Isopod assemblage in response to management techniques and …web.pdx.edu/~scm6/Isopod_Magic.pdf ·...

16
Isopod assemblage in response to management techniques and environmental variables on Nantucket Island Andrew McCandless, Steven Murschel, Ashley Smithers 9 December 2014 Introduction: The sandplain grassland and heathland of the coastal Northeast are part of a rare and protected habitat type. Many species of plants, birds, and insects rely on these remaining sandplain habitats. Managers have focused on using burning and mowing as ways to control invasive species and maintain current plant communities. With any rare landscape, as the area recedes and goes through landscape changes, the species endemic to the area decline (Foster & Motzin 2003). Research on landscape management impacts on biota primarily focuses on the impacts to charismatic creatures such as birds (Zuckerberg & Vickery 2006; Van Dyke et al. 2004); less research is focused on the lower order species such as invertebrates. Research on the role of soil invertebrates is important in altered grassland ecosystems because of their role in decomposition processes and potential assistance in restoration of degraded lands (Snyder & Hendrix 2008). Terrestrial isopods are arthropods (class: Crustacea) that live in moist humid environments in soil and leaf litter (Heeley 1941). They are important for creating microbiomes and microclimates within ground litter (Souty‐Grosset et al. 2005) by eating plant material as well as moving decaying material from the soil surface to deeper moisture microsites in the soil (Hassall et al 1987). In grassland communities, isopods improve soil and maintain litter decomposition (Curry 1994). Isopods act as bioindicators for habitat quality of grassland (Longcore 2003; Souty‐Grosset et al 2005; Snyder Hendrix 2008). Invertebrate responses to burning and mowing management activities in grasslands have been reported in several studies (Anderson et al. 1989; Chambers and Samways 1998; Dunwiddie 1991). These different management techniques can be used to change the microclimates of isopod habitats. Springett (2006) identified changes in litter microclimates in response to fire and reduction of the number of forest isopods. A better understanding of the impacts on isopod communities of Nantucket Island will help drive management decisions on the sandplain grassland and heathland.

Transcript of Isopod assemblage in response to management techniques and …web.pdx.edu/~scm6/Isopod_Magic.pdf ·...

Page 1: Isopod assemblage in response to management techniques and …web.pdx.edu/~scm6/Isopod_Magic.pdf · 2019-11-16 · Isopod assemblage in response to management techniques and environmental

IsopodassemblageinresponsetomanagementtechniquesandenvironmentalvariablesonNantucketIsland AndrewMcCandless,StevenMurschel,AshleySmithers 9December2014 Introduction:

ThesandplaingrasslandandheathlandofthecoastalNortheastarepartofarareandprotectedhabitattype.Manyspeciesofplants,birds,andinsectsrelyontheseremainingsandplainhabitats.Managershavefocusedonusingburningandmowingaswaystocontrolinvasivespeciesandmaintaincurrentplantcommunities.Withanyrarelandscape,asthearearecedesandgoesthroughlandscapechanges,thespeciesendemictotheareadecline(Foster&Motzin2003).Researchonlandscapemanagementimpactsonbiotaprimarilyfocusesontheimpactstocharismaticcreaturessuchasbirds(Zuckerberg&Vickery2006;VanDykeetal.2004);lessresearchisfocusedonthelowerorderspeciessuchasinvertebrates.

Researchontheroleofsoilinvertebratesisimportantinalteredgrasslandecosystemsbecauseoftheirroleindecompositionprocessesandpotentialassistanceinrestorationofdegradedlands(Snyder&Hendrix2008).Terrestrialisopodsarearthropods(class:Crustacea)thatliveinmoisthumidenvironmentsinsoilandleaflitter(Heeley1941).Theyareimportantforcreatingmicrobiomesandmicroclimateswithingroundlitter(Souty‐Grossetetal.2005)byeatingplantmaterialaswellasmovingdecayingmaterialfromthesoilsurfacetodeepermoisturemicrositesinthesoil(Hassalletal1987).Ingrasslandcommunities,isopodsimprovesoilandmaintainlitterdecomposition(Curry1994).

Isopodsactasbioindicatorsforhabitatqualityofgrassland(Longcore2003;Souty‐Grossetetal2005;SnyderHendrix2008).Invertebrateresponsestoburningandmowingmanagementactivitiesingrasslandshavebeenreportedinseveralstudies(Andersonetal.1989;ChambersandSamways1998;Dunwiddie1991).Thesedifferentmanagementtechniquescanbeusedtochangethemicroclimatesofisopodhabitats.Springett(2006)identifiedchangesinlittermicroclimatesinresponsetofireandreductionofthenumberofforestisopods.AbetterunderstandingoftheimpactsonisopodcommunitiesofNantucketIslandwillhelpdrivemanagementdecisionsonthesandplaingrasslandandheathland.

Page 2: Isopod assemblage in response to management techniques and …web.pdx.edu/~scm6/Isopod_Magic.pdf · 2019-11-16 · Isopod assemblage in response to management techniques and environmental

Figure1:Aconceptualmodelofthestudy.Wehypothesize(HypothesisA)thatmowing,burning,andcontroltypemanagementsaffectisopodassemblagewithmowingandburningaffectingisopodassemblagesignificantlydifferentlyfromthecontrol.Wefurtherhypothesize(HypothesisB)thatthenon‐managementvariables(litter,woodysteamcount,%groundcoveranddistancetoocean)affectisopodassemblagewithlitterbeingthebestpredictor.

UsingunpublisheddatafromMcKenna‐Foster(2009)wherespiderandisopodassemblage

insitesrepresentingthreemanagementtypes:burning,mowing,andnotreatmentweremeasured,weaddressedthequestion:whatistheeffectoftreatment(fire,mowing,andnotreatment)onisopodassemblage?Wetestedthehypothesisthatisopodassemblageinareasmanagedwithburningandmowingwouldbesignificantlydifferentfromareaswithnotreatment(Figure1,HypothesisA).Thenwelookedattheimpactthatplantlitter,percentgroundcover(grass,heath,andbareground),distancetoocean,andwoodystemcounthadonisopodassemblage.Thesecondquestionweaddressedwas:Whatistherelativeimportanceofthesemeasuredenvironmentalvariablesonisopodassemblage?Thesecondhypothesiswetestedwasthatlitterwouldhavethelargesteffectonisopodassemblageoftheenvironmentalvariables(Figure1,HypothesisB).

Methods: Studylocation

SmoothHummocksCoastalPreserve(SHCP)locatedonNantucketIslandisasandplaingrasslandandheathlandpreservemanagedbytheNantucketIslandLandBank.NantucketIslandislocated30milessouthofCapeCod,Massachusetts(Figure2).SandplaingrasslandandheathlandarefoundonNantucket,Tuckernuck,andMartha’sVineyardislands.ThestudysiteSHCPwasapproximately345hectaresofsandplaingrassland,sandplainheathland,andpitchpinestands.

Page 3: Isopod assemblage in response to management techniques and …web.pdx.edu/~scm6/Isopod_Magic.pdf · 2019-11-16 · Isopod assemblage in response to management techniques and environmental

Eightmanagementsites(Figure2)locatedonSHCPwereselectedforthisstudy.The

siteswereselectedbasedonthemanagementtheyreceived,theyvaryinsize,andtheyhaveunpavedroadswithsomemowedvegetationbreaks.Onsiteswithmanagementregimesofmowingandburning,themanagementactivityhadbeendoneatleastoncebetween1998‐2008.Datacollectedforresearchonarthropodswerecollectedin2008fromtheresearchplotsplacedineachmanagementsite.Threeofthesiteshadburningasthemainmanagement

Figure2:LocationofNantucketIslandoffthecoastofmainlandMassachusetts(topleft),thelocationofSHCPonNantucketIslandisoutlined(topright),andthelocationoftheeightmanagementsitesatSHCP(bottom).Circlesindicateplotlocationsfoundineachmanagementsite.MapbyAndrewMcKenna‐Foster.

Page 4: Isopod assemblage in response to management techniques and …web.pdx.edu/~scm6/Isopod_Magic.pdf · 2019-11-16 · Isopod assemblage in response to management techniques and environmental

activity,fourofthesitesweremanagedwithmowing,oneofthemowedsiteswasmowedeveryyear,andtheeighthsitehadnotreatmentsandactedasthecontrol.

Figure3.Experimentaldesign.Therewerethreetypesoftreatmentsite:burn(n=3),mow(n=4),andcontrol(n=1).Eachtreatmentsitehadthreeplots.Eachplothadonetransectandeachtransectconsistedofsevenpitfalltraps.Thetotalnumberofpitfalltrapspermanagementtypevaried,burn(n=63),mow(n=84),andcontrol(n=21).Anesteddesignwithmanagementsites,plots,transects,andpitfalltraps

Threeplotswereplacedineachoftheeighttreatmentsites(Figures2and3).Plotsusedforthestudywerechosenbyvisitingrandomlyorderedsitesandchoosingonesthathadspecificcharacteristics:80%grasscoverand20mfromthenearestroad.Toensureindependencebetweensites,eachplothadtobewithinitsownsandplaingrasslandpatchandseparatedbyshrubbyvegetationfromtheothersites.Eachoftheplotshadonetransect(n=24)andsevenpitfalltraps(n=168).Thesevenpitfalltrapsweresetthreemetersapartinatransectparalleltothesoutherncoastline.Thepitfalltrapswerefivecmdiameterpolypropylenecupsfilledwith50:50propyleneglycol.PitfalltrapsweresetandsampledforsevendaysinbothMayandAugust2008.

Eachtransectwasplacedneararandomlyselectedpointintheplot.Eventhoughrandom,theresearchersrequiredthatoneendofeachtransectwasatleast0.5morgreaterfromthenearestheathplant.Sixenvironmentalvariablesweremeasuredalongeachtransect:dryleaflitteringrams,grass,heath,andbaregroundpercentcover,andwoodystemcountpersquaremeter.DistancetotheoceanwascalculatedusingGISandmeasuredinmeters.

Investigatingtheeffectsofmanagementtreatmentonisopodassemblage

Todeterminewhethermanagingsandplaingrasslandandheathlandbymowingorcontrolledburninghadasignificantimpactonisopodassemblage,aKruskal‐Wallisranksumonewayanalysisofvariancetestwasperformed.Thistestwasappropriateduetothenon‐

Page 5: Isopod assemblage in response to management techniques and …web.pdx.edu/~scm6/Isopod_Magic.pdf · 2019-11-16 · Isopod assemblage in response to management techniques and environmental

parametricnatureofthedataandbecausethistestcouldhandleourvaryingsamplesizes.Toaccountforthenestedexperimentaldesign,themeanaverageoftheisopodcountsforallpitfalltrapswithinamanagementsitewasusedastheisopodcountforthatmanagementsite.

Modelingisopodassemblagecountbasedonmeasuredenvironmentalvariables

Alinearmodelwasgeneratedtopredictpooledisopodassemblageacrosssitesbasedonsixpredictorvariables(drylittermass,percentcoverofgrass,heath,bareground,distancetotheocean,andwoodystemcount).Priortomodelconstruction,dataweresplitrandomlyintotwosubsets.Thefirstsubsetcontained~75%ofthedata(131observations)andthesecond~25%(44observations).Buildingthemodelbasedon75%ofthedata(themaindataset)enabledmodelvalidationusingtheremaining25%(thetestdataset).

Diagnosticplotsforafullmodelofthemaindataset(includingresidualsvs.fittedvalues,standardizedresidualsvs.theoreticalquantiles,standardizedresidualsvs.fittedvalues,andstandardizedresidualsvs.leverage)wereusedtovisuallydeterminetheneedtotransformtheresponsevariable‐isopodassemblage.Basedonvisualanalysisofacorrelationmatrixfromthemaindataset(AppendixFigureA),distancetooceanandwoodystemcountwerelogtransformedtoreducetheimpactofoutliers.ABox‐Coxpowertransformationwasusedtodeterminethetransformationmostlikelytoresultinnormallydistributedresidualsfortheresponsevariable(AppendixFigureB).Thedataweretransformedanddiagnosticplotsforasecondfullmodelwerecheckedvisually(AppendixFigureC).Havingdeterminedthemodelmetnecessaryassumptions,twomethodswereemployedtodetermineaminimumadequatemodel. Anallsubsetscriterion‐basedprocedurewasusedfollowedbyastepwise/criterion‐basedhybridproceduretotakeadvantageofthecriteriaMallow’sCP,adjustedR2,theBayesianInformationCriterion(BIC),andtheAikaikeInformationCriterion(AIC).Weselectedthenumberofvariablesandtheparticularvariablesforaminimumadequatemodelbasedonthesefourcriteria.AnANOVAtestwasusedtodeterminewhethertheminimumadequatemodelwassignificantlydifferentfromthefullmodel.Varianceinflationfactors(VIF)werecalculatedtotesttheminimumadequatemodelforissuesofmulticollinearity.Theminimumadequatemodelwasscaledusingz‐scores,andascaledminimumadequatemodelwasproduced.Z‐scoringwasusedtostandardizethepredictorcoefficients.Oncestandardized,predictorcoefficientswerecompareddirectly(whereasthiswaspreviouslyimpossibleduetounitdifferences)enablingananalysisoftherelativepredictivepowerofeachpredictorvariable.Lastlythepredictionsofthemodelweretestedusingthetestdatasetandassessedbycalculatingtherootmeansquaredeviation. Results: Theeffectsofmanagementtreatmentonisopodassemblage(Figure1,HypothesisA) Isopodassemblagevariedwidelywithintreatmentgroupswithstandarddeviationsbeinggreaterthanthemeansinallthreetreatmenttypes(Table1).Sitestreatedbymowingappeartohavesignificantlyhigherlevelsofisopodsthancontrolsitesorthosetreatedbyburning(Figure4).Sitesmanagedbyburninghadameanisopodassemblageof78thatwasveryclosetothecontrolmeanof81.Mowedsiteshadameanapproximately60%greaterwithacountof126isopods.Thestandarddeviationforsitesmanagedbyburningwas176,162formowedsites,and117forthecontrolsite(Table1).

Page 6: Isopod assemblage in response to management techniques and …web.pdx.edu/~scm6/Isopod_Magic.pdf · 2019-11-16 · Isopod assemblage in response to management techniques and environmental

Table1:Descriptivestatisticsofisopodassemblage(numberofindividuals)givendifferentmanagementtreatments(Burnn=3,Mown=4,Controln=1).

Burn Mow Control Minimum 0.0 0.0 5.0 Maximum 902.0 747.0 419.0 Median 14.0 68.0 22.0 Mean 78.4 126.4 80.8 Standarddeviation 176.4 162.0 117.1 Variance 31112.9 26255.8 13714.2

Figure4:Barchartofthemeanofisopodassemblage(numberofindividuals)givendifferentmanagementtreatments(Burnn=3,mean=78.4,SE=+/‐22.2,Mown=4,mean=126.4,SE=+/‐17.7Controln=1,mean=80.8,SE=+/‐22.1). Thenon‐parametricKruskal‐Wallistestdidnotindicateasignificantrelationshipbetweenisopodassemblageandanyoneofthemanagementtypes(Χ2=1.22,df=2,p=0.54).Thenullhypothesisthattherewasnorelationshipbetweenburningandmowingmanagementandisopodcouldnotberejectedbasedonthedatacollected. Modelingisopodassemblagebasedonmeasuredenvironmentalvariables(Figure1,HypothesisB) Histograms,scatterplots,andSpearmancoefficientsofeachvariableindicatedstrongcorrelationsbetweenthefourpredictorsl.stem(thelogofwoodystemcount),heath,grass,litterandtheresponsevariableisopod.Potentialmulticolinnearitywasseenbetweengrassandheath,grassandl.ocean(thelogofthedistancetotheocean),grassandl.stem,andheathandl.stem(Figure5).VisualassessmentofFigure5showsapotentiallystrongpositivecorrelationbetweenl.isopod(1+thelogofisopod)andlitter,andanotherpositivecorrelationbetweenl.isopodandl.stem.

Page 7: Isopod assemblage in response to management techniques and …web.pdx.edu/~scm6/Isopod_Magic.pdf · 2019-11-16 · Isopod assemblage in response to management techniques and environmental

Thefullmodelshowingl.isopodasafunctionoflitter,grass,heath,ground,l.ocean,and

l.stemyielded:

. 0.04 ∙ 0.02 ∙ 0.01 ∙ 0.12 ∙ 0.12 ∙ . 0.57 ∙ . 2.18

Thismodelindicatedthat1+naturallogofisopodcountwouldincreaseaslitter,thenaturallogofthedistancetotheocean,and1+naturallogofthewoodystemcountincreased.1+naturallogofisopodcountwoulddecreaseifthepercentcoverofgrass,heath,orbaregroundincreased (R2=0.4953, p=2.2x10‐16, α=0.05). Thefullmodelpasseddiagnosticsillustratingresidualswerenormallydistributed,withoutunderlyingstructure,andtherewerenoinfluentialoutliersaccordingtotheCook’sdistancemetric(AppendixFigureC).

Anallsubsetscriterion‐basedprocedureusingthecriteriaMallow’sCP,adjustedR2,andtheBICindicatedthatamodelwiththreepredictorsandoney‐interceptshouldbeselected(AppendixFigureD).ThiswasdeterminedbytheindicationthatamodelwithfourparameterswouldhavethelowestMallow’sCP,highestadjustedR2,andlowestBIC.Astepwise/criterion‐

Figure5:Correlationmatrixshowinghistograms,scatterplots,andSpearmancorrelationsbetweentheresponsevariableisopodassemblageandthesixpredictorvariables.

Page 8: Isopod assemblage in response to management techniques and …web.pdx.edu/~scm6/Isopod_Magic.pdf · 2019-11-16 · Isopod assemblage in response to management techniques and environmental

basedhybridmethodalsosuggestedthatamodelwiththreepredictorsandoney‐interceptshouldbeselectedandbothmethodsindicatedtheselectionofaminimumadequatemodelwithl.stem,bareground,andlitterasthethreepredictors.

Theminimumadequatemodelbasedonanallsubsetscriterion‐basedprocedureandastepwise/criterion‐basedhybridapproach:

. 0.56 ∙ . 0.10 ∙ 0.05 ∙ 1.46

Theminimumadequatemodel(R2=0.4989)wassignificantoverallwithap‐valueof2.2x10‐16(α=0.05).Thismodelindicatedthatl.isopodwillrisewithanincreaseinl.stemandlitteranddecreasewithanincreaseinground.Thetestformulticollinearitybetweenthevariablesl.stem(VIF=1.1),ground(VIF=1.0),andlitter(VIF=1.1)intheminimumadequatemodelrevelednoissuesofmulticollinearity.Normalityofresidualsandtheabsenceofhighleverageoutliersweredeterminedbyvisualinspectionofdiagnosticplots(AppendixFigureE).TheANOVAbetweenthefullandminimumadequatemodel(p=0.7369)indicatedthatthenullhypothesisofthetest(thatthetwomodelsarenotdifferent)couldnotberejectedthusthesimplerminimumadequatemodelwasmaintained.

Thez‐scoredminimumadequatemodelenabledadirectcomparisonoftherelativeinfluenceofeachpredictor:

. 0.51 ∙ . 0.23 ∙ 0.28 ∙ 1.34 10 16

Thez‐scoretransformationoftheminimumadequatemodelhasthesameR2valueandsignificanceastheminimumadequatemodel.Thisstandardizationofthemodelcoefficientsshowedl.stemwasthemostimportantofthemeasuredpredictorsofl.isopodandwasapproximatelyasimportantasthetwootherpredictorscombined.Groundandlitterwereverysimilarintheirpredictivepoweronl.isopodwithanincreaseingroundleadingtoadecreaseinl.isopodwhileanincreaseinlitterleadstoanincreaseinl.isopod.Ourmodelshowedtherelativeimportanceratiooftheenvironmentalvariablesonisopodassemblagetobe0.51woodystemto0.23baregroundpercentageto0.28dryleaflitter(i.e.a0.51:0.23:0.28proportion). Theminimumadequatemodelpredictedthetrendseeninboththemaindata(subsetof131observations)andthetestdata(subsetof44observationsnotusedtoconstructthemodel)(Figure6).Therootmeansquaredifferenceofl.isopodwas1.50andtheuntransformedrootmeansquaredifferencebetweentheminimumadequatemodelpredictionsandobservedisopodassemblagewas4.48.

Page 9: Isopod assemblage in response to management techniques and …web.pdx.edu/~scm6/Isopod_Magic.pdf · 2019-11-16 · Isopod assemblage in response to management techniques and environmental

Discussion: Managementtreatmentonisopodassemblage Whilemanagementwasfoundtonotimpactisopodassemblage,thisislikelytheresultofalackofanalyticalpowerduetothesmallsamplesize,unequaltreatmentreplication,andtheuseofarankbasedtest.Theapparentdifferencesinmeanbetweenmowedtreatmentareasandcontrolledorburnedareas(Figure4)providesfurtherevidencethatfindingnorelationshipbetweenisopodassemblageandtreatmentwasduetoalackofstatisticalpower.Otherresearchconductedacrossarthropodtaxasuggestsotherarthropodpopulationswereeithernotgreatlyinfluencedbymowingand/orburningtreatmentsortherewashighvariationofresponsestotreatmentsacrosstaxaandseason(Dunwiddie1991).Currentresearchshowsarthropods,includingisopods,generallyadapttomanagementactions(Warrenetal.1987;Dunwiddie1991).Further,observedmanagedsitesweremowedandburnedindifferentyearspotentiallyprovidingisopodassemblagetheopportunitytoreboundfromtreatmentmakingtheaffectsundetectablebythe2008observation.

Theknownrelationshipbetweenmanagementandenvironmentalpredictorsofisopodassemblagefurthersupportsthesuppositionthatalackofsignificanteffectswasduetolowpowerofanalysis.Mowingandburningaretoolsusedtomaintainthevegetationonsandplaingrasslands(Neill2006).Burningconsumesleaflitteranddestroysisopodmicrohabitats(Springett2006).Mowingshouldleadtoanincreaseinlitterthatmayalsoimpactisopodhabitatavailability.Usingmowingandburningmayindirectlybenefitisopodcommunitiesbyimprovingthehabitatrequirementsthatisopodsrelyon.

Figure6:Left:Minimumadequatemodelpredictionwiththemaindatashowingtheobservedversuspredictedvaluesofl.isopod.Thelineshowsthepredictedl.isopodvaluesbasedontheminimumadequatemodel.Right:Minimumadequatemodelpredictionwiththetestdataof44pointsinitiallysubsettedfromtheobservationsandnotusedintheconstructionoftheminimumadequatemodel.Thelineshowsthepredictedl.isopodvaluesbasedontheminimumadequatemodel.

Page 10: Isopod assemblage in response to management techniques and …web.pdx.edu/~scm6/Isopod_Magic.pdf · 2019-11-16 · Isopod assemblage in response to management techniques and environmental

Isopodassemblageinrelationtosignificantenvironmentalvariables Whilethehypothesisthatleaflitterwouldbethestrongestpredictorofisopod

assemblagewasnotsupported,leaflitterwasthefoundtobeofsecondhighestimportanceafterwoodystemcount.Woodystemsweremainlyrepresentedbylivingblackhuckleberryandsomebayberry.Understandingthewoodystem/isopodassemblagerelationshipisakeytoanalyzingisopodpopulations.Otherstudieshavehighlightedtheimportanceofhabitatstructure,includingconnectivelandscapepropertiesandvariationsinfaunaandsoiltypes,onisopodpopulationdynamics(Davis1984;Souty‐Grossetetal.2005).Isopodspeciesmayrelyonwoodystemsforprotectionfromsolarradiationandcapturedrainfall(Volketal.2000).Balancingthehabitatmosaicofheathandshrubswithingrasslandsmaybenefitisopodsandthegrasslandcommunity.FurtherupkeepofinterspersedwoodystemswithintheNantucketmanagedecosystemwouldlikelybenefitfloraandfaunainteractionsandisopodpopulations.

Thesignificantinfluenceoflitterandbaregroundcomparedtoothermeasuredenvironmentalfactorshighlighttheimportanceofdetritusasafoodsourcefortheisopodcommunity.Isopodsshowverystrongpreferencesfordetritus(Hassalletal.1987;Zimmer2002),andinthisecosystemgroundlitteriscomprisedmostlyofdecomposinggrasses(Burkeetal.1998).ThenegativerelationshipbetweenbaregroundandisopodassemblagefurtheremphasizestheimpactofvegetationandsubsequentgroundlitteronNantucketisopodassemblage.Maintaininganaturallydecomposingecosystemwithhighflorarichnessandscatteredvegetationdiversitywillmostbenefitisopodassemblageinthisecosystem. Althoughmorethan90%ofisopodscountedappearedtobeofthesamemorphologicaltype,thefewuniqueindividualssuggestsidentifyingisopodstothespecieslevelmayidentifyisopodspeciesindicativeofparticularimportantmicrohabitats.Specieslevelidentificationcouldhelpimproveunderstandingofecosysteminteractions.Rarepredatoryisopodshavebeenshowntobestrongbioindicatorsofsuccessfulrestorationeffortsinterrestrialshrublands(Longcore2003),andknowingisopodspeciescouldbetterinformlandscapemanagement.Identificationofvegetationspeciesmayalsoshowisopodpreferenceandcontributetoabetterunderstandingoftheimportanceoflittercomposition.

Theroleofenvironmentalvariablesnotmeasuredinourstudy,suchassoilmoisture,whichhasbeenshowntohaveasignificanteffectonisopodassemblage(Warburg1987),mayhavelimitedthepredictivepowerofourlinearmodel.Awiderangeofinteractingfactorscontributetothecreationofmicrohabitatsandmicrobiomeswithinshrubsscatteredthroughoutgrasslands.Shrubswithingrasslandsactasareasofintensenutrientfluxfromroot/leafturnoverandexcessexcrementfromsurroundingfauna(Vetaas1992).Terrestrialisopodshaveundergoneevolutionarychangestodwellonland,anddespitesomespecieslivinginaridregions,allspeciesneedprotectionfromdesiccation(Schmidt&Wägele2001).Scatteredshrubs(woodystems)ingrasslandscreatemoist,hospitablemicroclimatessimilartotheeffectscatteredtreescanhaveinalandscape(Manningetal.2006).

Themodelvalidationindicatedthatthemodeldoesagoodjobofdescribingrelatedindependentdata.Therootmeansquaredifferenceof4.48forisopodassemblageisassessedbasedonitscomparisonwiththemeanisopodassemblageof101.Adifferenceof4.48issmallincomparisontothemeanof101indicatingtheapplicabilityofthelinearmodeltoindependentdata.

Study‐wideconsiderations

Asstrongpredictorsofisopodassemblage,alterationsinmanagementthatimpactleaflitterandwoodystemsshouldaffectisopodassemblage.Furtherstudyonagreaternumberof

Page 11: Isopod assemblage in response to management techniques and …web.pdx.edu/~scm6/Isopod_Magic.pdf · 2019-11-16 · Isopod assemblage in response to management techniques and environmental

independentgrasslandandheathlandsitesthathavebeenmowedorburnedshoulduncovertherelationshipbetweenisopodassemblage,managementaction,andthesignificantpredictorvariablesfromourminimumadequatemodel.Managementaffectsleaflitter(Andrewetal.2000),groundcover,andwoodystems,andthosethreepredictorsindicateisopodassemblage.Thattheaffectofmanagementonisopodassemblagewasnotfoundinourstudywhileleaflitter,percentbareground,andwoodystemswerefoundtobesignificantpredictorsofisopodassemblageisalmostcertainlyduetooursamplingdesignandprovidesaclearcalltofurtherresearch.Bibliography: Anderson,R.C.,Leahy,T.,&Dhillion,S.S.(1989).Numbersandbiomassofselectedinsectgroupsonburnedandunburnedsandprairie.AmericanMidlandNaturalist,151‐162.

Andrew,N.,Rodgerson,L.,&York,A.(2000).Frequentfuel‐reductionburning:theroleoflogsandassociatedleaflitterintheconservationofantbiodiversity.AustralEcology,25(1),99‐107.

Burke,I.C.,Lauenroth,W.K.,Vinton,M.A.,Hook,P.B.,Kelly,R.H.,Epstein,H.E.,Aguiar,M.R.,Robles,M.D.,Aguilera,M.O.,Murphy,K.L.&Gill,R.A.(1998).Plant‐soilinteractionsintemperategrasslands.InPlant‐inducedsoilchanges:Processesandfeedbacks(pp.121‐143).SpringerNetherlands.

Curry,J.P.(1987).Theinvertebratefaunaofgrasslandanditsinfluenceonproductivity:thecompositionofthefauna.GrassandForageScience,42(2),103‐120.

Curry,J.P.(1994).Grasslandinvertebrates:ecology,influenceonsoilfertilityandeffectsonplantgrowth.Springer.

Chambers,B.Q.&Samways,M.J.(1998).Grasshopperresponsetoa40‐yearexperimentalburningandmowingregime,withrecommendationsforinvertebrateconservationmanagement.Biodiversity&Conservation,7(8),985‐1012.

Davis,R.C.(1984).Effectsofweatherandhabitatstructureonthepopulationdynamicsofisopodsinadunegrassland.Oikos,387‐395.

Dunwiddie,P.W.(1991).Comparisonsofabovegroundarthropodsinburned,mowedanduntreatedsitesinsandplaingrasslandsonNantucketIsland.AmericanMidlandNaturalist,206‐212.

Foster,D.R.,&Motzkin,G.(2003).InterpretingandconservingtheopenlandhabitatsofcoastalNewEngland:insightsfromlandscapehistory.ForestEcologyandManagement,185(1),127‐150.

Hassall,M.,Turner,J.G.&Rands,M.R.W.(1987).Effectsofterrestrialisopodsonthedecompositionofwoodlandleaflitter.Oecologia,72(4),597‐604.

Heeley,W.(1941,October).ObservationsontheLife‐HistoriesofsomeTerrestrialIsopods.InProceedingsoftheZoologicalSocietyofLondon(Vol.111,No.1‐2,pp.79‐149).BlackwellPublishingLtd.

Longcore,T.(2003).Terrestrialarthropodsasindicatorsofecologicalrestorationsuccessincoastalsagescrub(California,USA).RestorationEcology,11(4),397‐409.

Manning,A.D.,Fischer,J.,&Lindenmayer,D.B.(2006).Scatteredtreesarekeystonestructures–implicationsforconservation.BiologicalConservation,132(3),311‐321.

Neill,C.,VonHolle,B.,Kleese,K.,Ivy,K.D.,Colllins,A.R.,Treat,C.,&Dean,M.(2007).HistoricalinfluencesonthevegetationandsoilsoftheMartha’sVineyard,Massachusettscoastal

Page 12: Isopod assemblage in response to management techniques and …web.pdx.edu/~scm6/Isopod_Magic.pdf · 2019-11-16 · Isopod assemblage in response to management techniques and environmental

sandplain:implicationsforconservationandrestoration.BiologicalConservation,136(1),17‐32.

Paris,O.H.(1963).TheecologyofArmadillidiumvulgare(Isopoda:Oniscoidea)inCaliforniagrassland:food,enemies,andweather.EcologicalMonographs,1‐22.

Schmidt,C.,&Wägele,J.W.(2001).MorphologyandevolutionofrespiratorystructuresinthepleopodexopoditesofterrestrialIsopoda(Crustacea,Isopoda,Oniscidea).ActaZoologica,82(4),315‐330.

Souty‐Grosset,C.,Badenhausser,I.,Reynolds,J.D.&Morel,A.(2005).Investigationsonthepotentialofwoodliceasbioindicatorsofgrasslandhabitatquality.Europeanjournalofsoilbiology,41(3),109‐116.

Springett,J.A.(1976).TheeffectofprescribedburningonthesoilfaunaandonlitterdecompositioninWesternAustralianforests.AustralianJournalofEcology,1(2),77‐82.

VanDyke,F.,VanKley,S.E.,Page,C.E.&VanBeek,J.G.(2004).Restorationeffortsforplantandbirdcommunitiesintallgrassprairiesusingprescribedburningandmowing.RestorationEcology,12(4),575‐585.

Vetaas,O.R.(1992).Micro‐siteeffectsoftreesandshrubsindrysavannas.Journalofvegetationscience,3(3),337‐344.

Vickery,P.D.,Zuckerberg,B.,Jones,A.L.,Shriver,W.G.&Weik,A.P.(2005).InfluenceoffireandotheranthropogenicpracticesongrasslandandshrublandbirdsinNewEngland.StudiesinAvianBiology,30,139.

Volk,M.,Niklaus,P.A.,&Körner,C.(2000).SoilmoistureeffectsdetermineCO2responsesofgrasslandspecies.Oecologia,125(3),380‐388.

Warburg,M.R.(1987).Isopodsandtheirterrestrialenvironment.Advancesinecologicalresearch,17,187‐242.

Warren,S.D.,Scifres,C.J.,&Teel,P.D.(1987).Responseofgrasslandarthropodstoburning:areview.Agriculture,ecosystems&environment,19(2),105‐130.

Zimmer,M.(2002).Nutritioninterrestrialisopods(Isopoda:Oniscidea):anevolutionary‐ecologicalapproach.BiologicalReviews,77(4),455‐493.

Zuckerberg,B.&Vickery,P.D.(2006).EffectsofmowingandburningonshrublandandgrasslandbirdsonNantucketIsland,Massachusetts.TheWilsonJournalofOrnithology,118(3),353‐363.

Page 13: Isopod assemblage in response to management techniques and …web.pdx.edu/~scm6/Isopod_Magic.pdf · 2019-11-16 · Isopod assemblage in response to management techniques and environmental

Appendix:

FigureA:Correlationmatrixshowinghistograms,scatterplots,andSpearmancorrelationsbetweentheresponsevariableisopodassemblageandthesevenpredictorvariables.

Page 14: Isopod assemblage in response to management techniques and …web.pdx.edu/~scm6/Isopod_Magic.pdf · 2019-11-16 · Isopod assemblage in response to management techniques and environmental

FigureB:ResultsofBox‐Coxpowertransformationonisopodasafunctionoflitter,grass,heath,ground,l.ocean,andl.stemindicatingalogtransformationwouldbeappropriate(asseenbythe95%confidenceintervallinesenveloping0).

FigureC:Diagnosticstatisticsoffullmodel.Topleftshowsthattheresidualsarenormallydistributedaboutazerolineandshownostructure,thetoprightshowsthenormalityofthestandardizedresiduals,thebottomleftshowsthestandardizedresidualshavenounderlyingstucture,andthebottomrightshowsthattherearenohighleverageoutlierswithCook’sdistancesofgreaterthan0.5.

Page 15: Isopod assemblage in response to management techniques and …web.pdx.edu/~scm6/Isopod_Magic.pdf · 2019-11-16 · Isopod assemblage in response to management techniques and environmental

FigureD:Plottingtheresultsofanallsubsetscriterion‐basedproceduremodelingl.isopodasafunctionofbetween1and6variablesand1y‐intercept.TopleftshowsthelowestMallow’sCpformodelswith1‐6variables+1y‐intercept.ToprightshowsthehighestR2andbottomleftthelowestBayesianInformationCriterionformodelswith1‐6variables+1y‐intercept.Eachcriterionindicatesthatamodelwith3predictorsand1y‐interceptwouldbethebest.

Page 16: Isopod assemblage in response to management techniques and …web.pdx.edu/~scm6/Isopod_Magic.pdf · 2019-11-16 · Isopod assemblage in response to management techniques and environmental

FigureE:Diagnosticplotsoftheminimumadequatemodel.Topleftshowsthattheresidualsarenormallydistributedaboutazerolineandshownostructure,thetoprightshowsthenormalityofthestandardizedresiduals,thebottomleftshowsthestandardizedresidualshavenounderlyingstucture,andthebottomrightshowsthattherearenohighleverageoutlierswithCook’sdistancesofgreaterthan0.5.