Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for...

33
Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Transcript of Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for...

Page 1: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Group analysisJean Daunizeau

Wellcome Trust Centre for NeuroimagingUniversity College London

SPM CourseEdinburgh, April 2010

Page 2: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

NormalisationNormalisation

Statistical Parametric MapStatistical Parametric MapImage timeImage time--seriesseries

Parameter estimatesParameter estimates

General Linear ModelGeneral Linear ModelRealignmentRealignment SmoothingSmoothing

Design matrix

AnatomicalAnatomicalreferencereference

Spatial filterSpatial filter

StatisticalStatisticalInferenceInference

RFTRFT

p <0.05p <0.05

Page 3: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Between subjects variability

εβ += Xy

RTs: 3 subjects, 4 conditions

residuals

subject 1 subject 2 subject 3

β

subject 1 subject 2 subject 3

Standard GLM

assumes only one sourceof i.i.d. random variation

But, in general, there are at least two sources:

within subj. variancebetween subj. variance

Causes dependences in ε

Page 4: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Lexicon

Hierarchical modelsMixed effect modelsRandom effect (RFX) modelsComponents of variance

… all the same… all alluding to multiple sources of variation

(in contrast to fixed effects)

Page 5: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Overview

Group analysis: fixed versus random effectsTwo RFX methods:

summary statistics approachnon-sphericity modelling

Examples

Page 6: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Overview

Group analysis: fixed versus random effectsTwo RFX methods:

summary statistics approachnon-sphericity modelling

Examples

Page 7: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Fixed vs random effects

Fixed effects:Intra-subjects variationsuggests all these subjects different from zero

Random effects:Inter-subjects variationsuggests population not different from zero

0

σ2FFX

σ2RFX

Distributions ofeach subject’sestimated effect

subj. 1

subj. 2

subj. 3

subj. 4

subj. 5

subj. 6

Distribution ofpopulation effect

Page 8: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Fixed effects

Only source of variation (over sessions)is measurement errorTrue response magnitude is fixed

Page 9: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Random effects

Two sources of variationmeasurement errorsresponse magnitude (over subjects)

Response magnitude is randomeach subject/session has random magnitude

Page 10: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Random effects

Two sources of variationmeasurement errorsresponse magnitude (over subjects)

Response magnitude is randomeach subject/session has random magnitudebut note, population mean magnitude is fixed

Page 11: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Fixed vs random effects

Fixed isn’t “wrong”, just usually isn’t of interest

Summary:Fixed effect inference:

“I can see this effect in this cohort”Random effect inference:

“If I were to sample a new cohort from the samepopulation I would get the same result”

Page 12: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Fixed effect modelling in SPM

subj. 1

subj. 2

subj. 3

Grand GLM approach(model all subjects at once)Good:

max dofsimple model

Bad:assumes common variance

over subjects at each voxel

Page 13: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Group analysis: efficiency and power

Efficiency = 1/ [estimator variance]goes up with n (number of subjects)c.f. “experimental design” talk

Power = chance of detecting an effectgoes up with degrees of freedom (dof = n-p).I reject the null when P<0.05. Is my risk of false positive rate (FPR) controlled at 5%?Well, not exactly, but valid control: FPR≤α.This is potentially conservative.

Page 14: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Overview

Group analysis: fixed versus random effectsTwo RFX methods:

summary statistics approachnon-sphericity modelling

Examples

Page 15: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Summary statistics approach

Proposed by Holmes and Friston

1- or 2- sample t test on contrast imageintra-subject variance not used

Procedure:Fit GLM for each subject iand compute contrast estimate (first level) Analyze (second level)

icβ{ }

1,...,i i ncβ

=

Page 16: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

16

p < 0.05 (corrected)

SPM{t}

σ2ε / nw

estimated mean activation image…

Fixed effects...

n – subjectsw – error dof

HF approach: motivation (I)

σ2ε

^

σ2ε

^

σ2ε

^

σ2ε

^

σ2ε

^

σ2ε

^

β

…to be comparedwith residuals variance:

β1^

β2^

β3^

β4^

β5^

β6^

Page 17: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

HF approach: motivation (II)

17

1st level (within subjects) 2nd level (between-subject)

contrasts

p < 0.001 (uncorrected)

SPM{t}

no voxels significantat p < 0.05 (corrected)

σ2 = σ2α + σ2

ε / w

—α

estimated mean activation image…

…to be comparedwith RFX variance:

σ2ε

^

σ2ε

^

σ2ε

^

σ2ε

^

σ2ε

^

σ2ε

^

β1^

β2^

β3^

β4^

β5^

β6^

Page 18: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

HF approach: assumptions

DistributionNormalityIndependent subjects

Homogeneous variance:Residual error the same for all subjects Balanced designs

Page 19: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

HF approach: limitations

LimitationsOnly single image per subjectIf 2 or more conditions,

must fit separate modelfor each contrast

Limitation a strength!No sphericity assumption

made on different conditionswhen fitting separate models

Page 20: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

HF approach: efficiency & validity

0

If assumptions trueOptimal, fully efficientExact p-values

If σ2FFX differs btw subj.

Reduced efficiencyBiased σ2

RFX

Liberal dof(here 3 subj. dominate) σ2

RFX

subj. 1

subj. 2

subj. 3

subj. 4

subj. 5

subj. 6

Page 21: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

HF approach: robustness

Mumford & Nichols. Simple group fMRI modeling and inference. Neuroimage, 47(4):1469--1475, 2009.

In practice, validity and efficiency are excellentFor 1-sample case, HF impossible to break

2-sample and correlation might give troubleDramatic imbalance and/or heteroscedasticity

Page 22: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Overview

Group analysis: fixed versus random effectsTwo RFX methods:

summary statistics approachnon-sphericity modelling

Examples

Page 23: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Non sphericity modelling – basics

1 effect per subjectUse Holmes & Friston approach

>1 effects per subjectCan’t use HF, must use non sphericity modellingCovariance components and ReML

(c.f. “Bayesian inference” talk)

Page 24: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

The i.i.d. case

12 subjects, 4 conditionsUse F-test to find differences btw conditionsUnderlying assumption: residuals i.i.d.

y = X β + en × 1 n × p p × 1 n × 1

Cov(ε) = λ I

design matrix residuals covariance matrix

Page 25: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Multiple covariance components (I)

residuals covariance matrix

E.g., 2-sample t-testErrors are independentbut not identical.2 covariance components

Qk’s:

Page 26: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Multiple covariance components (II)

Errors are not independentand not identical

Qk’s:

residuals covariance matrix

Page 27: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Overview

Group analysis: fixed versus random effectsTwo RFX methods:

summary statistics approachnon-sphericity modelling

Examples

Page 28: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Example 1: data

Stimuli:Auditory presentation (SOA = 4 sec)250 scans per subject, block designWords, e.g. “book”Words spoken backwards, e.g. “koob”

Subjects:12 controls11 blind people

Page 29: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Example 1: population differences

X

]11[ −=Tc( )Cov ε

1st level

2nd level

controls blinds

design matrix

Page 30: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Example 2

Stimuli:Auditory presentation (SOA = 4 sec)250 scans per subject, block designWords:

Subjects:12 controls

“turn”“pink”“click”“jump”ActionVisualSoundMotion

Question:What regions are affected by the semantic content of the words?

Page 31: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Example 2: repeated measures ANOVA

X

?=

?=

?=

2,1 3,1

3,2

4,1

4,2

4,3

1: motion 2: sounds 3: visual 4: action

1st level

2nd level

Page 32: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Example 2: repeated measures ANOVA

X

?=

?=

?=

1: motion 2: sounds 3: visual 4: action

1st level

2nd level⎟⎟⎟

⎜⎜⎜

−−

−=

110001100011

Tc( )Cov ε

X

design matrix

Page 33: Group analysis - University of Edinburgh · Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010

Bibliography:

Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007.

With many thanks to G. Flandin, J.-B. Poline and Tom Nichols for slides.

Generalisability, Random Effects & Population Inference.Holmes & Friston, NeuroImage,1999.

Classical and Bayesian inference in neuroimaging: theory. Friston et al., NeuroImage, 2002.

Classical and Bayesian inference in neuroimaging: variance component estimation in fMRI.Friston et al., NeuroImage, 2002.

Simple group fMRI modeling and inference. Mumford & Nichols, Neuroimage, 2009.