iwr.uni-heidelberg.de/groups/amj/BioStruct

49
Structured Population Models for Hematopoiesis Marie Doumic with Anna MARCINIAK-CZOCHRA, Benoît PERTHAME and Jorge ZUBELLI part of A. Marciniak group « BIOSTRUCT » aims http://www.iwr.uni-heidelberg.de/groups/amj/BioStruct/

description

Structured Population Models for Hematopoiesis Marie Doumic with Anna MARCINIAK-CZOCHRA, Benoît PERTHAME and Jorge ZUBELLI part of A. Marciniak group «  BIOSTRUCT » aims. http://www.iwr.uni-heidelberg.de/groups/amj/BioStruct/. Outline. Introduction : biological & medical motivation - PowerPoint PPT Presentation

Transcript of iwr.uni-heidelberg.de/groups/amj/BioStruct

Page 1: iwr.uni-heidelberg.de/groups/amj/BioStruct

Structured Population Modelsfor Hematopoiesis

Marie Doumic

with Anna MARCINIAK-CZOCHRA, Benoît PERTHAME and Jorge ZUBELLI

part of A. Marciniak group «  BIOSTRUCT » aims

http://www.iwr.uni-heidelberg.de/groups/amj/BioStruct/

Page 2: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Outline

Introduction : biological & medical motivationQuick review of models of hematopoiesisShort focus on I. Roeder’s model

The original model: a discrete compartment model

A continuous model: link with the discrete model boundedness steady states stability and instability

Perspectives

Page 3: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

• Functionally undifferentiated• Able to proliferate• Give rise to a large number of more differentiated

progenitor cells• Maintain their population by dividing to undifferentiated

cells• Heterogeneous in respect to morphological and

biochemical properties

What are stem cells ?

Page 4: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Role of (adult) stem cells

• Found in lots of different tissues

• Govern regeneration processes: importance in– Bone marrow transplantation (leukemia), liver

regeneration…– Cancerogenesis (cancer stem cells)

Page 5: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Page 6: iwr.uni-heidelberg.de/groups/amj/BioStruct

Formation of blood components

All derived from Hematopoietic Stem Cells (HSC)

What is hematopoiesis ?

Page 7: iwr.uni-heidelberg.de/groups/amj/BioStruct

Open questions

• How is cell differentiation and self-renewal regulated ?

• Which factors influence repopulation kinetics ?

• How cancer cells and healthy cells interact ?

• How drug resistance of cancer cells can appear ?

• How acts a drug therapy (e.g. Imatinib for leukemia) ? Can it cure the patient completely ?

• … and many others

Page 8: iwr.uni-heidelberg.de/groups/amj/BioStruct

Models of hematopoiesis• Compartments / quiescence and proliferation

• Maturation : discrete or continuous process?

• IBM or PDE/ODE/DDE models

• Modelling the Cell cycle (or simplifications)

• Nonlinearities to regulate the system:– Feedback-loops (A. Marciniak’s model)– competition for space (stem cells niches – I. Roeder)

Choice of a model depends on which aim is pursued

Page 9: iwr.uni-heidelberg.de/groups/amj/BioStruct

(very partial) short overviewon models of hematopoiesisA good review: Adimy et al., Hemato., 2008

First models: MacKey, 1978 ; Loeffler, 1985

• F. Michor et al (Nature 2005, …): linear ODE and stochastic

• I. Roeder et al (Nature 2006,…): IBM model

Nonlinearity + reversible maturation process

-> Kim, Lee, Levy (PloS Comp Biol 2007, …):

PDE model based on Roeder IBM model

• Adimy, Crauste, Pujo-Menjouet et al.: DDE and application to chronic leukemia

Page 10: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

• IBM model built on the following main ideas:

Short focus on I. Roeder’s modelIBM model built on the following main ideas

Page 11: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

• IBM model built on the following main ideas:

Short focus on I. Roeder’s modelIBM model built on the following main ideas

Page 12: iwr.uni-heidelberg.de/groups/amj/BioStruct

Goal: to model leukemia & Imatinib treatment. 2 Main ideas: 1. Reversible maturation process2. Competition for room in « stem cell niches »: this nonlinearity

controls the system

Work of Kim, Lee, Levy:• Write a full PDE model mimicking the IBM model• Show strictly equivalent (quantitatively & qualitatively) behaviours-> very efficient numerical simulations

Work of MD, Kim, Perthame:• Write successive simplified PDE models, keeping ideas 1. & 2.• Show equivalent qualitative behaviours (stability or instability)-> analytical analysis explaining these behaviours

Short focus on I. Roeder’s model

Page 13: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Simplest version of I. Roeder’s model:

Short focus on I. Roeder’s model

Page 14: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

• IBM model built on the following main ideas:

Short focus on I. Roeder’s modelIBM model built on the following main ideas

Page 15: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Anna Marciniak – Czochra ‘sGroup « BioStruct » aim

See http://www.iwr.uniheidelberg.de/groups/amj/BioStruct/

To model hematopoietic reconstitution –> model Cytokin control (feedback loop)

Medical applications

• Stress conditions (chemotherapy)• Bone marrow transplantation• Blood regeneration

Page 16: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Experimental data

Page 17: iwr.uni-heidelberg.de/groups/amj/BioStruct

Original model: discrete structure

differentiation

proliferation

Marciniak, Stiehl, W. Jäger, Ho, Wagner, Stem Cells & Dev., 2008.

Page 18: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Page 19: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Regulation and signalling

Cytokines• Extracellular signalling molecules (peptides)• Low level under physiological conditions• Augmented in stress conditions

Dynamics :

Quasi steady-state approximation:

Page 20: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

ModelsWhat is regulated?• Evidence of cell cycle regulation• Evidence of high self-renewal capacity in HSC

Regulation modes• Regulation of proliferation:

• Regulation of self renewal versus differentiation

Page 21: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Page 22: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Page 23: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Page 24: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Page 25: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Model analysis

Steady states• Trivial: stable iff it is the only equilibrium• Semi-trivial: linearly unstable iff there exists a steady

state with more positive components• Positive steady: unique if it exists – (globally) stable ?

-> Stiehl, Marciniak (2010) & T. Stiehl’s talk on friday

Page 26: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Page 27: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Page 28: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

PDE model derived from the discrete one(MD, Marciniak, Zubelli, Perthame,in progress)

• Stem cells: w, aw, pw, dw u1, a1, p1, d1 discrete

• Maturing cells: u(x), p(x,s), d(x) ui, ai, pi, di discrete

gi-1 ui-1 - gi ui with gi = 2(1-ai(s))pi(s)

Self-renewal Proliferation Death rate

Page 29: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

PDE model: from discrete to continuous

1 - We formulate the original model as

Page 30: iwr.uni-heidelberg.de/groups/amj/BioStruct

PDE model: from discrete to continuous2 – We adimension it by defining characteristic constants:

3 – We introduce a small parameter ε→0, with n=nε → x*

4 – To have sums Riemann sums integrals

differences finite differences derivatives:

Page 31: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

PDE model: from discrete to continuous2 – We adimension it by defining characteristic constants:

5 – Define

Page 32: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

PDE model: from discrete to continuous2 – We adimension it by defining characteristic constants:

6 – Continuity assumptions:

Page 33: iwr.uni-heidelberg.de/groups/amj/BioStruct

7 – Proposition: under the continuity assumptions, the

Solution to the discrete system converges, up to a

subsequence, to with

if moreover the convergence is strong in

for w = lim(u1ε) solution of

we get

If moreover u is continuous in x* and un-1ε converges to u(t,x*)

Then unε converges to v solution of

Page 34: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Remark: decorrelation between differentiation and

proliferation is needed, else due to orders of magnitude

transport becomes a corrective term and we get

Analysis of the PDE model

Page 35: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Remark: decorrelation between differentiation and

proliferation is needed, else due to orders of magnitude

transport becomes a corrective term and we get

see Grzegorz Jamroz’s talk for more insight

Analysis of the PDE model

Page 36: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Numerical simulations

Stem cells Maturing cells mature cells

Discrete model Continuous model

Page 37: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Analysis of the general PDE model

With initial conditions:

Cell number balance law:

Page 38: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Theorem. The unique solution is uniformly bounded

Analysis of PDE -Assumptions

Page 39: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

Main difficulty: feed-back loop involves a delay

Main tool: the following lemma:

Sketch of the proof: deriving the equation divided by u:

Analysis of PDE - boundedness

Page 40: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

From boundedness of z we deduce

1st and 3rd estimate: directly from boundedness of z

2nd estimate: look at

Analysis of PDE - boundedness

Page 41: iwr.uni-heidelberg.de/groups/amj/BioStruct

Extra estimate, used for non-extinction (see below):

Proof:

Analysis of PDE - boundedness

Page 42: iwr.uni-heidelberg.de/groups/amj/BioStruct

Solution of:

With .

Proposition. There exists a steady state iffIn this case, it is unique.

Remark: similar assumption for the discrete system BUT here: no semi-trivial steady state.

Analysis of PDE – steady states

Page 43: iwr.uni-heidelberg.de/groups/amj/BioStruct

Theorem.

extinction with exponential rate

bounded away from zero

Proof for extinction: uses entropy by calculating

Proof for positivity:

Analysis of PDE – extinction or persistance

Page 44: iwr.uni-heidelberg.de/groups/amj/BioStruct

Theorem.

extinction with exponential rate

bounded away from zero

Remark: a similar alternative is found

in many other nonlinear structured models

(see D, Kim, Perthame for CML ;

Calvez, Lenuzza et al. for prion equations;

Bekkal Brikci, Clairambault, Perthame for cell cycle…)

Analysis of PDE – extinction or persistance

Page 45: iwr.uni-heidelberg.de/groups/amj/BioStruct

Linearised equation around the steady state:

Method: look for the sign of the real part of the eigenvalues

Analysis of PDE – Linearised stability of the non trivial steady state

Page 46: iwr.uni-heidelberg.de/groups/amj/BioStruct

Eigenvalue problem:

Defining it gives:

Analysis of PDE – Linearised stability of the non trivial steady state

Page 47: iwr.uni-heidelberg.de/groups/amj/BioStruct

Simplest case: no feed-back on the maturation process.The characteristic equation becomes

Proposition.

If

There is a Hopf bifurcation for one value of μ >0.

Proof: look for purely imaginary solutions, which are theplaces where a bifurcation can occur.

Analysis of PDE – Linearised stability of the non trivial steady state

Page 48: iwr.uni-heidelberg.de/groups/amj/BioStruct

Case derived from the discrete model:

Proposition.

If the maturation and the proliferation rates are independent of maturity: linear stability.

If proliferation rate varies: instability may appear.

Proof: same ideas (but longer calculations…)

Analysis of PDE – Linearised stability of the non trivial steady state

Page 49: iwr.uni-heidelberg.de/groups/amj/BioStruct

Marie Doumic Bedlewo, September 14th, 2010

perspectives

• Comparison discrete & continuous :– biological interpretation of analytical constraints– What could give a measure of differentiation ? – Opportunity of the discrete vs continuous modelling ?

• Inverse problems: recover g from data of differentiated cells ?

• Mathematical challenge: prove nonlinear (in)stability by the use of entropy-type arguments ?