequence of auditory stimuli

Page 26: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

ConclusionDCM for EEG/MEG: variants

DCM for steady-state responses

second-order mean-field DCM

DCM for induced responses

DCM for phase coupling

0 100 200 3000

50

100

150

200

250

0 100 200 300-100

-80

-60

-40

-20

0

0 100 200 300-100

-80

-60

-40

-20

0

time (ms)

input depolarization

time (ms) time (ms)

auto-spectral densityLA

auto-spectral densityCA1

cross-spectral densityCA1-LA

frequency (Hz) frequency (Hz) frequency (Hz)

1st and 2d order moments

Page 27: J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK

Many thanks to:

Karl J. Friston (London, UK)Rosalyn Moran (London, UK)

Stefan J. Kiebel (Leipzig, Germany)