Isij Sept 2013 v2

download Isij Sept 2013 v2

of 10

Transcript of Isij Sept 2013 v2

  • 8/16/2019 Isij Sept 2013 v2

    1/10

    Effect of temperature on carbon deposition

    during integrated coal pyrolysis−tardecomposition over low grade iron ore

    ISIJ Conference

    March 2014

    1

    Rochim B. Cahyono, Naoto Yasuda, Takahiro Nomura,Tomohiro Akiyama

    Hokkaido University

    Fuel 89 (2010) 1784 –

    1795

  • 8/16/2019 Isij Sept 2013 v2

    2/10

    2

    Years

       P   i  g   i  r  o  n  p  r  o   d  u  c   t   i  o  n ,

       1   0   3   M   t

    Adapted from World Steel Association, 2011.

    Ironmaking industry

    World Steel Association, 2011. Steel statistical yearbook 2011, world steel Committee on Economic Studies-BRUSSELS,

    2011. World Steel Association, p. 101; The Japan Iron and Steel federation

    Highly required

    alternative ofreduced agent and

    iron ore sources

    Raw materials : Coal (HG) = 690 kg/ton-pig ironIron ore (HG) = 1390 kg/ton-pig iron

    Consumes around 5% of the total world energy

    Energy recovery : 25.3 % input energy

    CO2 emission: 1519 kg-CO2/ton-pig iron

  • 8/16/2019 Isij Sept 2013 v2

    3/10

    3

    Tar decomposition VS carbon deposition

    Tar decomposition/cracking:

    Carbon deposition:

    Catalytic process

    Endothermic reaction

    High conversion at elevated

    temperature

    The purposes:

    (1) To obtain the optimum temperatures forboth the pyrolysis and tar decomposition

    processes for high carbon deposition

    (2) To understand the main factors in the

    carbon deposition process with different

    contents of combined water (CW)

    Required high surface area/pore

    volume

    High deposition at lower

    temperature

    Carbon gasification at hightemperature

  • 8/16/2019 Isij Sept 2013 v2

    4/10

    4

    Dehydration process

    (a)

    Micropore

    Macropore

    Mesopore

    Removing H2O during dehydration process

    created porous ore with layer by layer structure

    The micropore/mesopore was predominat in the

    dehydrated ore

  • 8/16/2019 Isij Sept 2013 v2

    5/10

    3.0

    3.5

    4.0

    4.5

    0

    15

    30

    45

    60

    75

    90

    400 500 600 700 800 900

       C  a  r   b  o  n  y   i  e   l   d   [   %  m  a  s  s  -   C   ]

    Pyrolysis temp [oC]

       C  a  r   b  o  n  y   i  e   l   d   [   %  m  a  s  s  -   C   ]

    Char 

    Gas

    Tar 

    Deposited -C

    H ore; tar decomposition temp : 600 oC

    Coal pyrolysis

     At elevated temperature,

    char amount decreased

    while volatile matter (gas

    and tar) increased due to

    thermal cracking

    Products distribution

    Beside large deposited carbon, clean gas with small tar

    was resulted at high pyrolysis temperature

    5

  • 8/16/2019 Isij Sept 2013 v2

    6/10

    Thermal cracking athigh pyrolysis

    temperature enhanced

    the volume of H2 and

    CO

    Beside large carbondeposition, high

    pyrolysis temperature

    resulted also extra

    heating value

    ]CH[%volx396.1 

    ]H[%volx110.2CO][%volx127.1)(MJ/NmLHV

    4

    2

    3

    Lower Heating Value

    4

    6

    8

    10

    12

    0

    40

    80

    120

    160

    400 500 600 700 800 900

       G  a  s  v  o   l  u  m

      e   [   N  c  m   3   /  g  -  c  o  a   l   ]

    Pyrolysis temp [oC]

       L   H   V

       [   M   J   /   N  m   3   ]

    H2

    CH4

    CO2

    CO

    LHV

    H ore; tar decomposition temp : 600 oC

    Coal pyrolysis

    6

  • 8/16/2019 Isij Sept 2013 v2

    7/10

    0

    20

    40

    60

    80

    100

    400 500 600 700 800

       C  a  r   b  o  n  y   i  e   l   d   [   %  m  a  s  s  -   C   ]

    Tar decomposition temp [oC]

    Gas Deposited carbon tar Unreacted tar  

    H ore, Pyrolysis temp : 800 oC

    Tar decomposition

    Tar product distribution

     CnhydrocarbolightotherCHCOCOHTar  422  

    kJ172.48HCO2CCO2  

    0.5

    1.0

    1.5

    2.0

    1

    2

    3

    4

    300 400 500 600 700 800 900

       C

      a  r   b  o  n  c  o  n   t  e  n   t   [   %  m  a  s  s   ]

    Tar decomposition temp [oC]

    Deposited carbon

    Total volume

       G  a  s  v  o   l  u  m  e   [   L   ]

    Pyrolysis temp = 800 oC

    Lignite coal

    7

     At constant pyrolysis temperature, the maximum carbon content was

    obtained at tar decomposition of 600 oC.

     At high temperature, deposited carbon decreased due to high tar activity

    and carbon gasification to produce larger gas product

    Highest

    deposition

    Unreacted tar 

  • 8/16/2019 Isij Sept 2013 v2

    8/10

     A higher temperature resulted in a

    large reduction degree because ofindirect reduction of CO and fast

    reduction rate.

    FeO was found at high

    temperature; this is consistent with

    the phase diagram.

    30 40 50 60 70 80

    2θ [degree]

       I  n   t  e  n  s   i   t  y   [  a .  u

       ]

    400 oC

    500 oC

    600 oC

    700 oC

    800 oC

    Dehydrated ore

    Fe2O3 Fe3O4 FeOH ore; pyrolysis temp : 800oC

    (b)

    0

    0.2

    0.4

    0.6

    0.8

    1

    400 500 600 700 800 900 1000

    Tar decomposition temp [oC]

    Fe

    Fe3O4

    FeO   P   C   O

       P   C   O

       +   P   C   O   2

       [  -   ]

    Fe2O3

    H ore; pyrolysis temp : 800 oC

    (a)

    2

    243

    24332

    COFeCOFeO

    CO3FeOCOOFe

    ;COO2FeCOO3Fe

    Tar decomposition

    8

  • 8/16/2019 Isij Sept 2013 v2

    9/10

    0

    20

    40

    60

    0 5 10 15

       P  o

      r  e  s   i  z  e   d   i  s   t  r   i   b  u   t   i  o  n

       [   1   0  -   6  m   3   /  n  m   /   k  g   ]

    Pore size [nm]

    DH

    400600

    800

    : Dehydrated ore (DH)

    : Tar decomposition at 400o

    C: Tar decomposition at 600 oC

    : Tar decomposition at 800 oC

    H ore;

    Pyrolysis temp: 800 oC

    86.7

    21.9 20.3

    2.8

    DH 400 600 800

    BET surface

    area [m2/g]

    Tar decomposition temp [oC]

    3.15

    3.89

    1.94

    400 600 800

    Carbon deposition [%mass]

    Tar decomposition temp [oC]

    Tar decomposition

    9

    Smallest carbon deposition

    but largest deceasing of

    surface are and pore

    distribution, why??

    The amount of carbon deposition should be

    proportional with the decreasing of surface

    area and pore size distribution.

    The melting point of the iron ore (Fe2O3) was

    1733 K(=1460oC)

    Sintering process

    [14] HSC chemistry 7.0; [15] Canovaa, IC. et.al. Materials Research Vol. 2, No. 3, (1999) 211-217

  • 8/16/2019 Isij Sept 2013 v2

    10/10

    Conclusions

     At constant temperature of tar decomposition, high pyrolysis temperature

    resulted large deposited carbon and clean gas with extra heating valueThe highest deposited carbon was obtained at pyrolysis temperature of

    800 oC and tar decomposition temperature of 600 oC.

     At elevated temperature, the amount of deposited carbon decreased due

    to carbon gasification.

     At tar decomposition temperature of 800 oC, the FeO was found but the

    sintering phenomena was started

    10