Investment Grade Energy Audit Report PURBANI COMPOSITE...

91
Investment Grade Energy Audit Report PURBANI COMPOSITE TEXTILES LTD. Noorbag, Mouchak, Kaliakoir, Gazipur, Dhaka March, 2018 House No. 198, Road No. 1, New DOHS Mohakhali Dhaka, Bangladesh Phone: 881 3945, Email - [email protected] www.sodevconsult.org

Transcript of Investment Grade Energy Audit Report PURBANI COMPOSITE...

Page 1: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Investment Grade Energy Audit Report

PURBANI COMPOSITE TEXTILES LTD. Noorbag, Mouchak, Kaliakoir, Gazipur, Dhaka

March, 2018

House No. 198, Road No. 1, New DOHS Mohakhali Dhaka, Bangladesh

Phone: 881 3945, Email - [email protected] www.sodevconsult.org

Page 2: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Purbani Composite Textiles Ltd.

Page 3: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Acknowledgement SODEV Consult International Ltd . team would like to express their profound thanks to the plant

management of Purbani Fabrics Ltd, Purbani Yarn Dyeing Ltd, Karim Textiles Ltd, Karim Spinning

Mills Ltd and the technical personnel for the valuable time and efforts spent in preparing the

energy audit visit to the plant. The cooperation shown by the plant facilitated the communication

and exchange of ideas and experiences in the area of energy management. The consultants are

thankful to Mr. Md. Golam Kabir (Sr. AGM, Maintenance), Md. Akter Hossain (Sr. Manager), Md.

Mahmud Hasan (Manager, Compliance), A.K.M Nurul Islam (DGM), Sheikh Md. Shamim (GM) and

Ratan Kumar Roy (Manager) for their diligent involvement and cooperation in providing the plant

energy data and their support in completing field measurement.

The team also expresses its sincere appreciation to Sustainable and Renewable Energy

Development Authority (SREDA) and the Deutsche Gesellschaft für Internationale

Zusammenarbeit (GIZ) GmbH for initiating this work and providing overall guidance for this study.

Last but not least; we thankfully acknowledge many individuals mentioned above, as well as

many more that remain unnamed, for extending the support needed to complete this task in an

orderly fashion.

Location: Dhaka, Bangladesh

Page 4: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Preface The Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH is an

International cooperation enterprise owned by the Government of the Federal Republic of

Germany for sustainable development with worldwide operations.

The Renewable Energy and Energy Efficiency Programme (REEEP) is a joint undertaking of the

German Federal Ministry for Economic Cooperation and Development (BMZ) and Power

Division, Ministry of Power, Energy and Mineral Resources (MPEMR), Government of

Bangladesh, implemented by Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ)

GmbH. Sustainable and Renewable Energy Development Authority (SREDA) is REEEP’s

Government counterpart. REEEP is working, on the one hand, to promote energy efficiency on

the demand side through adoption of energy-efficient technologies and production processes to

do ‘more with less’ in industries, public power sector utilities and private households and on the

other, to promote renewable energy on the supply side as integral support to its Government

Partner, SREDA.

Energy efficiency improvement in Bangladesh is a priority of both Bangladesh and German

Government due to the role it plays in the areas of resource conservation, optimization, energy

security and climate change mitigation. In light of that, REEEP has already implemented a pilot

project on efficient lighting in a Textile Industry. In addition to lighting efficiency, there are several

other areas of energy efficiency in Composite Textiles. To demonstrate true potential and

implement a pilot project in a Composite Textile mill, REEEP of GIZ has entrusted Sodev Consult

International Ltd. the task of conducting walkthrough energy audits in three short listed composite

textile mills. Analyzing the results of the walkthrough energy audits, Purbani Composite Textiles

Ltd. was finalized for Investment Grade Energy Audit due to its maximum amount of energy

saving potential. All the tasks for this investment grade energy audit was completed by deploying

local and International Experts.

Page 5: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Table of Contents

EXECUTIVE SUMMARY .......................................................................................................................... 1

1. Introduction....................................................................................................................................... 9

2. Methodology of Energy Audit ....................................................................................................... 10

3. Production Process ....................................................................................................................... 10

4. Energy Utility System .................................................................................................................... 16

4.1 Electrical Energy System and Use ............................................................................................. 16

4.2 Natural Gas System and Use ..................................................................................................... 19

4.3 Steam System and Use .............................................................................................................. 20

5. Energy Use Analysis and Benchmark .......................................................................................... 21

5.1 Month-wise production and energy use ..................................................................................... 23

5.2 Energy consumption ratio........................................................................................................... 28

6. Energy Conservation Measures (ECMs) of Purbani Fabrics Ltd, Purbani Yarn Dyeing Ltd and Karim Textiles Ltd. ......................................................................................................................... 30

6.1 Energy Conservation Measures (ECMs) of Karim Spinning Mills Ltd. ....................................... 46

7. Renewable Energy Options ........................................................................................................... 51

8. Additional Energy Conservation Measures ................................................................................. 53

9. Operational Practices .................................................................................................................... 55

10. Organizational Analysis ................................................................................................................. 56

11. Energy Management Matrix........................................................................................................... 57

12. Conclusion ...................................................................................................................................... 58

13. Recommendations ......................................................................................................................... 59

ANNEXURE

Annexure 1: Energy Use in 2017 .......................................................................................................... 60

Annexure 2: List of Motors with Electrical Load .................................................................................... 65

Annexure 3: Specification of Major Energy Consuming Components .................................................. 66

Annexure 4: Break Down of Energy Consumption of Different Sections and Equipment ..................... 67

Annexure 5: Instruments used for Measurements ................................................................................ 68

Annexure 6: Rule of Thumb (Rot) Used in Analysis .............................................................................. 69

Annexure 7: Assumptions of Financial Analysis ................................................................................... 70

Annexure 8: Calculations of Ecms ........................................................................................................ 71

List of persons met/contacted for the investment grade energy audit ........................................... 82

Some machineries of the plant and the audit process ..................................................................... 83

Page 6: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Energy Audit Team

SL. No. Name Title

01 Dr. J. Nagesh Kumar Energy Auditor and Energy Efficiency Specialist-

International

02 A.K.M Mazharul Islam Senior Engineer (SODEV Consult Intl. Ltd.)

Energy Auditor (Mechanical)/Certified Energy Auditor

(Certification ID: 90297)

03 Rageb Ahsan Energy Auditor (Electrical)/Certified Energy Auditor

(Certification ID: 90157)

04 Kowshic Ahmed Engineer (SODEV Consult Intl. Ltd.)

Certified Energy Auditor (Certification ID: 90287)

05 Shammi Akter Electrical Engineer (SODEV Consult Intl. Ltd.)

Page 7: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Conversion Factor

1 kWh of Electricity 3.6 Mega joules

1 Cub. M. Natural Gas 38.109 Mega joules

1 Litre of Diesel 36.00 Mega joules

1 Cub. Ft. 0.0283 Cub. M

Specific heat of air 0.25 Kcal/Kg C

1 Cub. M. of Natural Gas 0.716 kg at NTP

Sp Heat of super-heated Steam 0.45 Kcal/kg C

Sp Heat of Flue Gas 0.23 Kcal/kg C

1 Cal 4.187 Joules

Carbon Emission Factor (Source CLEER tool: www.cleertool.org/Support)

1 GJ of Natural Gas emits 56 kg of CO2

1 GJ of Petrol emits 67.2 kg of CO2

1 GJ of Diesel emits 74 kg of CO2

1 GJ of Furnace Oil emits 77.6 kg of CO2

1 GJ of Bt. Coal emits 95 kg of CO2

1 GJ of Grid Electricity emits 168.8 kg of CO2

Energy Tariff1

Gas (Industry) 7.76 BDT per Cub. M

Gas (Power) 9.62 BDT per Cub. M

Electricity 8.15 BDT per kWh

High Speed Diesel (HSD) 65.00 BDT per Liter

Compressed Natural Gas (CNG) 40.00 BDT per Cub. M

1 As on 1 June, 2017. Source: Titas Gas, BERC, Bangladesh Power Distribution Board (BPDB)

Page 8: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Glossary Abbreviations

GIZ Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH

SREDA Sustainable and Renewable Energy Development Authority

SBI Supplied by the Industry

BDT Bangladeshi Currency (Taka)

IRR Internal Rate of Return

NPV Net Present Value

CNG Compressed Natural Gas

Cub. M Cubic Meter

CPP Captive Power plant

°C Degree Centigrade

ECM Energy Conservation Measures

kW Kilowatt

kWh Kilowatt hour

kVAR Kilo Volt Ampere Reactive

kVA Kilo Volt Ampere

kCal Kilo Calorie

MT Metric Ton

NG Natural Gas

PF Power factor

REB Rural Electrification Board

ROT Rule of Thumb

SEC Specific energy consumption

V Volt

A Ampere

hr Hour

CO2 Carbon Dioxide

sft Square Feet

GEG Gas Engine Generator

DG Diesel Generator

Page 9: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 1

EXECUTIVE SUMMARY Purbani Composite Textiles Ltd. uses diesel from Bangladeshi Oil Co., natural gas from Titas Gas and Electricity from Rural Electrification Board

(REB) as its primary energy sources. The company reports to use 31,638 litres of diesel, 10.845 million cubic meters of natural gas for gas

generators and 0.889 million cubic meters of natural gas for production process and 533,105 kWh of electricity from REB during January 2017-

December 2017.

Table 1: Base year breakdown of energy consumption, cost and CO2 emission.

SL No.

Energy Consumption Energy Cost tCO2 (MT/yr)2

Diesel in Litres

Natural Gas in Cubic Meter

Electricity in kWh

GJ % BDT USD %

1 Diesel 31,638 - - 1,139 0.25 2,056,470 25,706 1.75 84.3

2 Natural Gas for power - 10,845,057

- 413,294 91.79 104,329,448 1,304,118 88.69 23,144.5

3 Natural Gas for production

- 889,691

- 33,905 7.53 6,904,002 86,300 5.87 1,898.7

4 REB - - 533,105 1,919 0.43 4,344,806 54,310 3.69 324.0

Total 31,638 11,734,748 533,105 450,258 100.0% 117,634,726 1,470,434 100.0% 25,451.4

The energy assessment of Purbani Composite Textiles Ltd identified energy efficiency cost savings worth BDT 43.289 million per year including

housekeeping measures against a proposed estimated investment of BDT 109.987 million. The savings amount is about 37% of the total energy

cost. An investment grade energy assessment in the plant identified the following opportunities for energy cost savings3:

2 Reduction of CO2 is taken as 56 kg/GJ for Natural Gas, 67.2 kg/GJ for Petrol, 74 kg/GJ for Diesel, 77.6 kg/GJ for Furnace oil, 95 kg/GJ for Bt. Coal and 168.8

kg/GJ for Grid Electricity. Source: CLEER tool: https://www.cleertool.org/Support 3 All calculations are based on present energy tariff prevailing during the time of visit. Rate of USD was taken BDT 80 per dollar.

Page 10: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 2

Table 2: Energy Conservation Measures (ECMs).

SL No.

Energy Conservation Measures (ECM)

Investment Cost Without subsidies

Annual Savings % share of Identified Savings

Payback Period (Years) BDT

USD Natural

Gas in Cub. M

Electricity in kWh

GJ tCO2 (MT/yr)4

BDT GJ BDT

1 Improve existing lighting systems by energy efficient lamps

428,000 5,350 - 48,150 173 29.26 282,857 0.13% 0.65% 1.8

2 Install AC energy saver in all ACs 1,200,000 15,000 - 202,635 729 123.14 1,190,379 0.55% 2.75% 1.2

3 Insulate the back side of boiler-2 (6 Ton/hr)

520,000 6,500 20,139 - 767 42.98 156,278 0.58% 0.36% 3.9

4 Insulate the back side of boiler-1 520,000 6,500 20,000 - 762 42.68 155,200 0.57% 0.36% 3.9

5 Insulate the back side of EGB 70,400 880 2,632 - 100 5.62 20,424 0.08% 0.05% 4.0

6 Replace clutch type sewing machines with servo type sewing machines

8,450,000 105,625 - 161,834 583 98.34 950,694 0.44% 2.20% 10.3

7 Replace old stenter machine with new efficient stenter machine

40,000,000 500,000 622,440 -

23,721 1,328.35 4,830,134 17.78% 11.16% 9.6

8 Replace the old inefficient gas engine generator with new energy efficient gas engine generator

35,000,000 437,500 531,429 - 20,252 1,134.12 8,480,124 15.18% 19.59% 4.8

9 Recover heat from hot/warm cooling water generated

1,000,000 12,500 478,800 - 18,247 1,021.81 3,715,488 13.68% 8.58% 0.3

10 Recover heat from hot process baths (Effluent)

1,000,000 12,500 718,485 - 27,381 1,533.32 5,575,443 20.52% 12.88% 0.2

11 Reduce excess air in boiler by fine tuning the burner

- - 229,824 - 8,758 490.47 1,783,434 6.56% 4.12% -

12 Preheat boiler feed water using the hot flue gases of the boiler through an economiser

1,500,000 18,750 191,520 - 7,299 408.72 1,486,195 5.47% 3.43% 1.2

13 Optimisation of compressed air system

1,000,000 12,500 - 231,192 832 140.49 1,358,137 0.62% 3.14% 0.9

4 Reduction of CO2 is taken as 56 kg/GJ for Natural Gas, 67.2 kg/GJ for Petrol, 74 kg/GJ for Diesel, 77.6 kg/GJ for Furnace oil, 95 kg/GJ for Bt. Coal and 168.8 kg/GJ for Grid Electricity

Page 11: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 3

SL No.

Energy Conservation Measures (ECM)

Investment Cost Without subsidies

Annual Savings % share of Identified Savings

Payback Period (Years) BDT

USD Natural

Gas in Cub. M

Electricity in kWh

GJ tCO2 (MT/yr)4

BDT GJ BDT

14 Provide closed loop control for soft water pump

200,000 2,500 - 102,600 369 62.35 602,724 0.28% 1.39% 0.4

15 Provide VFD for cooling tower fan 250,000 3,125 - 30,780 111 18.70 180,817 0.08% 0.42% 1.6

16 Relocate 50% of the lamps in the garment section to other parts of the plant

- - - 182,400 657 110.84 1,071,508 0.49% 2.48% -

17

Replacement of old IE1/IE2 class motors by energy efficient IE3 class motors in Karim Spinning Mills Ltd

2,420,000 30,250 - 906,682 3,264 550.97 5,104,620 2.45% 11.79% 0.6

18 Install VFD for humidification pumps in Karim Spinning Mills Ltd

679,000 8,488 - 124,160 447 75.45 699,020 0.33% 1.61% 1.1

19 Improve existing lighting systems by energy efficient lamps in Karim Spinning Mills Ltd

450,000 5,625 - 50,400 181 30.63 283,752 0.14% 0.66% 1.8

20

Reducing pressure of compressed air system and operating one compressor with VFD in Karim Spinning Mills Ltd

300,000 3,750 - 331,520 1,193 201.46 1,866,458 0.89% 4.31% 0.2

21 Practice energy management 1,000,000 12,500 216,901 - 8,266 462.89 2,086,588 6.19% 4.82% 0.6

22

Install solar panel of 100 kW capacity for Purbani Fabrics Ltd, Purbani Yarn Dyeing Ltd and Karim Textiles Ltd

7,000,000 87,500 122,500 - 4,668 261.43 719,626 3.50% 1.66% 11.3

23 Install solar panel of 100 kW capacity for Karim Spinning Mills Ltd.

7,000,000 87,500 122,500 - 4,668 261.43 689,675 3.50% 1.59% 11.7

Total 109,987,400 1,374,843 3,277,170 2,121,568 133,430 8,435.45 43,289,575 100.0% 100.0% 2.5

Total avoidable CO2 emission is estimated to be 8,435 MT per year

Page 12: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 4

Table 3: Low Cost Energy Conservation Measures with Summary5

SL No.

Energy Conservation Measures (ECM)

Investment Cost Without subsidies

Annual Savings % share of Identified Savings

Payback Period (Years) BDT

USD Natural Gas

in Cub. M Electricity

in kWh GJ tCO2

(MT/yr)6

BDT GJ BDT

1 Improve existing lighting systems by energy efficient lamps

428,000 5,350 - 48,150 173 29.26 282,857 0.13% 0.65% 1.8

2 Insulate the back side of boiler-2 (6 Ton/hr)

520,000 6,500 20,139 - 767 42.98 156,278 0.58% 0.36% 3.9

3 Insulate the back side of boiler-1 520,000 6,500 20,000 - 762 42.68 155,200 0.57% 0.36% 3.9

4 Insulate the back side of EGB 70,400 880 2,632 - 100 5.62 20,424 0.08% 0.05% 4.0

5 Reduce excess air in boiler by fine tuning the burner

- - 229,824 - 8,758 490.47 1,783,434 6.56% 4.12% -

6 Provide closed loop control for soft water pump

200,000 2,500 - 102,600 369 62.35 602,724 0.28% 1.39% 0.4

7 Provide VFD for cooling tower fan 250,000 3,125 - 30,780 111 18.70 180,817 0.08% 0.42% 1.6

8 Relocate 50% of the lamps in the garment section to other parts of the plant

- - - 182,400 657 110.84 1,071,508 0.49% 2.48% -

9 Install VFD for humidification pumps in Karim Spinning Mills Ltd

679,000 8,488 - 124,160 447 75.45 699,020 0.33% 1.61% 1.1

10 Improve existing lighting systems by energy efficient lamps in Karim Spinning Mills Ltd

450,000 5,625 - 50,400 181 30.63 283,752 0.14% 0.66% 1.8

11

Reducing pressure of compressed air system and operating one compressor with VFD in Karim Spinning Mills Ltd

300,000 3,750 - 331,520 1,193 201.46 1,866,458 0.89% 4.31% 0.2

Total 3,417,400 42,718 272,595 870,010 13,518 1110.44 7,102,472 10.13% 16.41% 0.5

5 Low, medium and high investments have been considered as USD $ 0-10,000, $10,001-50,000 and $50,001+ respectively. 6 Reduction of CO2 is taken as 56 kg/GJ for Natural Gas, 67.2 kg/GJ for Petrol, 74 kg/GJ for Diesel, 77.6 kg/GJ for Furnace oil, 95 kg/GJ for Bt. Coal and 168.8 kg/GJ for Grid Electricity

Page 13: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 5

Table 4: Medium Cost Energy Conservation Measures with Summary7

SL No.

Energy Conservation Measures (ECM)

Investment Cost Without subsidies

Annual Savings % share of Identified Savings

Payback Period (Years) BDT

USD Natural

Gas in Cub. M

Electricity in kWh

GJ tCO2 (MT/yr)8

BDT GJ BDT

1 Install AC energy saver in all ACs

1,200,000 15,000 - 202,635 729 123.14 1,190,379 0.55% 2.75% 1.2

2 Recover heat from hot/warm cooling water generated

1,000,000 12,500 478,800 - 18,247 1,021.81 3,715,488 13.68% 8.58% 0.3

3 Recover heat from hot process baths (Effluent)

1,000,000 12,500 718,485 - 27,381 1,533.32 5,575,443 20.52% 12.88% 0.2

4 Preheat boiler feed water using the hot flue gases of the boiler through an economiser

1,500,000 18,750 191,520 - 7,299 408.72 1,486,195 5.47% 3.43% 1.2

5 Optimisation of compressed air system

1,000,000 12,500 - 231,192 832 140.49 1,358,137 0.62% 3.14% 0.9

6

Replacement of old IE1/IE2 class motors by energy efficient IE3 class motors in Karim Spinning Mills Ltd

2,420,000 30,250 - 906,682 3,264 550.97 5,104,620 2.45% 11.79% 0.6

7 Practice energy management 1,000,000 12,500 216,901 - 8,266 462.89 2,086,588 6.19% 4.82% 0.6

Total 9,120,000 114,000 1,605,706 1,340,509 66,018 4241.34 20,516,850 49.48% 47.39% 0.4

7 Low, medium and high investments have been considered as USD $ 0-10,000, $10,001-50,000 and $50,001+ respectively. 8 Reduction of CO2 is taken as 56 kg/GJ for Natural Gas, 67.2 kg/GJ for Petrol, 74 kg/GJ for Diesel, 77.6 kg/GJ for Furnace oil, 95 kg/GJ for Bt. Coal and 168.8 kg/GJ for Grid Electricity

Page 14: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 6

Table 5: High Cost Energy Conservation Measures with Summary9

SL No.

Energy Conservation Measures (ECM)

Investment Cost Without subsidies

Annual Savings % share of Identified Savings

Payback Period (Years) BDT

USD Natural

Gas in Cub. M

Electricity in kWh

GJ tCO2 (MT/yr)10

BDT GJ BDT

1 Replace clutch type sewing machines with servo type sewing machines

8,450,000 105,625 - 161,834 583 98.34 950,694 0.44% 2.20% 10.3

2 Replace old stenter machine with new efficient stenter machine

40,000,000 500,000 622,440 -

23,721 1,328.35 4,830,134 17.78% 11.16% 9.6

3

Replace the old inefficient gas engine generator with new energy efficient gas engine generator

35,000,000 437,500 531,429 - 20,252 1,134.12 8,480,124 15.18% 19.59% 4.8

4

Install solar panel of 100 kW capacity for Purbani Fabrics Ltd, Purbani Yarn Dyeing Ltd and Karim Textiles Ltd

7,000,000 87,500 122,500 - 4,668 261.43 719,626 3.50% 1.66% 11.3

5 Install solar panel of 100 kW capacity for Karim Spinning Mills Ltd.

7,000,000 87,500 122,500 - 4,668 261.43 689,675 3.50% 1.59% 11.7

Total 97,450,000 1,218,125 1,398,869 161,834 53,892 3083.67 15,670,253 40.40% 36.20% 6.2

9 Low, medium and high investments have been considered as USD $ 0-10,000, $10,001-50,000 and $50,001+ respectively. 10 Reduction of CO2 is taken as 56 kg/GJ for Natural Gas, 67.2 kg/GJ for Petrol, 74 kg/GJ for Diesel, 77.6 kg/GJ for Furnace oil, 95 kg/GJ for Bt. Coal and 168.8 kg/GJ for Grid Electricity

Page 15: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 7

Table 6: Financial Analysis11

No. Energy Conservation

Measures (ECM) Investment (BDT)

Financial savings (BDT)

Payback period (Years)

IRR (%)

NPV (BDT)

Project lifetime (Years)

1 Improve existing lighting systems by energy efficient lamps

428,000 282,857 1.8 59 221,778 5

2 Install AC energy saver in all ACs

1,200,000 1,190,379 1.2 153 2,073,870 5

3 Insulate the back side of boiler-2 (6 Ton/hr)

520,000 156,278 3.9 18 48,467 10

4 Insulate the back side of boiler-1

520,000 155,200 3.9 18 42,023 10

5 Insulate the back side of EGB 70,400 20,424 4.0 16 2,181 10

6 Replace clutch type sewing machines with servo type sewing machines

8,450,000 950,694 10.3 2 -5,471,551 17

7 Replace old stenter machine with new efficient stenter machine

40,000,000 4,830,134 9.6 7 -

18,869,667 20

8

Replace the old inefficient gas engine generator with new energy efficient gas engine generator

35,000,000 8,480,124 4.8 24 19,130,540 20

9 Recover heat from hot/warm cooling water generated

1,000,000 3,715,488 0.3 933 11,681,616 5

10 Recover heat from hot process baths (Effluent)

1,000,000 5,575,443 0.2 1469 18,479,056 5

11 Reduce excess air in boiler by fine tuning the burner

- 1,783,434 - - - 5

12 Preheat boiler feed water using the hot flue gases of the boiler through an economiser

1,500,000 1,486,195 1.2 153 2,585,837 5

13 Optimisation of compressed air system

1,000,000 1,358,137 0.9 257 3,066,383 5

14 Provide closed loop control for soft water pump

200,000 602,724 0.4 731 1,823,309 5

15 Provide VFD for cooling tower fan

250,000 180,817 1.6 77 186,544 5

16 Relocate 50% of the lamps in the garment section to other parts of the plant

- 1,071,508 - - - 5

17

Replacement of old IE1/IE2 class motors by energy efficient IE3 class motors in Karim Spinning Mills Ltd

2,420,000 5,104,620 0.6 472 14,064,489 5

18 Install VFD for humidification pumps in Karim Spinning Mills Ltd

679,000 699,020 1.1 164 1,266,528 5

19

Improve existing lighting systems by energy efficient lamps in Karim Spinning Mills Ltd

450,000 283,752 1.8 50 183,312 5

20 Reducing pressure of compressed air system and

300,000 1,866,458 0.2 1655 6,252,073 5

11 Real discount equity=15%, Interest on bank loan=13%

Page 16: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 8

operating one compressor with VFD in Karim Spinning Mills Ltd

21 Practice energy management 1,000,000 2,086,588 0.6 465 5,728,596 5

22

Install solar panel of 100 kW capacity for Purbani Fabrics Ltd, Purbani Yarn Dyeing Ltd and Karim Textiles Ltd

7,000,000 719,626 11.3 4 -4,354,969 20

23 Install solar panel of 100 kW capacity for Karim Spinning Mills Ltd.

7,000,000 689,675 11.7 3 -4,605,925 20

Table 7: Overall ECM summary against base year

Annual Energy Savings Potential Annual Cost Savings Potential

Potential CO2

Savings (MT)

Natural Gas in Cubic Meter

Electricity in kWh12

GJ BDT USD

Savings from ECM 3,277,170 2,121,568 133,430 43,289,575 541,120 8,435.45

Savings Percentage

27.9% 7.03% 29.6% 36.8% 33.1%

Table 8: Overall financial summary

Investment (BDT)

Financial Savings (BDT)

Payback period (Years)

IRR (%) NPV (BDT) Overall project lifetime

109,987,400 43,289,575 2.94 36% 71,387,914 10 Years

12 Total baseline electricity consumption of the factory= REB + Electricity generated by GEG + Electricity generated by DG = 30,199,351 kWh. (Provided by the factory)

Page 17: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 9

1. Introduction

Purbani Composite Textiles Ltd. is one of the largest export oriented composite textile industries

in Bangladesh since 1973. The factory is located at Noorbag, Mouchak, Kaliakoir, Gazipur,

Dhaka. The composite factory is comprised of four sister concerns namely Purbani Fabrics Ltd.,

Purbani Yarn Dyeing Ltd., Karim Textiles Ltd. and Karim Spinning Mills Ltd. Karim Spinning Mills

Ltd is located at a separate premise at Dewaliabari, Konabari, Gazipur. It is an export oriented

cotton carded and combed yarn manufacturing company. The main factory premise is a vertically

integrated textile manufacturing company. Most of the machineries used in this factory for

production are imported from manufacturers of different countries.

A brief description of the composite textile is provided below:

1.1 Purbani Fabrics Ltd.

Purbani Fabrics Ltd. is equipped with state-of-the-art European technology producing 100% knit

fabrics. Total floor area of the plant is 1,09,773 sft. Working days per year of the factory is 285

days and working hour per day is 24 hours in 3 shifts operation. Total number of workers in the

plant is 637 (Male: 619, Female: 18) and number of supervisors is 217. Maximum production

capacity of the plant is 23 tons/day. Average fabric production of the plant is 20 tons/day which

is 86% of the maximum capacity. The plant offers various types of knitted fabrics, structures,

single jersey, pique, lacoste, rib, herring bone, knitted twill, french terry and other designs. In

addition, this unit produces interlock fabrics in plain and lycra varieties of good quantity. The plant

has well equipped dyeing, finishing and knitting section.

1.2 Purbani Yarn Dyeing Ltd.

Total floor area of the plant 138,209 sft. Working days per year of the factory is the same as

Purbani Fabrics Ltd. and working hour per day is 24 hours in 3 shifts operation. Total number of

male and female employee in the plant is 398 and 185 respectively and total number of

supervisors is 119. Maximum production capacity of the plant is 14 tons/day. Average production

of finished product in the plant is 12 tons/day which is 85% maximum capacity. Final products of

the plant are various kinds of dyed yarn, cotton, polyester, nylon, acrylic and blends, cotton fiber.

Printing unit is using screen printing method to print on garments and has a daily capacity of

50,000 pieces.

1.3 Karim Textiles Ltd.

Karim Textiles Ltd. founded in 1988, this is the garment sewing and printing unit of this group.

Total floor area of the plant is 176,680 sft. Working days per year of the factory is the same as

Purbani Fabrics Ltd. and working hour per day is 8 hours in 1 shift operation. Total number of

male and female employee in the plant is 286 and 1,155 respectively. Total number of supervisors

is 286. Maximum production capacity of the plant is 65,000 pcs. Average production of finished

product in the plant is 60,000 pcs which is 92% of maximum capacity.

1.4 Karim Spinning Mills Ltd.

Karim Spinning Mills Ltd. was established in 2002. This unit has been specifically designed to

produce yarn to cater to the requirements of its fabric manufacturing unit. Total floor area of the

factory is 299,950 sqft. Working days per year of the factory is 354 days and working hour per

day is 24 hours in 4 shifts operation. Total number of male and female employee in the plant is

770 and 539 respectively and number of supervisors is 2. Maximum production capacity of the

plant is 16,000 kgs (Carded +Combed). Average production of the plant is around 15,046 kgs/day

(Carded +Combed) which is 94% of maximum capacity.

Page 18: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 10

2. Methodology of Energy Audit The study methodology is as follows:

The preliminary phase involved information gathering from log book data sheets, historical

data, technical plant drawings, literature, and through interviews and discussions with

various plant personnel.

Current operating data for key parameters influencing energy efficiency were obtained from

control panels and through random, on-site measurements.

Representative trials on some energy intensive equipment were made in order to evaluate

existing efficiency and performance, and to precisely identify the Energy Conservation

Measures (ECMs), both operational and otherwise, which would affect cost and energy

savings. Portable instruments were used during these trials as required, in addition to

control panel data and plant records.

Estimated ECMs options were identified.

On February, 2018, following the field study, a detailed overview of the findings and

recommendations, covering different scope areas, was made to GIZ.

The energy assessment team members were Dr. J. Nagesh Kumar (Energy Auditor and

Energy Efficiency Specialist- International) A.K.M Mazharul Islam (Certified Energy

Auditor), Rageb Ahsan (Certified Energy Auditor), Kowshic Ahmed (Certified Energy

Auditor) and Shammi Akter (Electrical Engineer).

3. Production Process The final products of Purbani Composite Textiles Ltd are yarn, fabric and readymade garments.

Average yarn production of the plant is 15,046 kg/day, fabric production of the plant is 20

tons/day, average dyeing capacity of the plant is 12 tons/day and average readymade garments

production is 60,000 pieces per day. The plant is committed to increasing their production

gradually in the upcoming years. The main processes of the fabric section include pre-treatment,

dyeing, washing etc. Some process related sections are shown in Figure-1 to Figure-8 and

process flow diagram of the plant is shown in figures 9-12 below:

Figure 1: Dyeing section (yarn) Figure 2: Radio Frequency dryer

Page 19: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 11

Figure 3: Yarn loading Figure 4: Dyeing machine (fabrics)

Figure 5: Stenter machine Figure 6: Compactor

Figure 7: Sewing Section Figure 8: Cutting machine

Page 20: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 12

Figure 9: Process flow diagram of fabric, washing, dyeing and garments

Work order receive

Lab approval

Receive grey fabric

Batch making

Batch loading

Pre-treatment

Dyeing

Washing

Shade roll complete

Final Inspection

Sent to Garments Making Unit

Cutting

Sewing

Finishing

Packaging

Garments Wash/ Dyeing

Shipping

Printing

Page 21: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 13

Figure 10: Process flow diagram of carded yarn

Cotton in Bale Form

Blow Room

Carding

Breaker Drawing

Finisher Drawing

Simplex

Ring Spinning

Autoconer

Yarn Conditioner

Packing

Opening, Cleaning & Mixing

Carder Silver

Breaker Drawn Silver

Finisher Drawn Silver

Roving

Yarn

Cone

Yarn Bag

Twist Setting

Page 22: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 14

Figure 11: Process flow diagram of combed yarn

Cotton in Bale Form

Blow Room

Carding

Breaker Drawing

Lap Former

Comber

Finisher Drawing

Simplex

Ring Spinning

Opening, Cleaning & Mixing

Carded Silver

Breaker Drawn Silver

Lap Forming

Noil Extraction

Finisher Drawn Silver

Roving

Autoconer

Yarn

Cone

Yarn Conditioner Twist Setting

Packing Yarn Bag

Page 23: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 15

Figure 12: Process flow diagram of carded slub yarn

Cotton in Bale Form

Blow Room

Carding

Breaker Drawing

Finisher Drawing

Simplex

Ring Spinning with slub attachment

Autoconer

Yarn Conditioner

Packing

Opening, Cleaning & Mixing

Carded Silver

Breaker Drawn Silver

Finisher Drawn Silver

Roving

Slub Yarn

Cone

Twist Setting

Slub Yarn Bag

Page 24: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 16

4. Energy Utility System Purbani Composite Textiles Ltd. uses diesel from Bangladeshi Oil Co., natural gas from Titas

Gas and Electricity from Rural Electrification Board (REB) as its primary energy sources. The

company reports to use 31,638 litres of diesel, 10.845 million cubic meters of natural gas for gas

generators and 0.889 million cubic meters of natural gas for production process and 533,105

kWh of electricity from REB during January 2017-December 2017.13

4.1 Electrical Energy System and Use Purbani Fabrics Ltd., Purbani Yarn Dyeing Ltd and Karim Textiles Ltd. uses three Gas Engine

Generators (GEG) of capacity 937 kVA and 2x1,125 and one Diesel Generators (DG) of capacity

1,000 kVA. The plant is also connected with the national power grid through Rural Electrification

Board (REB) by one transformer of rating 1,250 kVA, 11/0.44 kV. Main power source of the plant

is GEG as the electricity used from REB is very less. The average gross heat rate of three GEGs

is 2.6 kWh/Cub. M of natural gas. The plant also has a PFI plant consisted of 1 capacitor of rating

750 kVAR. The sanction load from REB is 1000 kW. Total connected load of the plant is 4,350

kW and average load is 1,800 kW. Average power factor of the factory is maintained at 0.96

which is satisfactory. A single line diagram of the electricity distribution system is shown in Figure

13.

Figure 13: Single line diagram of the electricity distribution system in the plant [

13 Energy use data was provided by the plant in Annexure-1

DG

REB

GEG

11 kV/0.4 kV 1250 kVA

Electricity Distributed to

factory

GEG

1,125 kVA

2000 A ACB

LT Panel-1

1600 A ACB

937 kVA

LT Panel-3

GEG

1,125 kVA

2000 A ACB

1,000 kVA

1600 A ACB

REB LT Panel

LT Panel-2

Electricity Distributed to

factory

Electricity Distributed to factory

Electricity Distributed to factory

Page 25: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 17

Karim Spinning Mills Ltd. uses three Gas Engine Generators (GEG) of capacity 1,125 kVA which

is the main power source of the plant. The average gross heat rate of three GEGs is 2.9 kWh/Cub.

M of natural gas. Total connected load of the plant is 4,036.61 kW and average load is 2,350 kW.

Power factor is maintained at 0.95 which is satisfactory. There are 7 capacitors in different PFI

plants of the factory of capacity 1200 kVAR, 2x225 kVAR, 500 kVAR, 62.5 kVAR, 130 kVAR and

260 kVAR. A single line diagram of the electricity distribution system of Karim Spinning Mills is

shown in Figure 14.

Figure 14: Single line diagram of the electricity distribution system in the plant

Electricity is used in all the sections of the plants. The plant uses electricity in production and

utilities operation. The electrical load distribution of the plant in different sections is presented in

Figures 15-18.

4.1.1 Purbani Fabrics Ltd Figure-15 shows that maximum electricity is consumed by dyeing section (41%) for Purbani

Fabrics Ltd. Followed by, finishing section (31%) and knitting section (28%).

1125 kVA

GEG

BBT System

GEG

LT Panel

Electricity Distributed to Different Sections through BBT System

1125 kVA

GEG

1125 kVA

Page 26: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 18

Figure 15: Electrical load distribution of Purbani Fabrics Ltd.14

4.1.2 Purbani Yarn Dyeing Ltd Figure-16 shows that maximum electricity is consumed by dyeing section (48%) for Purbani Yarn

Dyeing Ltd. Followed by, finishing section (41%) and printing section (11%).

Figure 16: Electrical load distribution of Purbani Yarn Dyeing Ltd.15

4.1.3 Karim Textiles Ltd Figure-17 shows that maximum electricity is consumed by sewing section (44%) for Karim

Textiles Ltd. Followed by, finishing section (33%) and cutting section (23%).

14 Please see Annexure-4 for details 15 Please see Annexure-4 for details

41%

31%

28%

Dyeing Finishing Knitting

48%

41%

11%

Dyeing Finishing Printing

Page 27: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 19

Figure 17: Electrical load distribution of Karim Textiles Ltd.16

4.1.4 Karim Spinning Mills Ltd Figure-18 shows that maximum electricity is consumed by ring section (39%) for Karim Spinning

Mills Ltd. Followed by, humidification plant (26%), utility (16%), BRC (10%), finishing section (7%)

and DSC (3%).

Figure 18: Electrical load distribution of Karim Spinning Mills Ltd.17

4.2 Natural Gas System and Use Purbani Composite Textiles Ltd. uses natural gas for power generation and production process.

Natural Gas supply distribution in different units is presented in Figure 19. The figure shows that

maximum natural gas is consumed by Karim Spinning Mills Ltd (49%) followed by Purbani Fabrics

Ltd (25%), Purbani Yarn Dyeing Ltd (15%) and Karim Textiles Ltd (11%).

16 Please see Annexure-4 for details 17 Please see Annexure-4 for details

44%

23%

33%

Sewing Cutting Finishing

10%3%

39%

7%

26%

16%

BRC DSC Ring Section Finishing Section Humidification Plant Utility

Page 28: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 20

Figure 19: Distribution of natural gas use in different units of the plant18

4.3 Steam System and Use The plant has three gas boilers of 6 T/hr capacity each. Steam pressure is maintained at 7 kg/cm2.

Steam produced from the boilers are used in all three units of the composite plant. Amount of

steam used in these sections are presented in Figure 20. The figure shows that maximum steam

is consumed by Purbani Fabrics Ltd. (56%) followed by Karim Textiles Ltd. (22%) and Purbani

Yarn Dyeing Ltd (22%). Karim Spinning Mills Ltd. does not require steam for its production

process.

Figure 20: Distribution of steam use in different units of the plant19

18 Please see Annexure-4 for details 19 Please see Annexure-4 for details

25%

15%

11%

49%

Purbani Fabrics Ltd Purbani Yarn Dyeing Ltd

Karim Textiles Ltd Karim Spinning Mills Ltd

56%22%

22%

Purbani Fabrics Ltd Karim Textiles Ltd Purbani Yarn Dyeing Ltd

Page 29: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 21

5. Energy Use Analysis and Benchmark Information on consumed energy and production can be used to calculate Specific Energy

Consumption (SEC) for production. SEC shows periodic (monthly, annual etc.) energy usage per

unit of production. It is an important tool for comparative analysis within an industry or sector.

SEC gives an idea of overall energy usage and intensity and helps in setting achievable bench

marks for a company based on existing equipment and processes. SEC values are calculated

based on monthly consumption of total energy source and production for different months of

201720. Figures-21-24 present these values.

5.0.1 Purbani Fabrics Ltd

Figure 21: Specific energy consumption of Purbani Fabrics Ltd. in 2017

For Purbani Fabrics Ltd., the maximum SEC of 28.59 GJ/Ton reached in February, 2017.

Minimum SEC of 16.63 GJ/Ton achieved in December, 2017 with a variation of 42% between

them.

5.0.2 Purbani Yarn Dyeing Ltd

Figure 22: Specific energy consumption of Purbani Yarn Dyeing Ltd. in 2017

20 Please see Annexure-1 for production and energy use data for 2017

0

5

10

15

20

25

30

35

SEC for Diesel SEC for NG SEC for Electricity (REB) SEC total

0

5

10

15

20

25

30

35

40

SEC for Diesel SEC for NG SEC for Electricity (REB) SEC total

GJ/T

on

G

J/T

on

mahfuz.rahman
Comment on Text
Why this is only for NG?
mahfuz.rahman
Comment on Text
Why this is only for NG?
Page 30: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 22

For Purbani Yarn Dyeing Ltd, the maximum SEC of 37.64 GJ/Ton reached in August, 2017.

Minimum SEC of 17.90 GJ/Ton achieved in March, 2017 with a variation of 52% between them.

5.0.3 Karim Textiles Ltd

Figure 23: Specific energy consumption of Karim Textiles Ltd. in 2017

For Karim Textiles Ltd., the maximum SEC of 38.15 GJ/Thousand pcs reached in October, 2017.

Minimum SEC of 16.71 GJ/Thousand pcs achieved in December, 2017 with a variation of 56%

between them.

5.0.4 Karim Spinning Mills Ltd

Figure 24: Specific energy consumption of Karim Spinning Mills Ltd. in 2017

For Karim Spinning Mills Ltd, the maximum SEC of 46.81 GJ/Ton reached in November, 2017.

Minimum SEC of 32.38 GJ/Ton achieved in December, 2017 with a variation of 31% between

them.

0

5

10

15

20

25

30

35

40

45

SEC for Diesel SEC for NG SEC for Electricity (REB) SEC total

0

5

10

15

20

25

30

35

40

45

50

GJ/T

ho

usa

nd

Pcs

G

J/T

on

mahfuz.rahman
Comment on Text
Why this is only for NG?
mahfuz.rahman
Comment on Text
Fuel type is not clear here. Would be good to have same color legend like previous SEC scenarios.
Page 31: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 23

Benchmarking the industries for energy efficiency is a challenging and debatable issue due to

wide variations in the working environment. The variation can be due to geography, climate,

manpower, working conditions etc. Generally, staff of companies opposes any global benchmark

on these grounds. Therefore, the benchmarks the consultants propose are the minimum SEC

achieved in December, 2017 for Purbani Fabrics Ltd; March, 2017 for Purbani Yarn Dyeing Ltd;

December, 2017 for Karim Textiles Ltd and Karim Spinning Mills Ltd for the study period which

in this case are 16.63 GJ/Ton, 17.90 GJ/Ton, 16.71 GJ/Thousand Pcs and 32.38 GJ/Ton

respectively21. This level of intensity cannot be disputed as the company has already achieved it

under the existing conditions. It is important for the management of the company to analyse the

activities and practices of that particular month where the minimum SEC was achieved and drive

the staff to replicate them going forward.

5.1 Month-wise production and energy use Month-wise production and energy use graphs show the usage pattern of the factory for the year

2017. After implementing the Energy Conservation Measures (ECMs), these graphs can be

compared with the graphs achieved after installation to identify energy savings or increase in

production.

5.1.1 Purbani Fabrics Ltd The graph below shows the month-wise production of Purbani Fabrics Ltd for 2017. Average

production for the year was 437 Ton. Maximum production of 530 Ton was achieved in

November, 2017 and minimum production of 287 Ton was achieved in September, 2017.

The graph below shows the month-wise diesel consumption of Purbani Fabrics Ltd. for 2017.

Average diesel consumption for the year was 1,077 liters. Maximum 1,308 liters of diesel was

consumed in March, 2017 and minimum 915 liters of diesel was consumed in February, 2017.

21 As the demand is variable for these products, it is up to the management to chalk out the minimum SEC possible depending on the market condition to maximize the product utilization.

0

100

200

300

400

500

600

Month-wise Production

Ton

Page 32: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 24

The graph below shows the month-wise natural gas consumption of Purbani Fabrics Ltd. for

2017. Average natural gas consumption for the year was 244,706 Cub. M. Maximum 282,790

Cub. M of natural gas was consumed in November, 2017 and minimum 191,266 Cub. M of natural

gas was consumed in September, 2017.

The graph below shows the month-wise electricity from REB consumption of Purbani Fabrics Ltd.

for 2017. Average electricity from REB consumption for the year was 17,772 kWh. Maximum

28,620 kWh of electricity was consumed in June, 2017 and minimum 3,604 kWh of electricity

was consumed in January, 2017.

0

200

400

600

800

1000

1200

1400

Month-wise Diesel Consumption

-

50,000

100,000

150,000

200,000

250,000

300,000

Month-wise Natural Gas Consumption

0

5000

10000

15000

20000

25000

30000

35000

Month-wise REB Consumption

Lite

r

Cu

b. M

kW

h

Page 33: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 25

5.1.2 Purbani Yarn Dyeing Ltd The graph below shows the month-wise production of Purbani Yarn Dyeing Ltd. for 2017.

Average production for the year was 206 Ton. Maximum production of 287 Ton was achieved in

March, 2017 and minimum production of 130 Ton was achieved in September, 2017.

The graph below shows the month-wise diesel consumption of Purbani Yarn Dyeing Ltd for 2017.

Average diesel consumption for the year was 908 liters. Maximum 1,046 liters of diesel was

consumed in July, 2017 and minimum 784 liters of diesel was consumed in March, April and

September, 2017.

The graph below shows the month-wise natural gas consumption of Purbani Yarn Dyeing Ltd. for

2017. Average natural gas consumption for the year was 149,244 Cub. M. Maximum 164,508

Cub. M of natural gas was consumed in January, 2017 and minimum 116,330 Cub. M of natural

gas was consumed in September, 2017.

0

50

100

150

200

250

300

350

Month-wise Production

0

200

400

600

800

1000

1200

Month-wise Diesel Consumption

-

50,000

100,000

150,000

200,000

Month-wise Natural Gas Consumption

Ton

L

ite

r

Cu

b. M

Page 34: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 26

The graph below shows the month-wise electricity from REB consumption of Purbani Yarn Dyeing

Ltd. for 2017. Average electricity from REB consumption for the year was 15,546 kWh. Maximum

25,042 kWh of electricity was consumed in June, 2017 and minimum 3,153 kWh of electricity

was consumed in January, 2017.

5.1.3 Karim Textiles Ltd The graph below shows the month-wise production of Karim Textiles Ltd. for 2017. Average

production for the year was 161 Thousand pieces. Maximum production of 240 Thousand pieces

was achieved in November, 2017 and minimum production of 110 Thousand pieces was

achieved in October, 2017.

The graph below shows the month-wise diesel consumption of Karim Textiles Ltd. for 2017.

Average diesel consumption for the year was 652 liters. Maximum 784 liters of diesel was

consumed in June, 2017 and minimum 523 liters of diesel was consumed in March and August,

2017.

0

5000

10000

15000

20000

25000

30000

Month-wise REB Consumption

050

100150200250300

Month-wise Production

0

200

400

600

800

1000

Month-wise Diesel Consumption

Kw

h

Th

ousand p

ieces

L

ite

r

Page 35: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 27

The graph below shows the month-wise natural gas consumption of Karim Textiles Ltd. for 2017.

Average natural gas consumption for the year was 106,603 Cub. M. Maximum 117,505 Cub. M

of natural gas was consumed in January, 2017 and minimum 83,093 Cub. M of natural gas was

consumed in September, 2017.

The graph below shows the month-wise electricity from REB consumption of Karim Textiles Ltd.

for 2017. Average electricity from REB consumption for the year was 11,108 kWh. Maximum

17,887 kWh of electricity was consumed in June, 2017 and minimum 2,252 kWh of electricity

was consumed in January, 2017.

5.1.4 Karim Spinning Mills Ltd The graph below shows the month-wise production of Karim Spinning Mills Ltd. for 2017. Average

production for the year was 445 Ton. Maximum production of 474 Ton was achieved in October,

2017 and minimum production of 388 Ton was achieved in September, 2017.

-

20,000

40,000

60,000

80,000

100,000

120,000

140,000

Month-wise Natural Gas Consumption

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Month-wise REB Consumption

0

100

200

300

400

500Month-wise Production

Cu

b. M

kW

h

Ton

Page 36: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 28

The graph below shows the month-wise natural gas consumption of Karim Spinning Mills Ltd. for

2017. Average natural gas consumption for the year was 477,343 Cub. M. Maximum 558,016

Cub. M of natural gas was consumed in November, 2017 and minimum 387,500 Cub. M of natural

gas was consumed in December, 2017.

5.2 Energy consumption ratio Energy consumption ratio shows the ratio between electricity consumption from grid and thermal

energy consumption (natural gas, diesel etc.) of the factory.

5.2.1 Purbani Fabrics Ltd, Purbani Yarn Dyeing Ltd and Karim Textiles Ltd. The pie chart below shows the energy consumption ratio of Purbani Fabrics Ltd., Purbani Yarn

Dyeing Ltd and Karim Textiles Ltd. These factories consume a very small amount of electricity

from grid (1%) and rest of the consumption is thermal energy for power generation (84%) and

thermal energy for production process (15%).

-

100,000

200,000

300,000

400,000

500,000

600,000

Month-wise Natural gas Consumption

84%

15%

1%

Energy Consumption Ratio of Purbani Fabrics Ltd, Purbani Yarn Dyeing Ltd and Karim Textiles Ltd.

Thermal Energy used for power generation

Thermal Energy used for production process

Electrical Energy

Cu

b. M

mahfuz.rahman
Comment on Text
color legends are not clear enough
Page 37: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 29

5.2.2 Karim Spinning Mills Ltd. The pie chart below shows the energy consumption ratio of Karim Spinning Mills Ltd. This factory

does not use any electricity from the grid. Therefore, the total consumption of the factory is

thermal energy for power generation.

100%

0

Energy Consumption Ratio of Karim Spinning Mills Ltd.

Thermal Energy Electrical Energy

Page 38: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 30

6. Energy Conservation Measures (ECMs) of Purbani Fabrics Ltd, Purbani Yarn Dyeing Ltd and Karim Textiles Ltd.

Based on an examination of the production process, auxiliary operations, and general practices

followed in the plant, the energy audit experts identified several Energy Conservation Measures

(ECMs). These are listed below:

ECM 1: Improve existing lighting systems by energy efficient lamps Current Practice The plant has around 535 numbers of conventional 40W T8 lights.

Proposed measure Replace the T-8 tube lights by 20 Watt LED lights. A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 428,000 BDT

Annual Energy Saving 48,150 kWh of electricity

Annual Monetary Saving 282,857 BDT

Percentage of Savings 50%

Payback Period 1.8 Years

IRR 59%

NPV 221,778 BDT

Page 39: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 31

ECM 2: Install AC energy saver in all ACs Current Practice The plant has 80 air conditioners with total connected power around 790 kW and tons of refrigeration is 225 TR. 70 pcs of the ACs are split type with 750 kW and 10 pcs are window type with 40 kW motor rating. Proposed measure Install AC Energy Saver (AES) in all AC. It significantly reduces carbon emissions, improves air

quality and can save you up to 30% on your energy costs for air-conditioning. The standard

design of air conditioning is to operate continuously until the thermostat is satisfied, running the

compressor and producing a greater cooling capacity than the air can absorb. This of course

wastes energy. AES controls the thermostat and the compressor to achieve optimum balance

between efficiency and minimum energy consumption.

The AES principle of operation is to optimize the consumption of generated cooling thereby

leading to a reduction in the cooling generator’s utility consumption.

The AES contains a software “three dimensional model of cooling performance” that can be

continually and dynamically applied to any cooling unit during its operation. The AES will use its

connected sensor to compare the cooling unit’s actual performance against the software model

and determine when the best point of optimization is.

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 1,200,000 BDT

Annual Energy Saving 202,635 kWh of electricity

Annual Monetary Saving 1,190,379 BDT

Percentage of Savings 15%

Payback Period 1.2 Years

IRR 153%

NPV 2,073,870 BDT

Page 40: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 32

ECM 3: Insulate the back side of boiler-2 (6 Ton/hr) Current Practice The boiler is equipped with condensate heat recovery. However, the back side of boiler-2 is not

properly insulated. Therefore, a significant amount of energy is being wasted through heat

radiation.

Proposed measure Insulate the back surface of the boiler with proper insulating material (ceramic wool or ceramic

fibre).

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 520,000 BDT

Annual Energy Saving 20,139 Cub. M of natural gas

Annual Monetary Saving 156,278 BDT

Payback Period 3.9 Years

IRR 18%

NPV 48,467 BDT

Page 41: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 33

ECM 4: Insulate the back side of boiler-1 Current Practice The boiler is equipped with condensate heat recovery. However, the back side of boiler-1 is not

properly insulated. Therefore, a significant amount of energy is being wasted through heat

radiation.

Proposed measure Insulate the back surface of the boiler with proper insulating material (ceramic wool or ceramic

fibre).

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 520,000 BDT

Annual Energy Saving 20,000 Cub. M of natural gas

Annual Monetary Saving 155,200 BDT

Payback Period 3.9 Years

IRR 18 %

NPV 42,023 BDT

Page 42: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 34

ECM 5: Insulate the back side of EGB Current Practice The back side of the Exhaust Gas Boiler (EGB) is not properly insulated. Therefore, a significant

amount of energy is being wasted through heat radiation.

Proposed measure Insulate the back surface of the boiler with proper insulating material (ceramic wool or ceramic

fibre).

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 70,400 BDT

Annual Energy Saving 2,632 Cub. M of natural gas

Annual Monetary Saving 20,424 BDT

Payback Period 4.0 Years

IRR 16%

NPV 2,181 BDT

Page 43: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 35

ECM 6: Replace clutch type sewing machines with servo type sewing machines Current Practice The plant has 338 clutch type sewing machines which consume around 269,724 kWh per year.

Production capacity of these types of sewing machines is very low and consumes more energy

compared to the servo type sewing machines.

Proposed measure Replace the clutch type sewing machines with new energy efficient servo type sewing machines.

These types of modern sewing machines use servo motor, which is operated only when the

operator needs to sew. These machines have very good starting torque and immediately provide

power to the machine's needle. A servo motor is a direct current (d.c.) machine - to run on an

alternating current (a.c.) they need an electronic pack to convert the power supply. Although this

increases the initial investment, the savings can have a significant positive impact on the factory's

energy cost.

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 8,450,000 BDT

Annual Energy Saving 161,834 kWh of electricity

Annual Monetary Saving 950,694 BDT22

Percentage of Savings 60%

Payback Period 10.3 Years

IRR 2%

NPV -5,471,551 BDT

22 Resale value of the clutch type sewing machines and increase in production for new sewing machines were not considered

mahfuz.rahman
Comment on Text
Would it be wise to go for this ECM with this weak financial indicators?
Page 44: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 36

ECM 7: Replace the old stenter machine with new efficient stenter machine Current Practice The plant has an old stenter machine which consumes around 161 Cub. M/hr of natural gas and

production capacity is around 6 tons/day. The plant already has another stenter machine which

is new and efficient compared to the old one.

Proposed measure Replace the old stenter machine with the new one which will consume around 70 Cub. M/hr of

natural gas and production capacity is around 9.5 tons/day.

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 40,000,000 BDT

Annual Energy Saving 622,440 Cub. M of natural gas

Annual Monetary Saving 4,830,134 BDT 23

Percentage of Savings 56%

Payback Period 9.6 Years

IRR 7%

NPV -18,869,667 BDT

23 Resale value of the old stenter machine and increase in production for new machine were not considered

mahfuz.rahman
Comment on Text
Would it be wise to go for this ECM with this weak financial indicators?
Page 45: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 37

ECM 8: Replace the old inefficient gas engine generator with new energy efficient gas engine generator

Current Practice There are two 900 kW GEGs and one 750 GEG for meeting the electrical energy requirements

of the plant. One of the 900 kW GEG i.e. GEG No.2 has completed 1,18,000 hours of operation.

The energy performance of the engine has deteriorated and currently produces 2.3 kWh/Cub. m

of natural gas.

Proposed measure It is suggested to replace this No.2 GEG with a new energy efficient GEG of 900 kW which will

produce 3.22 kWh/Cub. M of natural gas.

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 35,000,000 BDT

Annual Energy Saving 531,429 Cub. M of natural gas

Annual Monetary Saving 8,480,124 BDT

Percentage of Savings 40%

Payback Period 4.8 Years

IRR 24%

NPV 19,130,540 BDT

Page 46: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 38

ECM 9: Recover heat from hot/warm cooling water generated Current Practice The dyeing process involves several steps of heating and cooling. The hot processes need to be

cooled subsequently by circulation of cooling water. This water which attains a temperature of

50oC is collected in a separate underground sump. The steam condensate from the process is

also collected in the same sump.

Proposed measure Since the condensate is high in purity and available at a higher temperature (80oC), it is

suggested to segregate steam condensate and cooling water by providing a partition in the sump.

A separate pump may be installed to pump the condensate to the boiler feed water tank. The

cooling water at 50oC may be circulated through a ring main system in the dye house with a VFD

driven pump. The pressure may be set at 1.5 kg/cm2. This water can be used to fill the dyeing

machines whenever hot wash is to be used in the machines. Since the water enters at a higher

temperature of 50oC considerable amount of steam can be saved. In addition, cycle time for the

process can be reduced leading to higher production and improved productivity.

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 1,000,000 BDT

Annual Energy Saving 478,800 Cub. M of natural gas

Annual Monetary Saving 3,715,488 BDT

Payback Period 0.3 Years

IRR 933%

NPV 11,681,616 BDT

mahfuz.rahman
Comment on Text
?
Page 47: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 39

ECM 10: Recover heat from hot process baths (Effluent) Current Practice The hot process/dye baths are discarded to the ETP in hot condition. This not only wastes the

energy in the hot baths but also causes nuisance to the proper operation of ETP. An enormous

amount of energy is also spent in operating the twin lobe air blowers in ETP for cooling purpose.

The following high temperature baths are released to the ETP:

Process Temperature

Scouring 80oC

BD hot wash 80oC

Enzyme 70oC

Dyeing 1 70oC

Dyeing 2 70oC

Proposed measure The hot dye effluents are to be collected separately in an underground tank. This should be

preceded by segregation of hot and cold effluents in separate pipes by automatic valve control

programmed with machine PLC. If it is hot wash, then valve opens to hot tank. If cold wash, then

it is directed to ETP. This will ensure maximum heat recovery from the effluents. After cooling

down of the effluents the process baths may be sent to ETP. This will ensure minimum operating

temperature in ETP leading to better operation of ETP and reduction of electrical energy

consumption for blowers in ETP.

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 1,000,000 BDT

Annual Energy Saving 718,485 Cub. M of natural gas

Annual Monetary Saving 5,575,443 BDT

Payback Period 0.2 Years

IRR 1469%

NPV 18,479,056 BDT

Page 48: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 40

ECM 11: Reduce excess air in boiler by fine tuning the burner Current Practice There are three 6 T/h natural gas fired boilers apart from one 3 T/h exhaust gas boiler. The steam

generation pressure is 6 kg/cm2. Normally two boilers are in operation. Flue gas analysis was

performed in all the three gas fired boilers. The results are shown in the following table.

Boiler Flue gas temperature, oC Oxygen % Excess air %

1 164 11.3 117

2 191 12.6 152

3 196 4.9 30

Proposed measure Boiler 3 is being operated efficiently as the excess air is around the desirable level of 30%. In the

other two boilers the excess air level is very high and the burners require tuning.

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment Nil

Annual Energy Saving 229,824 Cub. M of natural gas

Annual Monetary Saving 1,783,434 BDT

Payback Period Immediate

IRR -

NPV -

Boiler-1 Boiler-2 Boiler-3

Page 49: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 41

ECM 12: Preheat boiler feed water using the hot flue gases of the boiler through an economiser Current Practice The average exhaust temperatures in the three boilers is about 180oC. Inlet temperature of boiler

feed water is 70 oC. The flue gas from the boiler is currently disposed off to the environment and

hereby being unutilized.

Proposed measure An economiser may be provided to preheat the boiler feed water which will attain 90oC at the

outlet. This can be fed to the boiler. The temperature gain by the feed water is 20oC. This measure

is about to be implemented by the factory.

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 1,500,000 BDT

Annual Energy Saving 191,520 Cub. M of natural gas

Annual Monetary Saving 1,486,195 BDT

Payback Period 1.2 Years

IRR 153%

NPV 2,585,837 BDT

Page 50: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 42

ECM 13: Optimisation of compressed air system Current Practice The plant has seven air compressors to meet its pneumatic requirement. They are:

Machine no. Brand Motor Rating (kW)

1 Boge 75 kW

2 Ally-win 75 kW

3 Boge 45 kW

4 Boge 30 kW

5 Boge 30 kW

6 Kaiser 30 kW

7 Atlascopco 37 kW

All the compressors are in operation barring one 30 kW compressor. The pressure maintained

is between 5-6 kg/cm2.

Proposed measure

The knitting unit requires a pressure of only 3 kg/cm2. Hence one 75 kW compressor can be

moved near the knitting section and provided with a VFD. The system pressure for knitting unit

may be maintained between 3-3.2 kg/cm2.

For the remaining requirement, 1x 45, 1 x 37, 2 x 30 kW may be operated at full load and is not

likely to unload. This will meet the base load air requirement. The other 75 kW may be provided

with VFD for meeting the fluctuating variable requirement. This will avoid the unnecessary

unloading power consumption.

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 1,000,000 BDT

Annual Energy Saving 231,192 kWh of electricity

Annual Monetary Saving 1,358,137 BDT

Percentage of Savings 45%

Payback Period 0.9 Years

IRR 257 %

NPV 3,066,383 BDT

Page 51: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 43

ECM 14: Provide closed loop control for soft water pump Current Practice The soft water for process is supplied through a ring main system by 30 kW pump with VFD.

However, the VFD is in manual mode.

Proposed measure It is suggested to provide a constant pressure controller and provide a feedback to VFD to

maintain the pressure while varying the flow. The pressure may be maintained at 2 kg/cm2.

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 200,000 BDT

Annual Energy Saving 102,600 kWh of electricity

Annual Monetary Saving 602,724 BDT

Percentage of Savings 50%

Payback Period 0.4 Years

IRR 731%

NPV 1,823,309 BDT

Page 52: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 44

ECM 15: Provide VFD for cooling tower fan Current Practice The gas generators are water cooled with cooling towers. The cooling tower fan is of 7.5 kW and

is continuously in operation round the clock. When the cold water temperature reaches close to

wet bulb there is no use operating the fan.

Proposed measure It is suggested to provide VFD for all the three fans and control may be set for a fixed cold water

temperature.

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 250,000 BDT

Annual Energy Saving 30,780 kWh of electricity

Annual Monetary Saving 180,817 BDT

Percentage of Savings 20%

Payback Period 1.6 Years

IRR 77%

NPV 186,544 BDT

Page 53: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 45

ECM 16: Relocate 50% of the lamps in the garment section to other parts of the plant Current Practice The garment section appears to over illuminated. There are 4000 LED lamps of 20 W. This alone

contributes to a load of 80 kW.

Proposed measure It is suggested to remove one lamp from each fitting and relocate to other areas which contains

40 W tubes. There are about 2000 tubes of 40 W.

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment Nil

Annual Energy Saving 182,400 kWh of electricity

Annual Monetary Saving 1,071,508 BDT

Percentage of Savings 50%

Payback Period -

IRR -

NPV -

mahfuz.rahman
Comment on Text
Please mention the measured illumination data and justification of replacing 50% of the installed lamps. Also mention what will be the illumination once the ECM takes place.
Page 54: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 46

6.1 Energy Conservation Measures (ECMs) of Karim Spinning Mills Ltd. Based on an examination of the production process, auxiliary operations, and general practices

followed in the plant, the energy audit experts identified several Energy Conservation Measures

(ECMs). These are listed below:

ECM 17: Replacement of old IE1/IE2 class motors by energy efficient IE3 class motors Current Practice The plant has around 500 nos of old IE1/IE2 class motors with a total rating of 1100 kW. The

average efficiency of the motors is around 79%.

Proposed measure Replace the IE1/IE2 class motors with IE3 class motors which will increase the efficiency to 86%. A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 2,420,000 BDT

Annual Energy Saving 906,682 kWh of electricity

Annual Monetary Saving 5,104,620 BDT

Percentage of Savings 9%

Payback Period 0.6 Years

IRR 472%

NPV 14,064,489 BDT

Page 55: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 47

ECM 18: Install VFD for humidification pumps Current Practice The three humidification plants currently have pumps of 30 kW, 22 kW and 45 kW capacity. These

humidification pumps do not have variable frequency drive installed.

Proposed measure Water injection should be based on humidity. It is suggested to install a humidity sensor with a

feedback to VFD for the pumps.

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 679,000 BDT

Annual Energy Saving 124,160 kWh of electricity

Annual Monetary Saving 699,020 BDT

Percentage of Savings 20%

Payback Period 1.1 Years

IRR 164%

NPV 1,266,528 BDT

Page 56: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 48

ECM 19: Improve existing lighting systems by energy efficient lamps Current Practice There are around 1600 fittings of lights. Most of the tubes have already been replaced with 22 W

LED. 450 nos of lights are 36 W T5 lights.

Proposed measure It is suggested to replace rest of the 450 lights also with LED. In addition, optimisation of Lamps

with respect to need is suggested. De-lamp (remove) one lamp from twin tube wherever lighting

is sufficient. These removed lamps can be utilized for partly replacing remaining 450 lamps to

LED.

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 450,000 BDT

Annual Energy Saving 50,400 kWh of electricity

Annual Monetary Saving 283,752 BDT

Percentage of Savings 38%

Payback Period 1.8 Years

IRR 50%

NPV 183,312 BDT

Page 57: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 49

ECM 20: Reducing pressure of compressed air system and operating one compressor with VFD Current Practice The plant currently has 4 compressors of rating 37 kW each. Existing pressure setting is set to

7.6 to 8.5 kg/cm2.

Proposed measure It is suggested to operate three compressors with an unload setting of 7 kg/cm2. The forth

compressor is to be connected to VFD and operated between 6.8 to 6.9 kg/cm2 with pressure

feedback to VFD.

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 300,000 BDT

Annual Energy Saving 331,520 kWh of electricity

Annual Monetary Saving 1,866,458 BDT

Percentage of Savings 28%

Payback Period 0.2 Years

IRR 1655%

NPV 6,252,073 BDT

Page 58: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 50

ECM 21: Practice energy management Current Practice There are several areas the plant is currently losing energy inadvertently such as improper

combustion, electrical appliances management according to occupancy, leakage in steam

pipeline, use of day light, measurement and monitoring etc. These housekeeping options are not

being properly maintained.

Proposed measure An energy management team should be created and this team should include an internal energy

auditor, factory manager, production manager and utility manager as members. This team would

develop energy programs, communicate to all staff regarding energy efficiency and provide

monthly updates on the implementation and results. The team should also set an annual target

for energy saving. Generally, if there are staffs allocated for such tasks they will continuously find

areas for improvement. The team should be trained so that they are equipped with adequate

skills. Some areas for coverage for the team could be:

Ensure optimized combustion. This can be done by analyzing the flue gas of the generator

and controlling the air-fuel ratio.

Repair the leakage if there is any to prevent losses of gas, steam and air.

Ensuring proper maintenance of motors, compressors, generators, boilers etc.

Monitoring the use of lights and fans according to occupancy.

Use of daylight as much as possible.

Measuring energy consumption parameters of each machine and monitoring. A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 1,000,000 BDT

Annual Energy Saving 216,901 Cub. M of natural gas

Annual Monetary Saving 2,086,588 BDT

Percentage of Savings 2%

Payback Period 0.6 Years

IRR 465%

NPV 5,728,596 BDT

mahfuz.rahman
Comment on Text
Is this an assumption on energy savings earned by energy management? if so, please explain properly to make it easier to the reader to understand.
Page 59: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 51

7. Renewable Energy Options In addition to the energy conservation measures presented above, there are some renewable

energy options which can provide a significant amount of energy savings:

ECM 22: Install solar panel of 100 kW capacity for Purbani Fabrics Ltd, Purbani Yarn

Dyeing Ltd and Karim Textiles Ltd

Current Practice The plant uses electricity from GEG, DG and it has grid connection from REB. The generation

cost of electricity from GEG is BDT 5.63 per kWh and rate of REB is BDT 8.15 per kWh.

Proposed measure It is proposed to install 100 kW solar PV plant. The solar panel will utilize the solar power falling

upon a large area of the roof of the factory.

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 7,000,000 BDT

Annual Energy Saving 122,500 kWh of electricity

Annual Monetary Saving 719,626 BDT

Payback Period 11.3 Years

IRR 4%

NPV -4,354,969 BDT

mahfuz.rahman
Comment on Text
Is the roof-top has enough space considering the shading and structural strength for 100kWp solar project? Also please justify the capacity i.e. 100kWp? Please insert a picture of the roof-top.
mahfuz.rahman
Comment on Text
Indicators seem weaker than expected.
Page 60: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 52

ECM 23: Install solar panel of 100 kW capacity for Karim Spinning Mills Ltd. Current Practice The plant uses electricity from GEG. The generation cost of electricity from GEG is BDT 5.63 per

kWh.

Proposed measure It is proposed to install 100 kW solar PV plant. The solar panel will utilize the solar power falling

upon a large area of the roof of the factory.

A snapshot of the Cost and Benefit Analysis is provided in the table below. For detailed

calculations, please refer to Annexure-8.

Investment 7,000,000 BDT

Annual Energy Saving 122,500 kWh of electricity

Annual Monetary Saving 689,675 BDT

Payback Period 11.7 Years

IRR 3%

NPV -4,605,925 BDT

Carbon Dioxide (CO2) Emission Reduction Adoption of the above mentioned ECMs are estimated to reduce CO2 emission by 8,435 MT per year.

mahfuz.rahman
Comment on Text
Is the roof-top has enough space considering the shading and structural strength for 100kWp solar project? Also please justify the capacity i.e. 100kWp? Please insert a picture of the roof-top.
Page 61: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 53

8. Additional Energy Conservation Measures ECM: Recovery of heat from engine jacket water Current Practice The plant is currently using Gas Engine Generators of capacity 2x900 kW and 1x750 kW. The

average load of the plant is about 1800 kW.

Proposed measure The heat available in the engine jacket water is equivalent to power generated. The primary

cooling circuit operates between 70oC (inlet) to 80oC (outlet). This heat from the primary circuit is

taken away by secondary cooling water circulation which in turn rejects the absorbed heat in the

cooling tower and then to the atmosphere. Instead of wasting the heat it is suggested to produce

hot water at 70oC which can be used in the process. The calculation projects the potential but

the utilisation depends on the need.

A snapshot of the cost, benefit analysis and detailed calculations are provided below:

Investment 5,000,000 BDT

Annual Energy Saving 1,484,280 Cub. M of natural gas

Annual Monetary Saving 11,518,012 BDT

Payback Period 0.5 Years

IRR 527%

NPV 32,608,519 BDT

Page 62: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 54

ECM Calculation: Recovery of heat from engine jacket water

Average load on the engines 1800 kW

Heat rejected to the jacket 1800 kW

1800 x 860 =1,548,000

kcal/hr

Quantity of hot water that can be produced with 30oC inlet and 70oC outlet

1,548,000/ (70-30) x 1000 =38.7

Cub. M /hr

38.7 x 24

=929 Cub. M /day

Gas saving in steam boiler consumption 1,548,000/ (0.85 x 8400)

=217 Cub. M /hr

Annual gas saving potential @6840 hours per year operation

217 x 6840 =1,484,280

Cub. M /year

Annual monetary savings potential @BDT 7.76 per Cub. M

1,484,280 x 7.76 =11,518,012

BDT

Investment 5,000,000 BDT

Project lifetime 5 Years

Payback period 0.5 Year

IRR 527 %

NPV 32,608,519 BDT

Page 63: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 55

9. Operational Practices This section outlines the operational practices adopted by different companies that have been

successful in composite textile industries. Purbani Composite Textiles Ltd may like to consider

their adoption for improving efficiency and quality. We have not taken them into the analysis as

we consider them to be housekeeping measures.

Improving and maintaining proper power factor

Normally industrial loads possess a low power factor which is a drawback for a power system.

The power supply companies impose penalty for low power factor (PF). At the same time this is

harmful for the companies also due high current flowing in the equipment’s and high distribution

losses. The consultants have suggested maintaining proper power factor using a power factor

unit of proper size.

Energy efficient motors

Existing motors are conventional and consume excess energy. Consultants suggest replacing

those motors with latest energy efficient motors gradually. The big motors should be given the

priority.

Cooling tower maintenance

It has been observed that cleaning and maintenance of cooling towers is less frequent than

required. Regular maintenance will obviously improve the performance of the towers and will

reduce the lot on compressors.

Instrumentation Instrumentation in the boilers and other equipment is inadequate. A few vital instruments in these

areas will certainly improve scope for better monitoring and control of process parameters. An

amount of BDT 0.5 million may be spent for the instrumentation.

Energy Assessment It is recommended by the consultants to perform energy assessment in the factory every two or

three years. This practice will enable the factory management to identify new energy savings

options and will help to measure achieved savings for previous energy efficient investments. In

addition, regular energy assessment will provide an energy benchmark of factory’s own

perspective which will assist to analyze the production performance of the factory.

Preventive Maintenance Preventive maintenance is maintenance that is regularly performed on a piece of equipment to

lessen the likelihood of it failing. Preventive maintenance is performed while the equipment is still

working, so that it does not break down unexpectedly. It is advised by the consultants to practice

preventive maintenance and plan it accordingly so that any required resources are available

beforehand.

Page 64: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 56

10. Organizational Analysis An analysis of the current state of energy management at the company was done using the

Energy Management Matrix developed by the UK Oxfordshire based Carbon Trust’s Energy

Efficiency – Best Practice Programme (EEBPP) – Good Practice Guide 119: Organizing Energy

Management – A Corporate Approach. The matrix presented in the next page is used to rate an

organization in six different areas of management, namely: policy, organization, communication,

information, marketing and investment. A summary of the company’s rating is as follows:

Area of Management Matrix Reading

Policy 1

Organization 0

Communication 1

Information 1

Marketing 1

Investment 2

As indicated in the Energy Management Matrix, there are five rating levels, from 0, which means

that an organization has no provisions for energy management, to 4, which represents industry

best practice. The current status of the company against these parameters has been highlighted

in the table. The cells in the matrix of the next page identify the steps to be taken by the company

to improve its rating.

Page 65: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 57

11. Energy Management Matrix

Rank

Policy Organization Communication Information Marketing Investment

4

Energy policy, action plan and regular review have commitment of top management as part of an environmental strategy.

Energy management fully integrated into management structure. Clear delegation of responsibility for energy consumption.

Formal and informal channels of communication regularly exploited by energy manager and energy staff at all levels.

Comprehensive system sets targets, monitors consumption, identifies faults, quantifies savings and provides budget tracking.

Marketing the value of energy efficiency and the performance of energy management both within the organization and outside it.

Positive discrimination in favour of ‘green’ schemes with detailed investment appraisal of a new-build and refurbishment opportunities.

3

Formal energy policy but no active commitment from top management

Energy manager accountable to energy committee representing all users, chaired by a member of the managing board.

Energy committee used as main channel together with direct contact with major users

M&T reports for individual premises based on sub-metering. But savings not reported effectively to users

Programme of staff awareness and regular publicity campaigns

Same pay back criteria employed as all other investment

2

Unadopted energy policy set by energy manager or senior departmental manager.

Energy manager in post, reporting to ad-hoc committee but line management and authority are unclear

Contact with major users through ad-hoc committee chaired by senior departmental manager.

Monitoring and targeting reports based on supply meter data. Energy unit has ad-hoc involvement in budget setting

Some ad-hoc staff awareness training

Investment using short term pay back criteria only

1

An unwritten set of guidelines

Energy management the part time responsibility of someone with only limited authority or influence

Informal contacts between engineer and a few users

Cost reporting based on invoice data. Engineer compiles reports for internal use with technical department

Informal contacts used to promote energy efficiency

Only low cost measures taken

0

No explicit policy No energy management or any formal delegation of responsibility for energy consumption

No contact with users

No information system. No accounting for energy consumption

No promotion of energy efficiency

No investment in increasing energy efficiency in premises

Page 66: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 58

12. Conclusion Purbani Composite Textiles Ltd. has some guideline regarding energy policy however there is no

energy manager responsible for reporting to the top management regarding energy efficiency.

But all technical staffs are aware of energy efficiency improvements in their facility. There are

informal contacts between engineer and a few users. There is monitoring and targeting reports

based on supply meter data. Regular staff awareness training is required for better improvement

in energy efficiency.

An Investment grade energy audit identifies a number of scopes for implementation to ensure

better energy efficient operation. This report gives specific energy saving calculations and their

financial viability. The management is enthusiastic in implementing such measures towards

conserving energy.

Page 67: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd.

Page | 59

13. Recommendations The consultants suggested to:

a) improve existing lighting systems by energy efficient lamps

b) install AC energy saver in all ACs

c) insulate the back side of boiler-2 (6 Ton/hr)

d) insulate the back side boiler-1

e) insulate the back side of EGB

f) replace clutch type sewing machines with servo type sewing machines

g) replace old stenter machine with new efficient stenter machine

h) replace the old inefficient gas engine generator with new energy efficient gas engine

generator

i) recover heat from hot/warm cooling water generated

j) recover heat from hot process baths (Effluent)

k) reduce excess air in boiler by fine tuning the burner

l) preheat boiler feed water using the hot flue gases of the boiler through an economiser

m) optimisation of compressed air system

n) provide closed loop control for soft water pump

o) provide VFD for cooling tower fan

p) relocate 50% of the lamps in the garment section to other parts of the plant

q) replacement of old IE1/IE2 class motors by energy efficient IE3 class motors in Karim

Spinning Mills Ltd

r) install VFD for humidification pumps in Karim Spinning Mills Ltd

s) improve existing lighting systems by energy efficient lamps in Karim Spinning Mills Ltd

t) reducing pressure of compressed air system and operating one compressor with VFD in

Karim Spinning Mills Ltd

u) practice energy management

v) install solar panel of 100 kW capacity for Purbani Fabrics Ltd, Purbani Yarn Dyeing Ltd

and Karim Textiles Ltd

w) install solar panel of 100 kW capacity for Karim Spinning Mills Ltd.

The consultants suggested to install solar panel, energy efficient machineries, inverters in motors,

VFD in compressors, LED lights in future expansion program. Sub-metering should be installed

in all the machineries for monitoring and measuring the energy efficiency of the individual

equipment. An energy management team should be created to develop energy programs,

communicate to all staff regarding energy efficiency and set an annual target for energy saving.

All the suggested recommendations put together presents a very attractive measures towards

conserving energy. The proposals are financially attractive as overall IRR, NPV and payback

period are 36%, BDT 71,387,914 and 2.94 years respectively.

mahfuz.rahman
Comment on Text
It was requested to comment on the space constraints and its impact on the proposed ECMs. Please include the same. Also please provide an analysis on the most attractive ECMs based on the financial indicators. Recommendation like no. f) does not seem to be that interesting. Presentation of a clear picture in very important.
Page 68: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 60

ANNEXURE 1: ENERGY USE IN 2017

Total energy consumption

Month

Diesel Consumption NG Consumption Electricity Consumption

Generator (Litre)

Total Thermal Energy (GJ)

Gas Generator Cub. M

Gas in Production

Process Cub. M

Total Cub. M Total

Energy (GJ)

REB (kWh) Total

Electrical Energy (GJ)

Jan-17 2,615 94 991,638 73,181 1,064,819 40,579 9,009 32

Feb-17 2,615 94 964,378 77,237 1,041,615 39,695 34,714 125

Mar-17 2,615 94 777,620 70,299 847,919 32,313 46,640 168

Apr-17 2,615 94 955,297 78,512 1,033,809 39,397 49,032 177

May-17 2,615 94 910,636 64,618 975,254 37,166 60,154 217

Jun-17 2,614 94 936,079 60,907 996,986 37,994 71,549 258

Jul-17 2,746 99 853,032 62,079 915,111 34,874 48,700 175

Aug-17 2,615 94 977,742 94,550 1,072,292 40,864 33,912 122

Sep-17 2,614 94 740,256 58,317 798,573 30,433 25,174 91

Oct-17 2,745 99 948,801 81,013 1,029,814 39,245 49,812 179

Nov-17 2,614 94 1,023,013 96,791 1,119,804 42,675 51,409 185

Dec-17 2,615 94 766,565 72,188 838,753 31,964 53,000 191

Total 31,638 1,139 10,845,057 889,691 11,734,748 447,200 533,105 1,919

Page 69: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 61

Purbani Fabrics Ltd.

Month

Diesel Consumption NG Consumption Electricity

Consumption SEC (GJ/Ton)

Production (Tons)

Generator (Litre)

Total Thermal Energy

(GJ)

Gas Generator

Cub. M

Gas in Production

Process Cub. M

Total Cub. M

Total Energy

(GJ)

REB (kWh)

Total Electrical Energy

(GJ)

SEC for Diesel

SEC for NG

SEC for Electricity

(REB) SEC total

Jan-17 500 1,046 38 188,009 73,181 261,190 9,954 3,604 13 0.07531 19.90736 0.02595 20.00862

Feb-17 343 915 33 177,755 77,237 254,992 9,717 13,886 50 0.09609 28.34738 0.14583 28.58930

Mar-17 444 1,308 47 151,316 70,299 221,615 8,446 18,656 67 0.10601 19.01417 0.15121 19.27140

Apr-17 500 1,177 42 181,471 78,512 259,983 9,908 19,618 71 0.08473 19.81264 0.14123 20.03860

May-17

500 1,046 38 185,760 64,618 250,378 9,542 24,062 87 0.07529 19.07798 0.17320 19.32647

Jun-17 342 915 33 187,974 60,907 248,881 9,485 28,620 103 0.09632 27.73272 0.30126 28.13030

Jul-17 366 1,046 38 145,768 62,079 207,847 7,921 19,504 70 0.10287 21.63869 0.19182 21.93337

Aug-17 415 1,177 42 185,308 94,550 279,858 10,665 13,560 49 0.10215 25.71208 0.11769 25.93192

Sep-17 287 1,046 38 132,949 58,317 191,266 7,289 10,070 36 0.13112 25.38110 0.12623 25.63846

Oct-17 496 1,124 40 172,843 81,013 253,856 9,674 19,920 72 0.08158 19.50405 0.14458 19.73021

Nov-17 530 1,072 39 185,999 96,791 282,790 10,777 20,564 74 0.07279 20.32716 0.13964 20.53958

Dec-17 520 1,046 38 151,626 72,188 223,814 8,529 21,200 76 0.07246 16.41230 0.14686 16.63162

Total 5,243 12,918 465 2,046,778 889,691 2,936,469 111,906 213,264 768 1.09673 262.86764 1.80548 265.76985

Page 70: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 62

Purbani Yarn Dyeing Ltd.

Month

Diesel Consumption NG Consumption Electricity

Consumption SEC (GJ/Ton)

Production (Tons)

Generator (Litre)

Total Thermal Energy

(GJ)

Gas Generator

Cub. M

Total Energy

(GJ) REB (kWh)

Total Electrical Energy

(GJ)

SEC for Diesel

SEC for NG

SEC for Electricity

(REB) SEC total

Jan-17 217 915 33 164,508 6,269 3,153 11 0.15162 28.85724 0.05225 29.06111

Feb-17 188 1,046 38 155,535 5,927 12,150 44 0.20069 31.59028 0.23312 32.02409

Mar-17 287 784 28 132,401 5,046 16,324 59 0.09844 17.59851 0.20497 17.90192

Apr-17 243 784 28 158,787 6,051 17,158 62 0.11611 24.89392 0.25411 25.26414

May-17 178 915 33 162,540 6,194 21,054 76 0.18468 34.72885 0.42495 35.33848

Jun-17 191 915 33 164,477 6,268 25,042 90 0.17228 32.78271 0.47150 33.42649

Jul-17 204 1,046 38 127,547 4,861 17,006 61 0.18479 23.85263 0.30043 24.33785

Aug-17 166 915 33 162,145 6,179 11,872 43 0.19823 37.18592 0.25720 37.64135

Sep-17 130 784 28 116,330 4,433 8,811 32 0.21669 34.03624 0.24353 34.49646

Oct-17 206 967 35 151,237 5,763 17,437 63 0.16934 28.03527 0.30535 28.50995

Nov-17 207 915 33 162,749 6,202 17,993 65 0.15948 30.02906 0.31362 30.50216

Dec-17 256 915 33 132,673 5,056 18,550 67 0.12856 19.73241 0.26063 20.12159

Total 2,473 10,901 392 1,790,929 68,251 186,550 672 1.98092 343.32302 3.32165 348.62559

Page 71: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 63

Karim Textiles Ltd.

Month

Diesel Consumption NG Consumption Electricity

Consumption SEC (GJ/Thousand Pieces)

Production (Thousand

Pcs)

Generator (Litre)

Total Thermal Energy

(GJ)

Gas Generator

Cub. M

Total Energy

(GJ)

REB (kWh)

Total Electrical Energy

(GJ)

SEC for Diesel SEC for NG SEC for

Electricity (REB)

SEC total

Jan-17 145 654 24 117,505 4,478 2,252 8 0.16258 30.92198 0.05598 31.14055

Feb-17 127 654 24 111,097 4,234 8,678 31 0.18590 33.42884 0.24667 33.86140

Mar-17 142 523 19 94,572 3,604 11,660 42 0.13261 25.38471 0.29565 25.81297

Apr-17 144 654 24 113,419 4,322 12,256 44 0.16385 30.08083 0.30706 30.55175

May-17 162 654 24 116,100 4,424 15,038 54 0.14574 27.38837 0.33512 27.86924

Jun-17 122 784 28 117,484 4,477 17,887 64 0.23084 36.61910 0.52667 37.37662

Jul-17 176 654 24 91,105 3,472 12,190 44 0.13413 19.78009 0.25001 20.16424

Aug-17 220 523 19 115,818 4,414 8,480 31 0.08546 20.03290 0.13856 20.25691

Sep-17 123 784 28 83,093 3,167 6,293 23 0.22922 25.71788 0.18399 26.13110

Oct-17 110 654 24 108,027 4,117 12,455 45 0.21462 37.52747 0.40873 38.15082

Nov-17 240 627 23 116,249 4,430 12,852 46 0.09409 18.46581 0.19285 18.75275

Dec-17 220 654 24 94,766 3,611 13,250 48 0.10686 16.39156 0.21650 16.71492

Total 1,930 7,819 281 1,279,235 48,750 133,291 480 1.88591 321.73954 3.15781 326.78327

Page 72: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 64

Karim Spinning Mills Ltd.

Month

NG Consumption SEC (GJ/Ton)

Production (Ton)

Gas Generator Cub. M

Total Energy (GJ)

SEC total

Jan-17 473 521,616 19,878 42.0019

Feb-17 425 519,991 19,816 46.6757

Mar-17 452 399,331 15,218 33.6489

Apr-17 461 501,620 19,116 41.4378

May-17 445 446,236 17,006 38.2369

Jun-17 395 466,144 17,764 45.0097

Jul-17 461 488,612 18,621 40.3962

Aug-17 457 514,471 19,606 42.9251

Sep-17 388 407,884 15,544 40.0239

Oct-17 474 516,694 19,691 41.4985

Nov-17 454 558,016 21,265 46.8139

Dec-17 456 387,500 14,767 32.3839

Total 5,342 5,728,115 218,293 491.0523

Note: Energy use data was provided by the plant

Page 73: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 65

ANNEXURE 2: LIST OF MOTORS WITH ELECTRICAL LOAD

Purbani Fabrics Ltd, Purbani Yarn Dyeing Ltd and Karim Textiles Ltd.

Total Power (kW) No. of motor Section

132.5 08 Generator

77 11 Boiler

72 06 ETP-1

193.6 14 ETP-2

485.7 15 WTP

495.4 93 Dyeing Machine

14.8 04 Bangla Sample

19.85 08 Slitting-1

25.7 15 Slitting-2

14.7 13 Hydro-2

75.3 21 Stenter (Bruckner)

21.18 11 Compactor (Santex)

55 09 Santex dryer

5 07 Back Swing

Karim Spinning Mills Ltd.

Machine Name No. of Motor Total Power

1. Unitloc A11 8 11.03 kW

2. Uniclean B11 2 11.18 kW

3. Unimix B70 (1&2) 4 7.7 kW

4. Uniflex B60 (1&2) 2 29 kW

5. Loptex (1&2) 1 4.4 kW

6. (LMW) Deduster (1&2) 2 17 kW

7. (Rieter) Card C51 8 192.88 kW

8. (LMW) Card LC 363 11 74.48 kW

9. B-Drawing 2 38.75 kW

10. F – Finisher Drawing 3 41.75 kW

11. Comber - E65 2 20.4 kW

12. Comber – E62 2 17.6 kW

13. Unilap E32 (1&2) 2 22.2 kW

14. Simplex (FL100) (1-6) 5 107.76 kW

15. China FDP (1) Comber - Card 11 39.8 kW

16. China FDP (2) 8 67.62 kW

17. Ring (LR6) (1-12) 3 566.4 kW

18. Ring (LR60A) (13-16) 3 186.8 kW

19. Ring (LR6A) (17-32) 3 843.2 kW

20. (Murata) Finishing (1, 2, 4) 6 90.15 KW

21. (Schlafhorst) Finishing (3, 5 – 10) 4 169.05 kW

22. Generator Cooling Tower 3 22.5 kW

23. Generator Water Pump 1 30 kW

24. Generator Water Pump 3 66 kW

25. Generator Pump House Fan 2 1.1 kW

26. Generator Sumber Sabol Pump 1 1.92 kW

27. Generator Softener Pump 1 0.58 kW

28. Generator Reserve Tank Filling Pump 1 5.58 kW

Page 74: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 66

ANNEXURE 3: SPECIFICATION OF MAJOR ENERGY CONSUMING COMPONENTS

Purbani Fabrics Ltd, Purbani Yarn Dyeing Ltd and Karim Textiles Ltd.

Equipment Name Number of Equipment

Area Rating

Transformer 01 Near Generator room 1250 kVA

Diesel Generator 01 Generator room 1000 kVA

Gas Generator 03 Generator room 937 kVA and 2x1125 kVA

Compressor 07 2x75 kW, 3x30 kW, 45 kW and 37 kW

Boiler 03 Boiler room 3x 6 Ton/hr

Total Power (kW) Section

72 ETP-1

193.6 ETP-2

485.7 WTP

495.4 Dyeing Machine

75.3 Stenter (Bruckner)

21.18 Compactor (Santex)

55 Santex dryer

Karim Spinning Mills Ltd.

Equipment Name Number of Equipment

Area Rating

Transformer 03 Gate No-3 3x05 kVA

Gas Generator 03 Generator room 3x1125 kVA

Compressor 04 Compressor Room 4x37 kW

Machine Name Total Power

(Rieter) Card C51 192.88 kW

(LMW) Card LC 363 74.48 kW

B-Drawing 38.75 kW

F – Finisher Drawing 41.75 kW

Simplex (FL100) (1-6) 107.76 kW

China FDP (1) Comber - Card 39.8 kW

China FDP (2) 67.62 kW

Ring (LR6) (1-12) 566.4 kW

Ring (LR60A) (13-16) 186.8 kW

Ring (LR6A) (17-32) 843.2 kW

(Murata) Finishing (1, 2, 4) 90.15 KW

(Schlafhorst) Finishing (3, 5 – 10) 169.05 kW

Page 75: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 67

ANNEXURE 4: BREAK DOWN OF ENERGY CONSUMPTION OF DIFFERENT SECTIONS AND EQUIPMENT

Electricity distribution in different sections (Purbani Fabrics Ltd)

Section Percentage kW

Dyeing 41% 607

Finishing 31% 465

Knitting 28% 425

Total 100% 1497

Electricity distribution in different sections (Purbani Yarn Dyeing Ltd)

Section Percentage kW

Dyeing 48% 547

Finishing 41% 470

Printing 11% 126

Total 100% 1143

Electricity distribution in different sections (Karim Textiles Ltd)

Section Percentage kW

Sewing 44% 325

Cutting 23% 166

Finishing 33% 246

Total 100% 737

Electricity distribution in different sections (Karim Spinning Mills Ltd)

Section Percentage kW

BRC 10% 250.00

DSC 3% 75.76

Ring Section 39% 1020.00

Finishing Section 7% 181.92

Humidification Plant 26% 678.39

Utility 16% 421.14

Total 100% 2627.21

Natural Gas distribution in different sections

Section Percentage Cub. M

Purbani Fabrics Ltd 25% 2,936,469

Purbani Yarn Dyeing Ltd 15% 1,790,929

Karim Textiles Ltd 11% 1,279,235

Karim Spinning Mills Ltd 49% 5,728,115

Total 100% 11,734,748

Steam distribution in different sections

Section Percentage kg/yr

Purbani Fabrics Ltd 56% 7700

Karim Textiles Ltd 22% 3000

Purbani Yarn Dyeing Ltd 22% 3020

Total 100% 13720

Note: Based on the data provided by the factory

Page 76: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 68

ANNEXURE 5: INSTRUMENTS USED FOR MEASUREMENTS

Infra Red Temperature Meter

Measure Parameters: Non-Contact Infrared Thermometer DT8011T Temperature Range: - 50C ~ 1100C (-58F ~ 2012F) Accuracy: +/-2% or 2C Distance Spot Ratio: 12: 1 Emissivity: 0.1 to 1.0 adjustable Response Time & Wavelength: 500ms & (8-14) um Repeatability: +/-1% or +/-1C Resolution: 0.1C or 0.1F

Lux Meter

Measure Parameters: Double Parameter Measurement: Lux(lm/m²) and foot candle (lm/ft²) Range: 0~30000 Lux; 0~2788.0 ftc Resolution: 1 Lux (0~30000 Lux); 0.1 ftc(0~2788.0 ftc) Accuracy: ± (4% +50 digits) to reference Sample Rate: 1 time/sec Auto Power Off (about 20min idle) Low Battery Indicator Operating Environment: 0°C~50°C (32°F~122°C), 0~80%RH Storage Environment: -20°C~60°C (-4°F~140°C), 0~80%RH

Digital Clamp Meter

Measure Parameters: AC A: 200/600A ±1.5%rdg±4dgt [50/60Hz] (200A) ±1%rdg±3dgt [50/60Hz] (600A) ±2%rdg±5dgt [45Hz - 1kHz] AC V: 200/600V ±1%rdg±2dgt [50/60Hz] ±1.5%rdg±4dgt [45Hz - 1kHz] Ω: 200Ω ±1.2%rdg±2dgt Continuity buzzer: buzzer sounds below 30±20Ω Conductor size: Ø33mm max. Frequency response: 45Hz - 1kHz

Kane 905 Flue gas analyzer

Measure Parameters: O2 0-21% CO 0-4,000ppm (hydrogen compensated) Differential pressure Temperature - inlet / flue gas / differential CO 0-100,000ppm NO 0-100ppm NO 0-5,000ppm O2 0-1,000ppm SO2 0-100ppm SO2 0-5,000ppm Excess air Combustion efficiency

Page 77: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 69

ANNEXURE 6: RULE OF THUMB (ROT) USED IN ANALYSIS

1. 1% gas can be saved for every 200 C rise of air temperature.

2. 1 Kg of natural gas requires 17 kg of air for combustion. If we include 5% of excess air it

should be 17.85 Kg air for burning properly 1 kg of natural gas.

3. The conversion efficiency of heat exchanges (Economizer, air pre-heaters, recuperator

etc. is 60-65%)

4. Replacement of T8 light by T5 lights saves Energy by 25%.

5. Heat rate of waste heat recovery power plant is 4,000 Kcal/kWh

6. The cost of waste heat recovery power plant is 100 million BDT/MW

7. Pl. add one BDT/kWh towards capital cost, financing charge, O & M etc while calculating

cost of kWh generation from gas generators

8. In a compressor reduction of one discharge pressure by one kg/cm2 normally saves

power by 9-10 %.

9. 1 Ton AC requires 3,000 Kcal /hr.

10. Increase in feed water temp by 60C reduces fuel consumption by 1%.

11. 10% reduction in excess air improves Boiler efficiency by 1%.

12. Waste Heat Boiler (WHB) produces 500 kg steam per 1,000 kW heat input.

13. Insulation cost is BDT 8,000 per square meter for HVAC system.

14. Cost of high efficiency motor with inverter is BDT 2,200 per kW power rating.

15. Cost of VFD/Inverter is BDT 7,000 per kW power rating.

16. Energy management can save up to 2% of the overall energy consumed by the plant.

17. Every 1°C increase in the set temperature of air conditioner reduces the power

consumption by 3%

18. Every one percent reduction in oxygen in flue gas will reduce gas consumption by 1%

19. Every 1 bar reduction in compressed air pressure reduces the power consumption by

8%

Page 78: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 70

ANNEXURE 7: ASSUMPTIONS OF FINANCIAL ANALYSIS

Assumptions Value

Base year 2017

Currency unit used in the analysis BDT

Capital-linked payments Unit

Total equipment cost BDT

Cost of Engineering and Civil work BDT 10% of capital cost

EPC (engineering, procurement, construction) cost

BDT

Import duty and taxes BDT 10% of capital cost

Construction time insurance BDT 2% of the cost of Engg--

Contingencies BDT 5% of EPC

Operation-linked payments Unit

O&M costs (in first year) BDT 5% of Capital Cost

Insurance cost BDT 1% of capital cost

Economic variables Unit

Real Discount rate Equity % 15%

Sources of funds Unit

Loan Financing % 70%

Equity Capital % 30%

Loan repayment term Year 5 years

Interest on Bank Loan % 13%

Real annual escalation rate (Growth rate) Unit

Fuel cost (Gas and HSD) % 5%

Electricity cost % 5%

Other consumption-linked costs % 5%

O&M cost % 5%

Salary and Adm. Costs % 10%

Insurance cost % 5%

Other operational costs % 5%

Tax Payment Unit

Tax (1st - 5th year) % 30%

Tax (6th - 10th year) % 30%

Tax (11th - 15th year) % 30%

Tax (16th year onwards) % 30%

Any other tax % 0%

Page 79: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 71

ANNEXURE 8: CALCULATIONS OF ECMs

ECM 1: Improve existing lighting systems by energy efficient lamps

Total number of 40W T8 Tube Lights 535

Annual energy savings by replacing with Energy efficient lights

{No.of lights x (Previous Wattage-Energy efficient light wattage) x Annual

Running Hours}/1000 = {535 x (40-20) x 4500}/1000

=48,150

kWh

Annual monetary saving @BDT 5.63 per kWh for GEG, BDT 8.15 per kWh for REB and BDT 20 per kWh for DG24

48,150 x (5.63 x 0.95 + 8.15 x 0.04 + 20 x 0.01)

=282,857

BDT

Total Investment @BDT 800 per light 428,000 BDT

Project lifetime 5 Years

Payback period 1.8 Years

IRR 59 %

NPV 221,778 BDT

ECM 2: Install AC energy saver in all ACs

Connected power of the AC 790 kW

Annual Electricity consumption Power x Running Hour =790 x 1710 =1,350,900

kWh

Annual Electricity savings after installing AC energy saver 15% at conservative scale

202,635 kWh

Annual monetary saving @BDT 5.63 per kWh for GEG, BDT 8.15 per kWh for REB and BDT 20 per kWh for DG12

202,635 x (5.63 x 0.95 + 8.15 x 0.04 + 20 x 0.01)

=1,190,379

BDT

Investment @BDT 15,000 per AC 1,200,000 BDT

Project lifetime 5 Years

Payback period 1.2 Years

IRR 153 %

NPV 2,073,870 BDT

24 The plant uses GEG, REB and DG for power generation. 95% power is generated using GEG, 4% using REB and 1% using DG.

Page 80: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 72

ECM 3: Insulate the back side of boiler-2 (6 Ton/hr)

Ambient temperature 30 Deg C

Surface temperature at present 124 Deg C

Surface temperature after installing proposed insulation

80 Deg C

Area 65 sq. meter

Operating hours 6,840 hour

Annual reduction in heat lost through surface25 24 kW

Natural gas calorific value 38.109x1,000 kJ/cubic meter

Boiler efficiency 77 %

Annual NG savings (24x6840x3,600)/

(0.77 x38.109x1,000) = 20,139

cubic meter

Annual monetary saving @BDT 7.76 per Cub. M 156,278 BDT

Investment @ BDT 8,000 per square meter 520,000 BDT

Project lifetime 10 Years

Payback period 3.9 Years

IRR 18 %

NPV 48,467 BDT

ECM 4: Insulate the back side of boiler-1

Ambient temperature 30 Deg C

Surface temperature at present 127 Deg C

Surface temperature after installing proposed insulation 80 Deg C

Area 65 sq. meter

Operating hours 6,840 hour

Annual reduction in heat lost through surface26 26 kW

Natural gas calorific value 38.109x1,000 kJ/cubic meter

Boiler efficiency 80 %

Annual NG savings (26x6840x3,600)/

(0.80 x38.109x1,000) = 20,000

cubic meter

Annual monetary saving @BDT 7.76 per Cub. M 155,200 BDT

Investment @ BDT 8,000 per square meter 520,000 BDT

Project lifetime 10 Years

Payback period 3.9 Years

IRR 18 %

NPV 42,023 BDT

25Using standard radiation formula 26Using standard radiation formula

Page 81: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 73

ECM 5: Insulate the back side of EGB

Ambient temperature 30 Deg C

Surface temperature at present 124 Deg C

Surface temperature after installing proposed insulation 80 Deg C

Area 8.8 sq. meter

Operating hours 6,840 hour

Annual reduction in heat lost through surface27 3.3 kW

Natural gas calorific value 38.109x1,000 kJ/cubic meter

Annual NG savings (3.3x6840x3,600)/

(0.81 x38.109x1,000) = 2,632

cubic meter

Annual monetary saving @BDT 7.76 per Cub. M 20,424 BDT

Investment @ BDT 8,000 per square meter 70,400 BDT

Project lifetime 10 Years

Payback period 4.0 Years

IRR 16 %

NPV 2,181 BDT

ECM 6: Replace clutch type sewing machines with servo type sewing machines

Total number of machines 338

Rating per machine 350 Watt

Annual running hour @ 8 hours/day and 285 days/year 8x285 =2,280

hour

Annual power consumption 338x350x2,280/1000 =269,724

kWh

Annual savings 60% for servo motors 269,724x0.6 =161,834

kWh

Annual monetary saving @BDT 5.63 per kWh for GEG, BDT 8.15 per kWh for REB and BDT 20 per kWh for DG12

161,834 x (5.63 x 0.95 + 8.15 x 0.04 + 20 x 0.01)

=950,694

BDT

Investment @BDT 25,000 per machine 8,450,000 BDT

Project lifetime 17 Years

Payback period 10.3 Years

IRR 2 %

NPV -5,471,551 BDT

27Using standard radiation formula

Page 82: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 74

ECM 7: Replace old stenter machine with new efficient stenter machine

Old machine NG consumption 161 Cub. M/hr

New machine NG consumption 70 Cub. M/hr

Running hour/yr 6,840 hr

Annual NG savings for the same amount of kWh generation for the proposed heat rate

(161-70) x 6840 =622,440

Cub. M

Annual monetary saving @BDT 7.76 per Cub. M 4,830,134 BDT

Investment 40,000,000 BDT

Project lifetime 20 Years

Payback period 9.6 Years

IRR 7 %

NPV -18,869,667 BDT

ECM 8: Replace the old inefficient gas engine generator with new energy efficient gas engine generator

No of units generated by 900 kW GEG (No.2) in the previous year (SBI)

4,278,000 kWh

No of units per Cub. M of gas (SBI) 2.3 kWh/Cub. M

Gas consumption for GEG No. 2 per year 4,278,000/2.3

=1,860,000 Cub. M

Projected no of units per Cub. M of gas for new energy efficient gas engine (SBI)

3.22 kWh/Cub. M

Expected gas consumption with new energy efficient gas engine

4,278,000/3.22 =1,328,571

Cub. M

Annual savings in gas consumption 1,860,000-1,328,571

=531,429 Cub. M

Annual monetary saving @BDT 9.62 per Cub. M 531,429 x 9.62

=5,112,346 BDT

Total REB energy utilised per year(SBI) 533,105 kWh

Minimum energy allowable 267,120 kWh

Excess REB energy utilised 265,985 kWh

Cost of excess energy used @BDT 8.15/kWh 265,985 x 8.15

=2,167,778 BDT

Excess Lube oil consumption per year (SBI) 1,200,000 BDT

Total Monetary savings 5,112,346 + 2,167,778 +

1,200,000 =8,480,124

BDT

Investment for new GEG 35,000,000 BDT

Project lifetime 20 Years

Payback period 4.8 Years

IRR 24 %

NPV 19,130,540 BDT

Page 83: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 75

ECM 9: Recover heat from hot/warm cooling water generated

Production per day 20,000 kgs

Liquor ratio 1:6

No of process steps 14

Total Water requirement per day for dyeing 20,000 x 6 x 14/1000

=1,680

Cub. M /day

No of steps with hot wash 5

Hot water requirement per day for dyeing 20,000 x 6 x 5/1000

=600 Cub. M /day

Heat rejected by hot effluent to cooling water 600,000 x 1 x (80-30)

=30,000,000 kcal/day

Temperature rise in cooling water (50-30)

=20 oC

Amount of cooling water at 50oC per day 30,000,000/ (20 x 1000)

=1500 Cub. M /day

Requirement of warm water for process 600 Cub. M /day

Energy saving by supplying warm cooling water to process bath

600 x 1000 x 20 =12,000,000

kcal/day

Efficiency of steam boiler 85 %

Calorific value of gas 8400 kcal/ Cub. M

Savings in natural gas 12,000,000/ (0.85x 8400)

=1,680 Cub. M /day

Annual gas savings @285 days operation per year 1,680 x 285

=478,800 Cub. M /year

Annual monetary savings @BDT 7.76 per Cub. M 478,800 x 7.76

=3,715,488 BDT

Investment for piping and controls near machine 1,000,000 BDT

Project lifetime 5 Years

Payback period 0.3 Year

IRR 933 %

NPV 11,681,616 BDT

Page 84: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 76

ECM 10: Recover heat from hot process baths (Effluent)

Production per day 20,000 kgs

Liquor ratio 1:6

No of process steps with hot discharges 5

Quantity of hot discharges 20,000 x 6 x 5/1000

=600 Cub. M /day

Average temperature of hot discharges 65 oC

Heat rejected by hot effluent to circulating water 600,000 x 1 x (65-35)

=18,000,000 kcal/day

Temperature rise in circulating water (55-30)

=25 oC

Amount of cooling water at 55oC per day 18,000,000/ (25 x 1000)

=720 Cub. M /day

Availability of warm water for process 720 Cub. M /day

Savings in natural gas 18,000,000/ (0.85x 8400)

=2,521 Cub. M /day

Annual gas savings @285 days per year 2521 x 285

=718,485 Cub. M /year

Annual monetary savings @BDT 7.76 per year 718,485 x 7.76

=5,575,443 BDT

Investment for heat exchanger, piping and controls near machine

1,000,000 BDT

Project lifetime 5 Years

Payback period 0.2 Year

IRR 1469 %

NPV 18,479,056 BDT

ECM 11: Reduce excess air in boiler by fine tuning the burner

Average steam production from two boilers 10,000 kgs/hr

Enthalpy of steam 600 kcal/kg

Efficiency of the boiler 84 %

Calorific value of gas 8400 kcal/Cub. M

Natural gas consumption 10,000 x 600/ (0.85 x 8400)

=840 Cub. M/hr

Average consumption per boiler 420 Cub. M/hr

Gas saving by reducing the excess air in one of the boilers28

420 x (12-4)/100 =33.6

Cub. M/hr

Annual gas saving @6,840 hours per year operation 33.6 x 6,840

=229,824 Cub. M /year

Annual monetary savings @BDT 7.76 per Cub. M 229,824 x 7.76

=1,783,434 BDT

Investment nil BDT

Project lifetime 5 Years

Payback period immediate Year

IRR - %

NPV - BDT

28 Every one percent reduction in oxygen will reduce gas consumption by 1%

Page 85: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 77

ECM 12: Preheat boiler feed water using the hot flue gases of the boiler through an economiser

Average exhaust temperature 180 oC

Gas consumption in boiler 840 Cub. M/hr

Quantity of steam generated in boiler ( two in operation @5 T/hr) 10 T/hr

Inlet temperature of boiler feed water without economiser 70 oC

Outlet temperature of the economizer feeding to the boiler 90 oC

Natural gas savings 10,000 x (90-70) /

(0.85 x 8400) =28

Cub. M/hr

Annual gas saving @6840 hours per year operation 28 x 6840 =191,520

Cub. M /year

Annual monetary savings @BDT 7.76 per Cub. M 191,520 x 7.76

=1,486,195 BDT

Investment 1,500,000 BDT

Project lifetime 5 Years

Payback period 1.2 Years

IRR 153 %

NPV 2,585,837 BDT

ECM 13: Optimisation of compressed air system

Reduction in power consumption by reducing pressure from 5-6 kg/cm2 to 3 kg/cm2 29

16 %

Power consumption for knitting with loading and unloading (0.6x75+0.4x25)

=55 Cub. M/hr

Power consumption with VFD 0.6 x 75

=45 kW

Savings due to VFD for knitting compressor 55-45

=10 kW

Savings due to pressure reduction for knitting 0.16 x 55

=8.8 kW

Total savings for knitting compressor 10+8.8 =18.8

kW

Savings @20 % for the centralised compressors assuming other than 75 kW compressors the remaining compressors will be operating without unloading

0.2 x 75 =15

kW

Total savings in compressed air system 18.8 + 15

=33.8 kW

Annual Electrical energy saving @6840 hours per year operation 33.8 x 6840

=231,192 kWh/year

Annual monetary saving @BDT 5.63 per kWh for GEG, BDT 8.15 per kWh for REB and BDT 20 per kWh for DG30

231,192 x (5.63 x 0.95 + 8.15 x 0.04 +

20 x 0.01) =1,358,137

BDT

Investment 1,000,000 BDT

Project lifetime 5 Years

Payback period 0.9 Year

IRR 257 %

NPV 3,066,383 BDT

29 Every 1 bar reduction in compressed air pressure reduces the power consumption by 8% 30 The plant uses GEG, REB and DG for power generation. 95% power is generated using GEG, 4% using REB and 1% using DG.

Page 86: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 78

ECM 14: Provide closed loop control for soft water pump

Power consumption for the soft water pump 30 kW

Average speed of operation expected with closed loop control of VFD

80 %

Power consumption with VFD 30 x (80%)3

=15 kW

Savings due to VFD with closed loop system 15 kW

Annual Electrical energy saving @6840 hours per year operation 15 x 6,840 =102,600

kWh/year

Annual monetary saving @BDT 5.63 per kWh for GEG, BDT 8.15 per kWh for REB and BDT 20 per kWh for DG31

102,600 x (5.63 x 0.95 + 8.15 x 0.04 +

20 x 0.01) =602,724

BDT

Investment 200,000 BDT

Project lifetime 5 Years

Payback period 0.4 Year

IRR 731 %

NPV 1,823,309 BDT

ECM 15: Provide VFD for cooling tower fan

Power consumption of each cooling tower fan 7.5 kW

Total load for all the three fans 22.5 kW

Expected energy reduction with VFD 20 %

Power Savings due to VFD 20% x 22.5

=4.5 kW

Annual Electrical energy saving 4.5 x 6840

=30,780 kWh/year

Annual monetary saving @BDT 5.63 per kWh for GEG, BDT 8.15 per kWh for REB and BDT 20 per kWh for DG32

30,780 x (5.63 x 0.95 + 8.15 x 0.04 + 20 x 0.01)

=180,817 BDT

Investment 250,000 BDT

Project lifetime 5 Years

Payback period 1.6 Years

IRR 77 %

NPV 186,544 BDT

31 The plant uses GEG, REB and DG for power generation. 95% power is generated using GEG, 4% using REB and 1% using DG. 32 The plant uses GEG, REB and DG for power generation. 95% power is generated using GEG, 4% using REB and 1% using DG.

Page 87: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 79

ECM 16: Relocate 50% of the lamps in the garment section to other parts of the plant

Power consumption of 4000 lamps @ 20 W per lamp 80 kW

Power savings by removing one lamp 40 kW

Power savings by replacing 2000 nos of 40 W lamps by the removed 20 W LED lamps

2000 x (40-20)/1000 =40

kW

Total power saving 80 kW

No of hours of lamp use in garments section 8 hours

Annual Electrical energy saving @ 8 hours per day and 285 days per year operation

80 x 8 x 285 =182,400

kWh/year

Annual monetary saving @BDT 5.63 per kWh for GEG, BDT 8.15 per kWh for REB and BDT 20 per kWh for DG33

182,400 x (5.63 x 0.95 + 8.15 x 0.04 + 20 x

0.01) =1,071,508

BDT

Investment nil BDT

Project lifetime 5 Years

Payback period Immediate Year

IRR - %

NPV - BDT

ECM 17: Replacement of old IE1/IE2 class motors by energy efficient IE3 class motors in Karim Spinning Mills Ltd

No. of old motors 500

Efficiency of old motors 79 %

Efficiency of new motors 86 %

Total rating of the motors 1100 kW

Annual savings @8000 hours per year operation 1100 x (1/0.79-1/0.86) x 8000

=906,682

kWh

Monetary savings @BDT 5.63 per kWh for GEG 906,682 x 5.63 =5,104,620

BDT

Investment @BDT 2,200 per kW 2,420,000 BDT

Project lifetime 5 Years

Payback period 0.6 Year

IRR 472 %

NPV 14,064,489 BDT

ECM 18: Install VFD for humidification pumps in Karim Spinning Mills Ltd

Total pump connected motors 30+22+45 =97

kW

Actual operating load 97 x 80% =77.6

kW

Conservative savings achievable 20 %

Energy savings 77.6 x 0.2 x 8000 =124,160

kWh

33 The plant uses GEG, REB and DG for power generation. 95% power is generated using GEG, 4% using REB and 1% using DG.

Page 88: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 80

Monetary savings @BDT 5.63 per kWh for GEG 124,160 x 5.63 =699,020

BDT

Investment @BDT 7000 per kW 679,000 BDT

Project lifetime 5 Years

Payback period 1.1 Years

IRR 164 %

NPV 1,266,528 BDT

ECM 19: Improve existing lighting systems by energy efficient lamps in Karim Spinning Mills Ltd

No of existing lamps 450

Power consumption per lamp 36 W

Power consumption with LED 22 W

Annual energy savings 450 x (36-22) x 8000/1000

=50,400

kWh

Monetary savings @BDT 5.63 per kWh for GEG 50,400 x 5.63 =283,752

BDT

Investment 450,000 BDT

Project lifetime 5 Years

Payback period 1.8 Years

IRR 50 %

NPV 183,312 BDT

ECM 20: Reducing pressure of compressed air system and operating one compressor with VFD in Karim Spinning Mills Ltd

Number of compressors 4

Compressor rating 37 kW

Energy savings by pressure reduction of 1 bar34 37 x 4 x 8% =11.84

kW

Annual energy savings 11.84 x 8000 =94,720

kWh

Energy savings by avoiding power with VFD 20 %

Annual energy savings 37 x 4 x 20% x 8000 =236,800

kWh

Total energy savings 94,720 + 236,800 =331,520

kWh

Monetary savings @BDT 5.63 per kWh for GEG 331,520 x 5.63 =1,866,458

BDT

Investment 300,000 BDT

Project lifetime 5 Years

Payback period 0.2 Year

IRR 1655 %

NPV 6,252,073 BDT

34 Every 1 bar reduction in compressed air pressure reduces the power consumption by 8%

Page 89: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 81

ECM 21: Practice energy management

Annual NG use in GEG 10,845,057 Cub. M

Annual NG savings 2% at conservative scale 10,845,057 x 0.02 =216,901

Cub. M

Annual Monetary saving @BDT 9.62 per Cub. M 2,086,588 BDT

Investment 1,000,000 BDT

Project lifetime 5 Years

Payback period 0.6 Year

IRR 465 %

NPV 5,728,596 BDT

ECM 22: Install solar panel of 100 kW capacity for Purbani Fabrics Ltd, Purbani Yarn Dyeing Ltd and Karim Textiles Ltd

No of units per day 3.5 kWh/kW

Energy generation through solar @350 days/year 3.5 x 100 x 350 =122,500

kWh/year

Annual monetary saving @BDT 5.63 per kWh for GEG, BDT 8.15 per kWh for REB and BDT 20 per kWh for DG12

122,500 x (5.63 x 0.95 + 8.15 x 0.04 + 20 x 0.01)

=719,626

BDT

Investment @BDT 70,000 per kW 70,000 x 100 =7,000,000

BDT

Project lifetime 20 Years

Payback period 11.3 Years

IRR 4 %

NPV -4,354,969 BDT

ECM 23: Install solar panel of 100 kW capacity for Karim Spinning Mills Ltd.

No of units per day 3.5 kWh/kW

Energy generation through solar @350 days/year 3.5 x 100 x 350 =122,500

kWh/year

Monetary savings @BDT 5.63 per kWh for GEG 122,500 x 5.63 =689,675

BDT

Investment @BDT 70,000 per kW 70,000 x 100 =7,000,000

BDT

Project lifetime 20 Years

Payback period 11.7 Years

IRR 3 %

NPV -4,605,925 BDT

Page 90: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 82

List of persons met/contacted for the investment grade energy audit

SL No

Contact Person Designation Contact No/ E-mail

Signature

01 Md. Golam Kabir Sr. AGM (Maintenance)

01712600569 golam.kabir @purbanigroup.com

02 Md. Aktar Hossain Sr. Manager 01738078701

03 Md. Mahmud Hasan Manager

Compliance 01975538057

04 A.K.M Nurul Islam DGM 01713228988

05 Sheikh Md. Shamim GM 01713228989

06 Ratan Kumar Roy Manager 01713228997

Page 91: Investment Grade Energy Audit Report PURBANI COMPOSITE ...reeep.sreda.gov.bd/projects/2018-03-12-Investment-Grade-Energy-Audit-P...Investment Grade Energy Efficiency Assessment of

Investment Grade Energy Efficiency Assessment of Purbani Composite Textiles Ltd

Page | 83

Some machineries of the plant and the audit process

Meeting with the management Flue gas analysis

Gas Engine Generator Boiler

Compressor Effluent Treatment Plant

Meeting with management Discussing Possible ECMs