Item Recommendation with Variational Autoencoders and ...

63
Item Recommendation with Variational Autoencoders and Heterogenous Priors Giannis Karamanolakis Kevin Raji Cherian Ananth Ravi Narayan Jie Yuan Da Tang Tony Jebara Columbia Columbia Columbia Columbia Columbia Columbia, Netflix

Transcript of Item Recommendation with Variational Autoencoders and ...

Page 1: Item Recommendation with Variational Autoencoders and ...

Item Recommendation with Variational Autoencoders and Heterogenous Priors

Giannis Karamanolakis Kevin Raji Cherian Ananth Ravi Narayan

Jie Yuan Da Tang Tony Jebara

Columbia Columbia Columbia

Columbia Columbia Columbia, Netflix

Page 2: Item Recommendation with Variational Autoencoders and ...

U × I

Item Recommendation - Collaborative Filtering (CF)

Page 3: Item Recommendation with Variational Autoencoders and ...

U × I

Item Recommendation - Collaborative Filtering (CF)

? ?

Page 4: Item Recommendation with Variational Autoencoders and ...

U × I

Item Recommendation - Collaborative Filtering (CF)

? ?

Page 5: Item Recommendation with Variational Autoencoders and ...

U × I

Item Recommendation - Collaborative Filtering (CF)

?

Page 6: Item Recommendation with Variational Autoencoders and ...

U × I (U × K) × (K × I)

Item Recommendation - Collaborative Filtering (CF)

Latent Factor Models

Page 7: Item Recommendation with Variational Autoencoders and ...

U × I (U × K) × (K × I)

Item Recommendation - Collaborative Filtering (CF)

Latent Factor Models

(-) linear limited modeling capacity

Page 8: Item Recommendation with Variational Autoencoders and ...

U × I (U × K) × (K × I)

Item Recommendation - Collaborative Filtering (CF)

Latent Factor Models

(-) linear limited modeling capacityNon-linear Features

Page 9: Item Recommendation with Variational Autoencoders and ...

U × I (U × K) × (K × I)

Item Recommendation - Collaborative Filtering (CF)

Latent Factor Models

(-) linear limited modeling capacityNon-linear Features

Neural Networks

Page 10: Item Recommendation with Variational Autoencoders and ...

U × I (U × K) × (K × I)

Item Recommendation - Collaborative Filtering (CF)

Latent Factor Models

(-) linear limited modeling capacityNon-linear Features

Neural Networks

Variational Autoencoders (VAEs)

“Auto-encoding Variational Bayes” D. P. Kingma, M. Welling, ICLR 2014“Variational Autoencoders for Collaborative Filtering” D. Liang, RG. Krishnan, MD. Hoffman, T. Jebara, WWW 2018

Page 11: Item Recommendation with Variational Autoencoders and ...

U × I (U × K) × (K × I)

Item Recommendation - Collaborative Filtering (CF)

Latent Factor Models

(-) linear limited modeling capacityNon-linear Features

Neural Networks

Variational Autoencoders (VAEs)

“Variational Autoencoders for Collaborative Filtering” D. Liang, RG. Krishnan, MD. Hoffman, T. Jebara, WWW 2018

generalize linear latent factor modelshave larger modeling capacity(+)

(+)

“Auto-encoding Variational Bayes” D. P. Kingma, M. Welling, ICLR 2014

Page 12: Item Recommendation with Variational Autoencoders and ...

VAEs for Collaborative Filtering

“Variational Autoencoders for Collaborative Filtering” D. Liang, R. G. Krishnan, M. D. Hoffman, T. Jebara, WWW 2018.

0.70

0.00

0.15

0.00

qϕ(zu |xu)

p(zu) ∼ 𝒩(0,𝕀K)-

-

-

0.0

1.0

0.0

1.0

Page 13: Item Recommendation with Variational Autoencoders and ...

VAEs for Collaborative Filtering

Multinomial Likelihood

“Variational Autoencoders for Collaborative Filtering” D. Liang, R. G. Krishnan, M. D. Hoffman, T. Jebara, WWW 2018.

0.70

0.00

0.15

0.00

qϕ(zu |xu)

p(zu) ∼ 𝒩(0,𝕀K)-

-

-

0.0

1.0

0.0

1.0

Page 14: Item Recommendation with Variational Autoencoders and ...

VAEs for Collaborative Filtering

0.70

0.00

0.15

0.00

Training Objective:

(Negative) reconstruction error

qϕ(zu |xu)

p(zu) ∼ 𝒩(0,𝕀K)

Regularization term (Kullback-Leibler Divergence)

“Variational Autoencoders for Collaborative Filtering” D. Liang, R. G. Krishnan, M. D. Hoffman, T. Jebara, WWW 2018.

-

-

-

0.0

1.0

0.0

1.0

Page 15: Item Recommendation with Variational Autoencoders and ...

VAEs for Collaborative Filtering

0.70

0.00

0.15

0.00

qϕ(zu |xu)

p(zu) ∼ 𝒩(0,𝕀K)

“Variational Autoencoders for Collaborative Filtering” D. Liang, R. G. Krishnan, M. D. Hoffman, T. Jebara, WWW 2018.

𝒩(0,𝕀K)

-

-

-

0.0

1.0

0.0

1.0

Training Objective:

(Negative) reconstruction error Regularization term (Kullback-Leibler Divergence)

Page 16: Item Recommendation with Variational Autoencoders and ...

VAEs for Collaborative Filtering

0.70

0.00

0.15

0.00

qϕ(zu |xu)

p(zu) ∼ 𝒩(0,𝕀K)

“Variational Autoencoders for Collaborative Filtering” D. Liang, R. G. Krishnan, M. D. Hoffman, T. Jebara, WWW 2018.

My variational posterior:

should be near my prior:

qϕ(zu1 |xu1)

p(zu1) ∼ 𝒩(0,𝕀K)

-

-

-

Training Objective:

(Negative) reconstruction error Regularization term (Kullback-Leibler Divergence)

Page 17: Item Recommendation with Variational Autoencoders and ...

VAEs for Collaborative Filtering

0.70

0.00

0.15

0.00

qϕ(zu |xu)

p(zu) ∼ 𝒩(0,𝕀K)

“Variational Autoencoders for Collaborative Filtering” D. Liang, R. G. Krishnan, M. D. Hoffman, T. Jebara, WWW 2018.

My variational posterior:

should be near my prior:

qϕ(zu1 |xu1)

p(zu1) ∼ 𝒩(0,𝕀K)

My variational posterior:

should be near my prior:

qϕ(zu2 |xu2)

p(zu2) ∼ 𝒩(0,𝕀K)-

- 0.70

0.00

0.15

0.00

Training Objective:

(Negative) reconstruction error Regularization term (Kullback-Leibler Divergence)

Page 18: Item Recommendation with Variational Autoencoders and ...

VAEs for Collaborative Filtering

0.70

0.00

0.15

0.00

qϕ(zu |xu)

p(zu) ∼ 𝒩(0,𝕀K)

“Variational Autoencoders for Collaborative Filtering” D. Liang, R. G. Krishnan, M. D. Hoffman, T. Jebara, WWW 2018.

My variational posterior:

should be near my prior:

qϕ(zu1 |xu1)

p(zu1) ∼ 𝒩(0,𝕀K)

My variational posterior:

should be near my prior:

0.70

0.00

0.15

0.00

-

-

-

qϕ(zu2 |xu2)

p(zu2) ∼ 𝒩(0,𝕀K)

My variational posterior:

should be near my prior:

qϕ(zu3 |xu3)

p(zu3) ∼ 𝒩(0,𝕀K)

Training Objective:

(Negative) reconstruction error Regularization term (Kullback-Leibler Divergence)

Page 19: Item Recommendation with Variational Autoencoders and ...

VAEs for Collaborative Filtering

0.70

0.00

0.15

0.00

qϕ(zu |xu)

p(zu) ∼ 𝒩(0,𝕀K)

“Variational Autoencoders for Collaborative Filtering” D. Liang, R. G. Krishnan, M. D. Hoffman, T. Jebara, WWW 2018.

My variational posterior:

should be near my prior:

qϕ(zu1 |xu1)

p(zu1) ∼ 𝒩(0,𝕀K)

My variational posterior:

should be near my prior:

qϕ(zu2 |xu2)

p(zu2) ∼ 𝒩(0,𝕀K)

My variational posterior:

should be near my prior:

qϕ(zu3 |xu3)

p(zu3) ∼ 𝒩(0,𝕀K)

-

My variational posterior:

should be near my prior:

qϕ(zu4 |xu4)

p(zu4) ∼ 𝒩(0,𝕀K)

Training Objective:

(Negative) reconstruction error Regularization term (Kullback-Leibler Divergence)

Page 20: Item Recommendation with Variational Autoencoders and ...

VAEs for Collaborative Filtering

qϕ(zu |xu)

p(zu) ∼ 𝒩(0,𝕀K)

“Variational Autoencoders for Collaborative Filtering” D. Liang, R. G. Krishnan, M. D. Hoffman, T. Jebara, WWW 2018.

My variational posterior:

should be near my prior:

qϕ(zu1 |xu1)

p(zu1) ∼ 𝒩(0,𝕀K)

My variational posterior:

should be near my prior:

qϕ(zu2 |xu2)

p(zu2) ∼ 𝒩(0,𝕀K)

My variational posterior:

should be near my prior:

qϕ(zu3 |xu3)

p(zu3) ∼ 𝒩(0,𝕀K)

-

My variational posterior:

should be near my prior:

qϕ(zu4 |xu4)

p(zu4) ∼ 𝒩(0,𝕀K)

0.70

0.00

0.15

0.00

Training Objective:

(Negative) reconstruction error Regularization term (Kullback-Leibler Divergence)

Page 21: Item Recommendation with Variational Autoencoders and ...

VAEs for Collaborative Filtering

qϕ(zu |xu)

p(zu) ∼ 𝒩(0,𝕀K)

“Variational Autoencoders for Collaborative Filtering” D. Liang, R. G. Krishnan, M. D. Hoffman, T. Jebara, WWW 2018.

My variational posterior:

should be near my prior:

qϕ(zu1 |xu1)

p(zu1) ∼ 𝒩(0,𝕀K)

My variational posterior:

should be near my prior:

qϕ(zu2 |xu2)

p(zu2) ∼ 𝒩(0,𝕀K)

My variational posterior:

should be near my prior:

qϕ(zu3 |xu3)

p(zu3) ∼ 𝒩(0,𝕀K)

-

My variational posterior:

should be near my prior:

qϕ(zu4 |xu4)

p(zu4) ∼ 𝒩(0,𝕀K)

0.70

0.00

0.15

0.00

Training Objective:

(Negative) reconstruction error Regularization term (Kullback-Leibler Divergence)

Page 22: Item Recommendation with Variational Autoencoders and ...

VAEs for Collaborative Filtering

qϕ(zu |xu)

p(zu) ∼ 𝒩(0,𝕀K)

“Variational Autoencoders for Collaborative Filtering” D. Liang, R. G. Krishnan, M. D. Hoffman, T. Jebara, WWW 2018.

My variational posterior:

should be near my prior:

qϕ(zu1 |xu1)

p(zu1) ∼ 𝒩(0,𝕀K)

My variational posterior:

should be near my prior:

qϕ(zu2 |xu2)

p(zu2) ∼ 𝒩(0,𝕀K)

My variational posterior:

should be near my prior:

qϕ(zu3 |xu3)

p(zu3) ∼ 𝒩(0,𝕀K)

-

My variational posterior:

should be near my prior:

qϕ(zu4 |xu4)

p(zu4) ∼ 𝒩(0,𝕀K)

0.70

0.00

0.15

0.00

?

Training Objective:

(Negative) reconstruction error Regularization term (Kullback-Leibler Divergence)

Page 23: Item Recommendation with Variational Autoencoders and ...

VAEs for Collaborative Filtering

qϕ(zu |xu)

p(zu) ∼ 𝒩(0,𝕀K)

“Variational Autoencoders for Collaborative Filtering” D. Liang, R. G. Krishnan, M. D. Hoffman, T. Jebara, WWW 2018.

My variational posterior:

should be near my prior:

qϕ(zu1 |xu1)

p(zu1) ∼ 𝒩(0,𝕀K)

My variational posterior:

should be near my prior:

qϕ(zu2 |xu2)

p(zu2) ∼ 𝒩(0,𝕀K)

My variational posterior:

should be near my prior:

qϕ(zu3 |xu3)

p(zu3) ∼ 𝒩(0,𝕀K)

-

My variational posterior:

should be near my prior:

qϕ(zu4 |xu4)

p(zu4) ∼ 𝒩(0,𝕀K)

0.70

0.00

0.15

0.00

“Posterior-Collapse” Issue

𝒩(0,𝕀K)qϕ(zui |xui)

collapses to

Hoffman et al. 2016 (“ELBO surgery”)

∀ user:

Bowman et al. 2016,

?

Training Objective:

(Negative) reconstruction error Regularization term (Kullback-Leibler Divergence)

Page 24: Item Recommendation with Variational Autoencoders and ...

VAEs for Collaborative Filtering

qϕ(zu |xu)

p(zu) ∼ 𝒩(0,𝕀K)

“Variational Autoencoders for Collaborative Filtering” D. Liang, R. G. Krishnan, M. D. Hoffman, T. Jebara, WWW 2018.

My variational posterior:

should be near my prior:

qϕ(zu1 |xu1)

p(zu1) ∼ 𝒩(0,𝕀K)

My variational posterior:

should be near my prior:

qϕ(zu2 |xu2)

p(zu2) ∼ 𝒩(0,𝕀K)

My variational posterior:

should be near my prior:

qϕ(zu3 |xu3)

p(zu3) ∼ 𝒩(0,𝕀K)

-

My variational posterior:

should be near my prior:

qϕ(zu4 |xu4)

p(zu4) ∼ 𝒩(0,𝕀K)

0.70

0.00

0.15

0.00

In this paper

Use heterogenous, user-dependent priors!

𝒩(tu4, 𝕊u4)p(zu4) ∼ 𝒩(0,𝕀K)

Training Objective:

(Negative) reconstruction error Regularization term (Kullback-Leibler Divergence)

Page 25: Item Recommendation with Variational Autoencoders and ...

This work: Item Recommendation with VAEs and Heterogenous Priors

• For each user , we replace by

- Prior parameters encode user preferences

u

- Explicitly encourage user diversity in latent VAE space

Using heterogenous, user-dependent priors

Page 26: Item Recommendation with Variational Autoencoders and ...

- Prior parameters encode user preferences- Explicitly encourage user diversity in latent VAE space

Using heterogenous, user-dependent priors

• For each user , we replace by

This work: Item Recommendation with VAEs and Heterogenous Priors

u

?How can you encode my preferences?

Have I revealed them?

Page 27: Item Recommendation with Variational Autoencoders and ...

?

- Prior parameters encode user preferences- Explicitly encourage user diversity in latent VAE space

Using heterogenous, user-dependent priors

• For each user , we replace by

This work: Item Recommendation with VAEs and Heterogenous Priors

u

How can you encode my preferences?

Have I revealed them?

Yes, you have!

By writing reviews…

Page 28: Item Recommendation with Variational Autoencoders and ...

Item Recommendation with VAEs and Heterogenous Priors

Users reveal their preferences in text reviews

Page 29: Item Recommendation with Variational Autoencoders and ...

Users reveal their preferences in text reviews

Item Recommendation with VAEs and Heterogenous Priors

Yelp Review

Page 30: Item Recommendation with Variational Autoencoders and ...

Item Recommendation with VAEs and Heterogenous Priors

Users reveal their preferences in text reviews

Yelp Review

IMDB Review

Page 31: Item Recommendation with Variational Autoencoders and ...

Item Recommendation with VAEs and Heterogenous Priors

Users reveal their preferences in text reviews

Yelp Review

IMDB Review

likes burgers

likes heist movies

cares aboutportion size

likes suspense

Page 32: Item Recommendation with Variational Autoencoders and ...

Item Recommendation with VAEs and Heterogenous Priors

Before After

Encoding user preferences from text (2 methods):

• , : functions of the user’s review text

Page 33: Item Recommendation with Variational Autoencoders and ...

Encoding user preferences from text (2 methods):

- Method 1: Word Embeddings (word2vec)- Method 2: Probabilistic Topic Models (Latent Dirichlet Allocation - LDA)

Item Recommendation with VAEs and Heterogenous Priors

Before

• , : functions of the user’s review text

After

Page 34: Item Recommendation with Variational Autoencoders and ...

Encoding user preferences from text:• Method 1: Word Embeddings (word2vec)

Item Recommendation with VAEs and Heterogenous Priors

-dim Word EmbeddingsK Mikolov et. al. 2013: “Efficient estimation of word representations in vector space”

Page 35: Item Recommendation with Variational Autoencoders and ...

Encoding user preferences from text:

1. Create review embeddings: avg of word embeddings

Item Recommendation with VAEs and Heterogenous Priors

Review Embeddings-dim Word EmbeddingsK

1.

• Method 1: Word Embeddings (word2vec)

Page 36: Item Recommendation with Variational Autoencoders and ...

Encoding user preferences from text:

1. Create review embeddings: avg of word embeddings

- : avg of review embeddings (written by )u- : diagonal covariance matrix

-dim Word EmbeddingsK

diagonal values : std of review embeddingss1, . . . , sK ∈ ℝ

2. Represent each user: Gaussian distribution

Item Recommendation with VAEs and Heterogenous Priors

Review Embeddings User Distributions

1. 2.

• Method 1: Word Embeddings (word2vec)

Page 37: Item Recommendation with Variational Autoencoders and ...

Encoding user preferences from text:• Method 2: Probabilistic Topic Models (Latent Dirichlet Allocation - LDA)

Item Recommendation with VAEs and Heterogenous Priors

David Blei, Andrew Y Ng, Michael I Jordan, 2003: “Latent Dirichlet Allocation”

Topic 1horrorblood

guncrime

Topic 2 Topic K…

loveromance

kisswedding

actionrobbery

killpolice

… … …

Page 38: Item Recommendation with Variational Autoencoders and ...

Encoding user preferences from text:

1. Train LDA to extract topicsK

Item Recommendation with VAEs and Heterogenous Priors

Topic 1horrorblood

guncrime

Topic 2 Topic K…

loveromance

kisswedding

actionrobbery

killpolice

… … …

• Method 2: Probabilistic Topic Models (Latent Dirichlet Allocation - LDA)

David Blei, Andrew Y Ng, Michael I Jordan, 2003: “Latent Dirichlet Allocation”

Page 39: Item Recommendation with Variational Autoencoders and ...

Encoding user preferences from text:

1. Train LDA to extract topics2. For each user :

Ku

Item Recommendation with VAEs and Heterogenous Priors

Topic 1horrorblood

guncrime

Topic 2 Topic K…

loveromance

kisswedding

actionrobbery

killpolice

… … …

• Method 2: Probabilistic Topic Models (Latent Dirichlet Allocation - LDA)

2a: concatenate all of the user’s reviews in one document

Page 40: Item Recommendation with Variational Autoencoders and ...

Encoding user preferences from text:

1. Train LDA to extract topics2. For each user :

K

2a: concatenate all of the user’s reviews in one document2b: represent as the distribution over the topics

u

u K

Topi

c 1

Topi

c 2

Topi

c K

Item Recommendation with VAEs and Heterogenous Priors

Topic 1horrorblood

guncrime

Topic 2 Topic K…

loveromance

kisswedding

actionrobbery

killpolice

… … …

• Method 2: Probabilistic Topic Models (Latent Dirichlet Allocation - LDA)

Page 41: Item Recommendation with Variational Autoencoders and ...

Encoding user preferences from text:

1. Train LDA to extract topics2. For each user :

K

2b: represent as the distribution over the topics

u

u

Topi

c 1

Topi

c 2

Topi

c K

Topic 1horrorblood

guncrime

Topic 2 Topic K…

loveromance

kisswedding

Item Recommendation with VAEs and Heterogenous Priors

K

actionrobbery

killpolice

… … …

• Method 2: Probabilistic Topic Models (Latent Dirichlet Allocation - LDA)

2a: concatenate all of the user’s reviews in one document

Page 42: Item Recommendation with Variational Autoencoders and ...

p(zu)

Item Recommendation with VAEs and Heterogenous PriorsItem Recommendation Pipeline

Online Reviews

Page 43: Item Recommendation with Variational Autoencoders and ...

p(zu)

Item Recommendation with VAEs and Heterogenous PriorsItem Recommendation Pipeline

Text

Online Reviews

p(zu)1. word2vec2. LDA

Page 44: Item Recommendation with Variational Autoencoders and ...

p(zu)

Item Recommendation with VAEs and Heterogenous PriorsItem Recommendation Pipeline

Text

Online Reviews

Ratings

p(zu)

Page 45: Item Recommendation with Variational Autoencoders and ...

p(zu)

Item Recommendation with VAEs and Heterogenous PriorsItem Recommendation Pipeline

Text

Online Reviews

Ratings KL

p(zu)

Page 46: Item Recommendation with Variational Autoencoders and ...

Text

Online Reviews

p(zu)

Item Recommendation with VAEs and Heterogenous PriorsItem Recommendation Pipeline

Ratings

p(zu)

Page 47: Item Recommendation with Variational Autoencoders and ...

Text

Online Reviews

p(zu)

Item Recommendation with VAEs and Heterogenous PriorsItem Recommendation Pipeline

Ratings

0.70

0.01

0.15

0.00

p(zu)

Page 48: Item Recommendation with Variational Autoencoders and ...

Text

Online Reviews

p(zu)

Item Recommendation with VAEs and Heterogenous PriorsItem Recommendation Pipeline

Ratings

0.70

0.01

0.15

0.00

Item Ranking

p(zu)

Page 49: Item Recommendation with Variational Autoencoders and ...

Text

Online Reviews

p(zu)

Item Recommendation with VAEs and Heterogenous PriorsItem Recommendation Pipeline

Ratings

0.70

0.01

0.15

0.00

Item Ranking

p(zu)

Evaluate on held-out ratings

Evaluation Metrics

• NDCG@100• Recall@20• Recall@50

Page 50: Item Recommendation with Variational Autoencoders and ...

Text

Online Reviews

p(zu)

Item Recommendation with VAEs and Heterogenous PriorsItem Recommendation Pipeline

Ratings

0.70

0.01

0.15

0.00

Item Ranking

p(zu)

Evaluation Metrics

• NDCG@100• Recall@20• Recall@50

EncoderI × 600 × 300

300 × 600 × I

MLP:DecoderMLP:

Evaluate on held-out ratings

Page 51: Item Recommendation with Variational Autoencoders and ...

Evaluation Datasets: Online Reviews (Rating & Text)

Preprocessing:

Item Recommendation with VAEs and Heterogenous Priors

% non-empty entries

•Yelp Challenge Dataset• IMDB Corpus of Movie Reviews

•Binarize ratings

•Reduce sparsity (cutoff)

-Yelp: 1-2 stars 0, 3-5 stars 1- IMDB: 1-4 stars 0, 5-10 stars 1

-Yelp: discard businesses < 30 reviews, users < 5 reviews- IMDB: discard movies < 5 reviews, users < 5 reviews

Page 52: Item Recommendation with Variational Autoencoders and ...

Item Recommendation with VAEs and Heterogenous Priors

Ranking the items in random order

Model Comparison

Matrix FactorizationText-only: Ranking items according to cos(tu, ti)

VAE (Liang et al. 2018)VAE with random user-dependent priors

VAE with Text Regularizationℒγ = ℒβ − γ ⋅ dist(zu, tu)

VAE with heterogenous user-dependent priors

~ 0.003~ 0.007

Evaluation Results

Page 53: Item Recommendation with Variational Autoencoders and ...

Item Recommendation with VAEs and Heterogenous Priors

Ranking the items in random order

std of scores

Matrix FactorizationText-only: Ranking items according to cos(tu, ti)

VAE (Liang et al. 2018)VAE with random user-dependent priors

VAE with Text Regularizationℒγ = ℒβ − γ ⋅ dist(zu, tu)

VAE with heterogenous user-dependent priors

~ 0.003~ 0.007

Model ComparisonEvaluation Results

Page 54: Item Recommendation with Variational Autoencoders and ...

Item Recommendation with VAEs and Heterogenous Priors

Ranking the items in random order

std of scores

Matrix FactorizationText-only: Ranking items according to cos(tu, ti)

VAE (Liang et al. 2018)VAE with random user-dependent priors

VAE with Text Regularizationℒγ = ℒβ − γ ⋅ dist(zu, tu)

VAE with heterogenous user-dependent priors

~ 0.003~ 0.007

Model ComparisonEvaluation Results

Page 55: Item Recommendation with Variational Autoencoders and ...

Item Recommendation with VAEs and Heterogenous Priors

Ranking the items in random order

std of scores

Matrix FactorizationText-only: Ranking items according to cos(tu, ti)

VAE (Liang et al. 2018)VAE with random user-dependent priors

VAE with Text Regularizationℒγ = ℒβ − γ ⋅ dist(zu, tu)

VAE with heterogenous user-dependent priors

~ 0.003~ 0.007

Model ComparisonEvaluation Results

Page 56: Item Recommendation with Variational Autoencoders and ...

Item Recommendation with VAEs and Heterogenous Priors

Ranking the items in random order

std of scores

Matrix FactorizationText-only: Ranking items according to cos(tu, ti)

VAE (Liang et al. 2018)VAE with random user-dependent priors

VAE with Text Regularizationℒγ = ℒβ − γ ⋅ dist(zu, tu)

VAE with heterogenous user-dependent priors

~ 0.003~ 0.007

Model ComparisonEvaluation Results

Page 57: Item Recommendation with Variational Autoencoders and ...

Item Recommendation with VAEs and Heterogenous Priors

Ranking the items in random order

std of scores

Matrix FactorizationText-only: Ranking items according to cos(tu, ti)

VAE (Liang et al. 2018)VAE with random user-dependent priors

VAE with Text Regularizationℒγ = ℒβ − γ ⋅ dist(zu, tu)

VAE with heterogenous user-dependent priors

~ 0.003~ 0.007

Relative Performance Improvement:Mult-VAE VAE-HPrior

+18.4% +29.4% +17.7% NDCG@100 Recall@20 Recall@50

+14.4% +18.7% +12.3% NDCG@100 Recall@20 Recall@50

YelpIMDB

Model ComparisonEvaluation Results

Page 58: Item Recommendation with Variational Autoencoders and ...

Item Recommendation with VAEs and Heterogenous Priors

Ranking the items in random order

std of scores

Matrix FactorizationText-only: Ranking items according to cos(tu, ti)

VAE (Liang et al. 2018)VAE with random user-dependent priors

VAE with Text Regularizationℒγ = ℒβ − γ ⋅ dist(zu, tu)

VAE with heterogenous user-dependent priors

~ 0.003~ 0.007

Model ComparisonEvaluation Results

Page 59: Item Recommendation with Variational Autoencoders and ...

Item Recommendation with VAEs and Heterogenous Priors

Ranking the items in random order

std of scores

Matrix FactorizationText-only: Ranking items according to cos(tu, ti)

VAE (Liang et al. 2018)VAE with random user-dependent priors

VAE with Text Regularizationℒγ = ℒβ − γ ⋅ dist(zu, tu)

VAE with heterogenous user-dependent priors

~ 0.003~ 0.007

Model ComparisonEvaluation Results

Page 60: Item Recommendation with Variational Autoencoders and ...

Item Recommendation with VAEs and Heterogenous Priors

Ranking the items in random orderMatrix Factorization

Text-only: Ranking items according to cos(tu, ti)VAE (Liang et al. 2018)

VAE with random user-dependent priorsVAE with Text Regularization

ℒγ = ℒβ − γ ⋅ dist(zu, tu)

VAE with heterogenous user-dependent priors

Denoising autoencoder (Liang et al. 2018)

~ 0.003~ 0.007std of scores

Model ComparisonEvaluation Results

Page 61: Item Recommendation with Variational Autoencoders and ...

Item Recommendation with VAEs and Heterogenous Priors

Conclusions•Extend VAEs to Collaborative Filtering with side information (ratings + text)

- User-agnostic user-dependent priors- Prior parameters as functions of the users’ review text

• Outperform the existing Mult-VAE model (up to 29.41% relative improvement in Recall@20)• Perform comparably to a denoising autoencoder (Mult-DAE).

- User representations in a multimodal latent space (encoding ratings + text)

Ongoing & Future work• Experiments: VAE-HPrior vs Mult-DAE on different levels of sparsity• Models: more effective aspect-based methods for extracting user preferences from text reviews• Data: extra side-information available (e.g., geolocation)

Page 62: Item Recommendation with Variational Autoencoders and ...

Thank you!

Giannis Karamanolakis [email protected]

Contact

Page 63: Item Recommendation with Variational Autoencoders and ...

Questions?

Giannis Karamanolakis [email protected]

Contact