InversiveGeometry WW

55
7/30/2019 InversiveGeometry WW http://slidepdf.com/reader/full/inversivegeometry-ww 1/55 Inversive Geometry Wojciech Wieczorek following: Harold S.M. Coxeter Geometry Revisited

Transcript of InversiveGeometry WW

Page 1: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 1/55

Inversive Geometry

Wojciech Wieczorek

following:

Harold S.M. Coxeter

Geometry Revisited

Page 2: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 2/55

So far you know the following maps of the plane:

Translation:

Page 3: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 3/55

Rotation:

   

Page 4: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 4/55

Line symmetry:

Page 5: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 5/55

All of the above:

1. Send every point of the plane to some other point of theplane.

2. Preserve lengths, angles.

3. Send lines lines and circles circles.

4. Every map can be inverted.

Page 6: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 6/55

One more map: dilation:

Still sends lines lines and circles circles.

Page 7: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 7/55

New map: Inversion.

   

P  P' O 

I (P ) = P ′

P O · OP ′ = r2

Page 8: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 8/55

I (O) is not defined.

   

     

Q = I(Q) 

P' O 

Page 9: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 9/55

If you want to catch a lion:

Page 10: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 10/55

If you want to catch a lion:

Page 11: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 11/55

If you want to catch a lion:

Page 12: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 12/55

Geometric construction of the image.

   

P' 

Page 13: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 13/55

Geometric construction of the image.

   

   

   

P' 

Page 14: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 14/55

Geometric construction of the image.

   

   

   

P' 

Page 15: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 15/55

Geometric construction of the image.

   

   

   

P' 

Page 16: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 16/55

Geometric construction of the image.

   

   

   

P' 

OP 

OU =

OU 

OP ′

OP  ·OP ′

= r2

Page 17: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 17/55

Instrument for constructing images.

P' O 

Page 18: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 18/55

Instrument for constructing images.

P' O 

   

a  b 

Page 19: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 19/55

Instrument for constructing images.

P' O 

   

a  b 

OP  · OP ′ =

(OX  + XP ) · (OX −XP

OX 2 − XP 2 =

(a2 − U X 2)− (b2 − U X 2)

a2 − b2

Page 20: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 20/55

What are the images of lines and circles?

Start with the easiest answer:

   

P  = I (P )

O

ω

I (ω) = ω

Page 21: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 21/55

Almost as easy:

        l

I (l) = l

Page 22: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 22/55

Almost as easy:

        l

I (l) = l

Remember: point O goes nowhere.

Page 23: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 23/55

Most interesting case: circle α passing through O.

   

   

X ′

90◦

   

P  P' O 

OX  ·OX ′ = OP  · O

OX 

OP 

= OP ′

OX ′

and

∠XOP  = ∠X ′OP ′

thus:

∆OP X ∼ ∆OX ′P ′

Page 24: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 24/55

More than I (α) = l:

   

A   

P P' 

α

lIf OP  is diameter of α

then:

OP ⊥ l

Page 25: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 25/55

Special cases:

   

α

l I (α) is tangent to α.

Page 26: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 26/55

α intersects ω.

   

   

   

αl

Page 27: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 27/55

What are the images of other circles?

• As a tool we would like to describe circles using distancebetween points.

• We would like something similar to the familiar distance

formula: AC + CB ≥ AB.

   

   

A B

Page 28: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 28/55

Definition:

For four distinct ordered points A, B, C  and D, define their

cross ratio {AB, CD} to be the number:

{AB, CD} =AC ·BD

AD·BC 

Page 29: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 29/55

Theorem:

Cross ratio of four distinct ordered points A, B, C , D

satisfies:

{AD, BC }+ {AB, DC } = 1

if and only if:

either:    

A B C D or:   

    

    

    

Page 30: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 30/55

Main idea of the proof:

      

   

A

B C 

Any 3 (not collinear) points de

circle.

Page 31: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 31/55

Main idea of the proof:

      

   

   

A

B C 

P    

   

   

Any 3 (not collinear) points de

circle.

Put fourth point P  on it and pr

onto sides of the triangle ∆AB

Page 32: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 32/55

Main idea of the proof:

      

   

   

A

B C 

P    

   

   

Any 3 (not collinear) points de

circle.

Put fourth point P  on it and pr

onto sides of the triangle ∆AB

Red dots are on one line

if and only ifP  is on the circle.

Page 33: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 33/55

Theorem:

If points A, B, C , D are mapped onto A′, B′, C ′ and D′

under an inversion, then their cross ratios are equal:

{A′B′, C ′D′} = {AB, CD}

Corollary:

Inversion maps circles onto circles or lines.

P f f Th

Page 34: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 34/55

Proof of Theorem:

   

O A A′

B

B′ OA ·OA′ = OB ·OB ′ =⇒ OA

OB= OB′

OA′

∆OAB and ∆OB′

A′

share

the same angle at O.

Thus: ∆OAB ∼ ∆OB ′A′.

Thus: ABOA = A

B′

OB′and:

AB = A′B′·OA

OB′= A′B′ OA·OB

r2and:

{AB, CD} = AC ·BDAD·BC  = A

C ′

·B′

D′

A′D′·B′C ′ = {A′B′, C ′D′}

Page 35: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 35/55

Angle between two circles.

   

   

   

θ

α

β 

b

a

Page 36: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 36/55

Angle between two circles.

   

   

   

θ

α

β 

b

a

Page 37: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 37/55

Angle between two circles.

   

   

   

θ

θ

α

β 

b

a

Page 38: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 38/55

Ad a point at infinity:

I (O) = ∞

Line with one point added is a circle!

Theorem:

Inversion sends circles into circles.

Inversion preserves the angles between circles:

∠ {I (α), I (β )} = ∠ {α, β }

Page 39: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 39/55

Proof:

   

O

α

I (α)

Page 40: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 40/55

Proof:

   

O

α

I (α)

parallel!

Page 41: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 41/55

Proof:

O

α

β 

I (α)

I (β )

    

Page 42: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 42/55

Proof:

O

α

β 

I (α)

I (β )

   

   

    P 

P ′

Thus

∠ {I (α), I (β )} = ∠ {α, β }

when α and β  pass through O.

Page 43: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 43/55

a

α

I (a)

I (α)

Page 44: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 44/55

Take two arbitrary intersecting circles:

   

θ

α

β 

b

a

∠{α, β } = ∠{a, b}

= ∠{I (a), I (b)}

= ∠{I (α), I (β )}

Page 45: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 45/55

Orthogonal circles.

   

Page 46: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 46/55

Given two points A and B on α there is unique circle β 

such that: α ⊥ β and β is passing through A and B.

Page 47: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 47/55

Corollary:

If β ⊥ α then I α (β ) = β .

A

B

αβ 

   

   

I (β ) ⊥ I (α) = α

and

I (A) = A and I (B) = B

So: I (β ) passes

through A and B.

k d

Page 48: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 48/55

Take ω ⊥ α and ω ⊥ β 

P ′

ω

α

β 

   

   

I (β ) = β  and I (α) = α

so

I (P ) = P ′

Si il li

Page 49: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 49/55

Similar to line symmetry:

P  P ′

ω

α

β 

   

   

   

Page 50: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 50/55

Page 51: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 51/55

Page 52: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 52/55

   

      

   

   

Page 53: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 53/55

r

r+a= sin(180/

Page 54: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 54/55

   

   

   

   

   

   

   

   

   

a r

r

r+a( /

(Here: n = 8)

Page 55: InversiveGeometry WW

7/30/2019 InversiveGeometry WW

http://slidepdf.com/reader/full/inversivegeometry-ww 55/55