Introduction to Quasi-variational Inequalities in Hilbert Spaces...

66
Introduction to Quasi-variational Inequalities in Hilbert Spaces Motivations, and elliptic problems C. N. Rautenberg Department of Mathematical Sciences George Mason University Fairfax, VA, U.S. September 2019

Transcript of Introduction to Quasi-variational Inequalities in Hilbert Spaces...

Page 1: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Introduction to Quasi-variational Inequalities in Hilbert Spaces

Motivations, and elliptic problems

C. N. RautenbergDepartment of Mathematical Sciences

George Mason UniversityFairfax, VA, U.S.

September 2019

Page 2: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Contents

1. Introduction, motivation, and lack of energy formulation

2. The general elliptic QVI problem

3. Historical note on QVIs

4. Existence - The compactness approach

5. Existence - The contraction approach

5.1 Some problems with the QVI literature

2/33 QVIs

Page 3: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Introduction, motivation, and lack of energyformulation

3/33 QVIs

Page 4: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Introduction - The Dirichlet principle

Consider the deformation of an elastic string on [0, 1]. Suppose that

displacement is given by y : (0, 1) → R.

endpoints are clamped, i.e., y(0) = y(1) = 0.

the string is loaded by a normal uniform force f : (0, 1) → R.

The displacement satisfies the problem

−λy′′(x) = f (x), in (0, 1)y(s) = 0 for s = 0, 1; (BVP)

y<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

x<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

y00 = f = 1<latexit sha1_base64="RTBn99K0RmfN1BmI2PRMWbv1aWM=">AAAB+XicbVDLSsNAFL3xWesr6tLNYJG6sSRV0E2h6MZlBfuANpTJdNIOnUzCzKQQQv/EjQtF3Pon7vwbp20W2npg4HDOudw7x485U9pxvq219Y3Nre3CTnF3b//g0D46bqkokYQ2ScQj2fGxopwJ2tRMc9qJJcWhz2nbH9/P/PaESsUi8aTTmHohHgoWMIK1kfq2fdnjJj3AKC2Xa0HN7dslp+LMgVaJm5MS5Gj07a/eICJJSIUmHCvVdZ1YexmWmhFOp8VeomiMyRgPaddQgUOqvGx++RSdG2WAgkiaJzSaq78nMhwqlYa+SYZYj9SyNxP/87qJDm69jIk40VSQxaIg4UhHaFYDGjBJieapIZhIZm5FZIQlJtqUVTQluMtfXiWtasW9qlQfr0v1u7yOApzCGVyACzdQhwdoQBMITOAZXuHNyqwX6936WETXrHzmBP7A+vwBYl6SMQ==</latexit>

λ > 0 depends on elastic material properties.

Problem (BVP) is equivalent to minimizing the potential energy:

minv

λ

2

∫ 1

0|v′(x)|2 dx −

∫ 1

0f (x)v(x) dx;

subject to (s.t.) v(0) = v(1) = 0;

4/33 QVIs

Page 5: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Introduction - The Dirichlet principle

Consider the deformation of an elastic string on [0, 1]. Suppose that

displacement is given by y : (0, 1) → R.

endpoints are clamped, i.e., y(0) = y(1) = 0.

the string is loaded by a normal uniform force f : (0, 1) → R.

The displacement satisfies the problem

−λy′′(x) = f (x), in (0, 1)y(s) = 0 for s = 0, 1; (BVP)

y<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

x<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

y00 = f = 1<latexit sha1_base64="RTBn99K0RmfN1BmI2PRMWbv1aWM=">AAAB+XicbVDLSsNAFL3xWesr6tLNYJG6sSRV0E2h6MZlBfuANpTJdNIOnUzCzKQQQv/EjQtF3Pon7vwbp20W2npg4HDOudw7x485U9pxvq219Y3Nre3CTnF3b//g0D46bqkokYQ2ScQj2fGxopwJ2tRMc9qJJcWhz2nbH9/P/PaESsUi8aTTmHohHgoWMIK1kfq2fdnjJj3AKC2Xa0HN7dslp+LMgVaJm5MS5Gj07a/eICJJSIUmHCvVdZ1YexmWmhFOp8VeomiMyRgPaddQgUOqvGx++RSdG2WAgkiaJzSaq78nMhwqlYa+SYZYj9SyNxP/87qJDm69jIk40VSQxaIg4UhHaFYDGjBJieapIZhIZm5FZIQlJtqUVTQluMtfXiWtasW9qlQfr0v1u7yOApzCGVyACzdQhwdoQBMITOAZXuHNyqwX6936WETXrHzmBP7A+vwBYl6SMQ==</latexit>

λ > 0 depends on elastic material properties.

Problem (BVP) is equivalent to minimizing the potential energy:

minv

λ

2

∫ 1

0|v′(x)|2 dx −

∫ 1

0f (x)v(x) dx;

subject to (s.t.) v(0) = v(1) = 0;

4/33 QVIs

Page 6: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Introduction - The Dirichlet principle

Consider the deformation of an elastic string on [0, 1]. Suppose that

displacement is given by y : (0, 1) → R.

endpoints are clamped, i.e., y(0) = y(1) = 0.

the string is loaded by a normal uniform force f : (0, 1) → R.

The displacement satisfies the problem

−λy′′(x) = f (x), in (0, 1)y(s) = 0 for s = 0, 1; (BVP)

y<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

x<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

y00 = f = 1<latexit sha1_base64="RTBn99K0RmfN1BmI2PRMWbv1aWM=">AAAB+XicbVDLSsNAFL3xWesr6tLNYJG6sSRV0E2h6MZlBfuANpTJdNIOnUzCzKQQQv/EjQtF3Pon7vwbp20W2npg4HDOudw7x485U9pxvq219Y3Nre3CTnF3b//g0D46bqkokYQ2ScQj2fGxopwJ2tRMc9qJJcWhz2nbH9/P/PaESsUi8aTTmHohHgoWMIK1kfq2fdnjJj3AKC2Xa0HN7dslp+LMgVaJm5MS5Gj07a/eICJJSIUmHCvVdZ1YexmWmhFOp8VeomiMyRgPaddQgUOqvGx++RSdG2WAgkiaJzSaq78nMhwqlYa+SYZYj9SyNxP/87qJDm69jIk40VSQxaIg4UhHaFYDGjBJieapIZhIZm5FZIQlJtqUVTQluMtfXiWtasW9qlQfr0v1u7yOApzCGVyACzdQhwdoQBMITOAZXuHNyqwX6936WETXrHzmBP7A+vwBYl6SMQ==</latexit>

λ > 0 depends on elastic material properties.

Problem (BVP) is equivalent to minimizing the potential energy:

minv

λ

2

∫ 1

0|v′(x)|2 dx −

∫ 1

0f (x)v(x) dx;

subject to (s.t.) v(0) = v(1) = 0;

4/33 QVIs

Page 7: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Introduction - The Dirichlet principle with obstacle

Suppose in addition that

there is an obstacle ϕ : (0, 1) → R such that y(x) ≤ ϕ(x) a.e. in (0, 1).

The displacement satisfies y ≤ ϕ and

λ

∫ 1

0y′(v′ − y′) dx ≥

∫ 1

0f (v − y) dx,

y(s) = 0 for s = 0, 1;(VI)

For all v smooth s.t. v(0) = v(1) = 0 and v ≤ ϕ.

<latexit sha1_base64="U7EeqmYiKeTo/r/N2HofpG7Xero=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY9FLx4r2A9oQ9lsN83S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4IlnICDa5NEwiNqrW3Lq7AFonXkFqUKA9qn4NxzFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8oQNLJRZU+9ni1jm6sMoYhbGyJQ1aqL8nMiy0nonAdgpsIr3q5eJ/3iA14Y2fMZmkhkqyXBSmHJkY5Y+jMVOUGD6zBBPF7K2IRFhhYmw8FRuCt/ryOuk26t5VvfHQrLVuizjKcAbncAkeXEML7qENHSAQwTO8wpsjnBfn3flYtpacYuYU/sD5/AEU1o5D</latexit>

y<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

x<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

Problem (VI) is equivalent to minimizing the (constrained) potential energy:

minv

λ

2

∫ 1

0|v′(x)|2 dx −

∫ 1

0f (x)v(x) dx;

subject to (s.t.) v(0) = v(1) = 0;v ≤ ϕ

5/33 QVIs

Page 8: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Introduction - The Dirichlet principle with obstacle

Suppose in addition that

there is an obstacle ϕ : (0, 1) → R such that y(x) ≤ ϕ(x) a.e. in (0, 1).

The displacement satisfies y ≤ ϕ and

λ

∫ 1

0y′(v′ − y′) dx ≥

∫ 1

0f (v − y) dx,

y(s) = 0 for s = 0, 1;(VI)

For all v smooth s.t. v(0) = v(1) = 0 and v ≤ ϕ.

<latexit sha1_base64="U7EeqmYiKeTo/r/N2HofpG7Xero=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY9FLx4r2A9oQ9lsN83S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4IlnICDa5NEwiNqrW3Lq7AFonXkFqUKA9qn4NxzFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8oQNLJRZU+9ni1jm6sMoYhbGyJQ1aqL8nMiy0nonAdgpsIr3q5eJ/3iA14Y2fMZmkhkqyXBSmHJkY5Y+jMVOUGD6zBBPF7K2IRFhhYmw8FRuCt/ryOuk26t5VvfHQrLVuizjKcAbncAkeXEML7qENHSAQwTO8wpsjnBfn3flYtpacYuYU/sD5/AEU1o5D</latexit>

y<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

x<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

Problem (VI) is equivalent to minimizing the (constrained) potential energy:

minv

λ

2

∫ 1

0|v′(x)|2 dx −

∫ 1

0f (x)v(x) dx;

subject to (s.t.) v(0) = v(1) = 0;v ≤ ϕ

5/33 QVIs

Page 9: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Introduction - The Dirichlet principle with obstacle

Suppose in addition that

there is an obstacle ϕ : (0, 1) → R such that y(x) ≤ ϕ(x) a.e. in (0, 1).

The displacement satisfies y ≤ ϕ and

λ

∫ 1

0y′(v′ − y′) dx ≥

∫ 1

0f (v − y) dx,

y(s) = 0 for s = 0, 1;(VI)

For all v smooth s.t. v(0) = v(1) = 0 and v ≤ ϕ.

<latexit sha1_base64="U7EeqmYiKeTo/r/N2HofpG7Xero=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY9FLx4r2A9oQ9lsN83S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4IlnICDa5NEwiNqrW3Lq7AFonXkFqUKA9qn4NxzFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8oQNLJRZU+9ni1jm6sMoYhbGyJQ1aqL8nMiy0nonAdgpsIr3q5eJ/3iA14Y2fMZmkhkqyXBSmHJkY5Y+jMVOUGD6zBBPF7K2IRFhhYmw8FRuCt/ryOuk26t5VvfHQrLVuizjKcAbncAkeXEML7qENHSAQwTO8wpsjnBfn3flYtpacYuYU/sD5/AEU1o5D</latexit>

y<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

x<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

Problem (VI) is equivalent to minimizing the (constrained) potential energy:

minv

λ

2

∫ 1

0|v′(x)|2 dx −

∫ 1

0f (x)v(x) dx;

subject to (s.t.) v(0) = v(1) = 0;v ≤ ϕ

5/33 QVIs

Page 10: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Introduction - Lack of Dirichlet principle with implicit obstacleSuppose in addition that

there is an implicit obstacle ϕ : (0, 1) → R depending on y, i.e., ϕ = Φ(y).

The displacement(s) satisfies y ≤ Φ(y) and

λ

∫ 1

0y′(v′ − y′) dx ≥

∫ 1

0f (v − y) dx,

y(s) = 0 for s = 0, 1;(QVI)

∀v smooth s.t. v(0) = v(1) = 0 and v ≤ Φ(y).x

<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

x<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

y1<latexit sha1_base64="gXLzr9lA6QyErQrPkt90wKdvXMk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9b3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6C/oRqFEzyaamXGp5QNqZD3rVU0YgbfzI/dUrOrDIgYaxtKSRz9ffEhEbGZFFgOyOKI7PszcT/vG6K4bU/ESpJkSu2WBSmkmBMZn+TgdCcocwsoUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEOhI2l</latexit>

(y1)<latexit sha1_base64="IP2E5D2SoVW2BF8JmU9idzn8Nns=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRY9OKxgv2QdinZNNuGJtklyQrL0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCye3M7zxRpVkkH0waU1/gkWQhI9hY6bHfHLNqOvDOB+WKW3PnQKvEy0kFcjQH5a/+MCKJoNIQjrXueW5s/Awrwwin01I/0TTGZIJHtGepxIJqP5sfPEVnVhmiMFK2pEFz9fdEhoXWqQhsp8BmrJe9mfif10tMeO1nTMaJoZIsFoUJRyZCs+/RkClKDE8twUQxeysiY6wwMTajkg3BW355lbTrNe+iVr+/rDRu8jiKcAKnUAUPrqABd9CEFhAQ8Ayv8OYo58V5dz4WrQUnnzmGP3A+fwCzrY+v</latexit>

(y2)<latexit sha1_base64="ZGEpNyN+Nh6YcQ6jn3MG7S7iqEk=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRY9OKxgv2QdinZNNuGJtklyQrL0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCye3M7zxRpVkkH0waU1/gkWQhI9hY6bHfHLNqOqifD8oVt+bOgVaJl5MK5GgOyl/9YUQSQaUhHGvd89zY+BlWhhFOp6V+ommMyQSPaM9SiQXVfjY/eIrOrDJEYaRsSYPm6u+JDAutUxHYToHNWC97M/E/r5eY8NrPmIwTQyVZLAoTjkyEZt+jIVOUGJ5agoli9lZExlhhYmxGJRuCt/zyKmnXa95FrX5/WWnc5HEU4QROoQoeXEED7qAJLSAg4Ble4c1Rzovz7nwsWgtOPnMMf+B8/gC1Mo+w</latexit>

y2<latexit sha1_base64="UmY8miGJFsYtImgQ4UOSFc3rPPg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9av9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/QnVKJjk01IvNTyhbEyHvGupohE3/mR+6pScWWVAwljbUkjm6u+JCY2MyaLAdkYUR2bZm4n/ed0Uw2t/IlSSIldssShMJcGYzP4mA6E5Q5lZQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QMQCI2m</latexit>

Problem (QVI) is NOT (in general) equivalent to minimizing the (implicitly con-strained) potential energy:

minv

λ

2

∫ 1

0|v′(x)|2 dx −

∫ 1

0f (x)v(x) dx;

subject to (s.t.) v(0) = v(1) = 0;v ≤ Φ(v)

6/33 QVIs

Page 11: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Introduction - Lack of Dirichlet principle with implicit obstacleSuppose in addition that

there is an implicit obstacle ϕ : (0, 1) → R depending on y, i.e., ϕ = Φ(y).

The displacement(s) satisfies y ≤ Φ(y) and

λ

∫ 1

0y′(v′ − y′) dx ≥

∫ 1

0f (v − y) dx,

y(s) = 0 for s = 0, 1;(QVI)

∀v smooth s.t. v(0) = v(1) = 0 and v ≤ Φ(y).x

<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

x<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

y1<latexit sha1_base64="gXLzr9lA6QyErQrPkt90wKdvXMk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9b3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6C/oRqFEzyaamXGp5QNqZD3rVU0YgbfzI/dUrOrDIgYaxtKSRz9ffEhEbGZFFgOyOKI7PszcT/vG6K4bU/ESpJkSu2WBSmkmBMZn+TgdCcocwsoUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEOhI2l</latexit>

(y1)<latexit sha1_base64="IP2E5D2SoVW2BF8JmU9idzn8Nns=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRY9OKxgv2QdinZNNuGJtklyQrL0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCye3M7zxRpVkkH0waU1/gkWQhI9hY6bHfHLNqOvDOB+WKW3PnQKvEy0kFcjQH5a/+MCKJoNIQjrXueW5s/Awrwwin01I/0TTGZIJHtGepxIJqP5sfPEVnVhmiMFK2pEFz9fdEhoXWqQhsp8BmrJe9mfif10tMeO1nTMaJoZIsFoUJRyZCs+/RkClKDE8twUQxeysiY6wwMTajkg3BW355lbTrNe+iVr+/rDRu8jiKcAKnUAUPrqABd9CEFhAQ8Ayv8OYo58V5dz4WrQUnnzmGP3A+fwCzrY+v</latexit>

(y2)<latexit sha1_base64="ZGEpNyN+Nh6YcQ6jn3MG7S7iqEk=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRY9OKxgv2QdinZNNuGJtklyQrL0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCye3M7zxRpVkkH0waU1/gkWQhI9hY6bHfHLNqOqifD8oVt+bOgVaJl5MK5GgOyl/9YUQSQaUhHGvd89zY+BlWhhFOp6V+ommMyQSPaM9SiQXVfjY/eIrOrDJEYaRsSYPm6u+JDAutUxHYToHNWC97M/E/r5eY8NrPmIwTQyVZLAoTjkyEZt+jIVOUGJ5agoli9lZExlhhYmxGJRuCt/zyKmnXa95FrX5/WWnc5HEU4QROoQoeXEED7qAJLSAg4Ble4c1Rzovz7nwsWgtOPnMMf+B8/gC1Mo+w</latexit>

y2<latexit sha1_base64="UmY8miGJFsYtImgQ4UOSFc3rPPg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9av9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/QnVKJjk01IvNTyhbEyHvGupohE3/mR+6pScWWVAwljbUkjm6u+JCY2MyaLAdkYUR2bZm4n/ed0Uw2t/IlSSIldssShMJcGYzP4mA6E5Q5lZQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QMQCI2m</latexit>

Problem (QVI) is NOT (in general) equivalent to minimizing the (implicitly con-strained) potential energy:

minv

λ

2

∫ 1

0|v′(x)|2 dx −

∫ 1

0f (x)v(x) dx;

subject to (s.t.) v(0) = v(1) = 0;v ≤ Φ(v)

6/33 QVIs

Page 12: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Introduction - Lack of Dirichlet principle with implicit obstacleSuppose in addition that

there is an implicit obstacle ϕ : (0, 1) → R depending on y, i.e., ϕ = Φ(y).

The displacement(s) satisfies y ≤ Φ(y) and

λ

∫ 1

0y′(v′ − y′) dx ≥

∫ 1

0f (v − y) dx,

y(s) = 0 for s = 0, 1;(QVI)

∀v smooth s.t. v(0) = v(1) = 0 and v ≤ Φ(y).x

<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

x<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

y1<latexit sha1_base64="gXLzr9lA6QyErQrPkt90wKdvXMk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9b3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6C/oRqFEzyaamXGp5QNqZD3rVU0YgbfzI/dUrOrDIgYaxtKSRz9ffEhEbGZFFgOyOKI7PszcT/vG6K4bU/ESpJkSu2WBSmkmBMZn+TgdCcocwsoUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEOhI2l</latexit>

(y1)<latexit sha1_base64="IP2E5D2SoVW2BF8JmU9idzn8Nns=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRY9OKxgv2QdinZNNuGJtklyQrL0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCye3M7zxRpVkkH0waU1/gkWQhI9hY6bHfHLNqOvDOB+WKW3PnQKvEy0kFcjQH5a/+MCKJoNIQjrXueW5s/Awrwwin01I/0TTGZIJHtGepxIJqP5sfPEVnVhmiMFK2pEFz9fdEhoXWqQhsp8BmrJe9mfif10tMeO1nTMaJoZIsFoUJRyZCs+/RkClKDE8twUQxeysiY6wwMTajkg3BW355lbTrNe+iVr+/rDRu8jiKcAKnUAUPrqABd9CEFhAQ8Ayv8OYo58V5dz4WrQUnnzmGP3A+fwCzrY+v</latexit>

(y2)<latexit sha1_base64="ZGEpNyN+Nh6YcQ6jn3MG7S7iqEk=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRY9OKxgv2QdinZNNuGJtklyQrL0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCye3M7zxRpVkkH0waU1/gkWQhI9hY6bHfHLNqOqifD8oVt+bOgVaJl5MK5GgOyl/9YUQSQaUhHGvd89zY+BlWhhFOp6V+ommMyQSPaM9SiQXVfjY/eIrOrDJEYaRsSYPm6u+JDAutUxHYToHNWC97M/E/r5eY8NrPmIwTQyVZLAoTjkyEZt+jIVOUGJ5agoli9lZExlhhYmxGJRuCt/zyKmnXa95FrX5/WWnc5HEU4QROoQoeXEED7qAJLSAg4Ble4c1Rzovz7nwsWgtOPnMMf+B8/gC1Mo+w</latexit>

y2<latexit sha1_base64="UmY8miGJFsYtImgQ4UOSFc3rPPg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9av9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/QnVKJjk01IvNTyhbEyHvGupohE3/mR+6pScWWVAwljbUkjm6u+JCY2MyaLAdkYUR2bZm4n/ed0Uw2t/IlSSIldssShMJcGYzP4mA6E5Q5lZQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QMQCI2m</latexit>

Problem (QVI) is NOT (in general) equivalent to minimizing the (implicitly con-strained) potential energy:

minv

λ

2

∫ 1

0|v′(x)|2 dx −

∫ 1

0f (x)v(x) dx;

subject to (s.t.) v(0) = v(1) = 0;v ≤ Φ(v)

6/33 QVIs

Page 13: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

The general elliptic QVI problem

7/33 QVIs

Page 14: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

The class of elliptic QVIs

Let A : V → V ′ and f ∈ V ′ for some (real) Hilbert space V . Consider

Find y ∈ K(y) : ⟨A(y) − f, v − y⟩ ≥ 0, ∀v ∈ K(y) (QVI)

whereK(w) := z ∈ V : Ψ(Gz) ≤ Φ(w).

V ∈ H10(Ω), H1(Ω), L2(Ω), . . ., and part of a Gelfand triple (V, H, V ′).

A is Lipschitz continuous and strongly monotone, i.e.,

⟨A(u) − A(v), u − v⟩ ≥ c∥u − v∥2V .

G : V → Lp(Ω)d is linear, and Ψ : Rd → R is convex.

Φ(v) : Ω → R is measurable.

Obstacle type

G = id, and Ψ(x) = x.

Gradient type

G = ∇, and Ψ(x) = ∥x∥Rn.

8/33 QVIs

Page 15: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

The class of elliptic QVIs

Let A : V → V ′ and f ∈ V ′ for some (real) Hilbert space V . Consider

Find y ∈ K(y) : ⟨A(y) − f, v − y⟩ ≥ 0, ∀v ∈ K(y) (QVI)

whereK(w) := z ∈ V : Ψ(Gz) ≤ Φ(w).

Many contributors Adly, Alphonse, Aubin, Aussel, Barrett, Bensoussan,Bergounioux, Biroli, Caffarelli, Facchinei, Friedman, Frehse, Fukao, Fukushima,Gwinner, Hanouzet, Harker, Hintermüller, Joly, Kano, Kanzow, Kenmochi, Lions,Mignot, Mordukhovich, Mosco, Murase, Outrata, Pang, Prigozhin, Rodrigues,Santos, Tartar, Yousept, . . . .

A. Bensoussan, J.-L. Lions , In a series of papers concerned with impulse control (1973/1974).

9/33 QVIs

Page 16: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

The class of elliptic QVIs : Prototypicals V, A, and K

The typical setting is given by

(V, H, V ′) = (H10(Ω), L2(Ω), H−1(Ω)).

The map A : H10(Ω) → H−1(Ω) is given

⟨Av, w⟩ =∫

Ω

∑i,j

aij(x) ∂v

∂xj

∂w

∂xi+∑

i

ai(x)∫

Ω

∂v

∂xjw + a0(x)vw

dx,

with usual assumptions over coefficients. Also fractional powers As for s ∈ (0, 1)are suitable.

Φ : H10(Ω) → H1

0(Ω) is

A superposition operator, i.e., Φ(y)(x) = φ(y(x)) for some φ.

A solution operator coming from a PDE, e.g., Φ(y) = (−∆)−1y + ϕ0.

10/33 QVIs

Page 17: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

The class of elliptic QVIs

Let A : V → V ′ and f ∈ V ′ for some (real) Hilbert space V . Consider

Find y ∈ K(y) : ⟨A(y) − f, v − y⟩ ≥ 0, ∀v ∈ K(y) (QVI)

whereK(w) := z ∈ V : Ψ(Gz) ≤ Φ(w).

Main difficulties:

The problem is non-smooth and non-convex.

In general there are multiple solutions. The solution set

Q(f )

might be of any cardinality!

In general, the problem does not arise as first order condition of anoptimization problem.

11/33 QVIs

Page 18: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

The class of elliptic QVIs - Cardinality of Q(f )

Find y ≤ Φ(y) : ⟨Ay − f, v − y⟩ ≥ 0, ∀v ≤ Φ(y). (QVI)

If Φ : V → V is Lipschitz with small Lipschitz constant =⇒ Unique solution.

Let A = −∆, V = H10(Ω), f ∈ R =⇒ Two solutions or one.

x<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

<latexit sha1_base64="U7EeqmYiKeTo/r/N2HofpG7Xero=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY9FLx4r2A9oQ9lsN83S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4IlnICDa5NEwiNqrW3Lq7AFonXkFqUKA9qn4NxzFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8oQNLJRZU+9ni1jm6sMoYhbGyJQ1aqL8nMiy0nonAdgpsIr3q5eJ/3iA14Y2fMZmkhkqyXBSmHJkY5Y+jMVOUGD6zBBPF7K2IRFhhYmw8FRuCt/ryOuk26t5VvfHQrLVuizjKcAbncAkeXEML7qENHSAQwTO8wpsjnBfn3flYtpacYuYU/sD5/AEU1o5D</latexit>

y<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

|A|<latexit sha1_base64="DQzIhwjJIrChV6lMMAIdE6xRN/k=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwVZIq6LLqxmUF+4AmlJvptB06mYSZiVDT4q+4caGIW//DnX/jpM1CWw8MHM65l3vmBDFnSjvOt7W0vLK6tl7YKG5ube/s2nv7DRUlktA6iXgkWwEoypmgdc00p61YUggDTpvB8Cbzmw9UKhaJez2KqR9CX7AeI6CN1LEPvSHEMeCxF4IeEODp1WTcsUtO2ZkCLxI3JyWUo9axv7xuRJKQCk04KNV2nVj7KUjNCKeTopcoGgMZQp+2DRUQUuWn0/QTfGKULu5F0jyh8VT9vZFCqNQoDMxkllHNe5n4n9dOdO/ST5mIE00FmR3qJRzrCGdV4C6TlGg+MgSIZCYrJgOQQLQprGhKcOe/vEgalbJ7Vq7cnZeq13kdBXSEjtEpctEFqqJbVEN1RNAjekav6M16sl6sd+tjNrpk5TsH6A+szx+6YZVn</latexit>

k1 k23

<latexit sha1_base64="K+HuMmY7oQmzH639pM+olYNyAN8=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4sSStoMuiG5cV7APaGCbTSTtk8mBmopTYT3HjQhG3fok7/8ZJm4W2Hrjcwzn3MneOl3AmlWV9Gyura+sbm6Wt8vbO7t6+WTnoyDgVhLZJzGPR87CknEW0rZjitJcIikOP064XXOd+94EKyeLoTk0S6oR4FDGfEay05JqVwLUHyZidBW497/cN16xaNWsGtEzsglShQMs1vwbDmKQhjRThWMq+bSXKybBQjHA6LQ9SSRNMAjyifU0jHFLpZLPTp+hEK0Pkx0JXpNBM/b2R4VDKSejpyRCrsVz0cvE/r58q/9LJWJSkikZk/pCfcqRilOeAhkxQovhEE0wE07ciMsYCE6XTKusQ7MUvL5NOvWY3avXb82rzqoijBEdwDKdgwwU04QZa0AYCj/AMr/BmPBkvxrvxMR9dMYqdQ/gD4/MHJ82TSA==</latexit>

f<latexit sha1_base64="aj1VrWgqSrqkgqJ/bLgtsTmRK/w=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZtgvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPzD+M7g==</latexit>

(y(f))<latexit sha1_base64="s3NFqO6cPRKm8ssVnj7XFPMB6zM=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSK0l7JbBT0WvXisYD+wXUo2zbahSXZJssKy9F948aCIV/+NN/+NabsHbX0w8Hhvhpl5QcyZNq777aytb2xubRd2irt7+weHpaPjto4SRWiLRDxS3QBrypmkLcMMp91YUSwCTjvB5Hbmd56o0iySDyaNqS/wSLKQEWys9NhvjlklrYTV6qBUdmvuHGiVeDkpQ47moPTVH0YkEVQawrHWPc+NjZ9hZRjhdFrsJ5rGmEzwiPYslVhQ7Wfzi6fo3CpDFEbKljRorv6eyLDQOhWB7RTYjPWyNxP/83qJCa/9jMk4MVSSxaIw4chEaPY+GjJFieGpJZgoZm9FZIwVJsaGVLQheMsvr5J2veZd1Or3l+XGTR5HAU7hDCrgwRU04A6a0AICEp7hFd4c7bw4787HonXNyWdO4A+czx8WaI/g</latexit>

Let Φ(y) = y, then if Ay ≤ f then y is a solution of (QVI) =⇒ Mutiplesolutions - Not isolated solutions.

12/33 QVIs

Page 19: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

The class of elliptic QVIs - Cardinality of Q(f )

Find y ≤ Φ(y) : ⟨Ay − f, v − y⟩ ≥ 0, ∀v ≤ Φ(y). (QVI)

If Φ : V → V is Lipschitz with small Lipschitz constant =⇒ Unique solution.

Let A = −∆, V = H10(Ω), f ∈ R =⇒ Two solutions or one.

x<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

<latexit sha1_base64="U7EeqmYiKeTo/r/N2HofpG7Xero=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY9FLx4r2A9oQ9lsN83S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4IlnICDa5NEwiNqrW3Lq7AFonXkFqUKA9qn4NxzFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8oQNLJRZU+9ni1jm6sMoYhbGyJQ1aqL8nMiy0nonAdgpsIr3q5eJ/3iA14Y2fMZmkhkqyXBSmHJkY5Y+jMVOUGD6zBBPF7K2IRFhhYmw8FRuCt/ryOuk26t5VvfHQrLVuizjKcAbncAkeXEML7qENHSAQwTO8wpsjnBfn3flYtpacYuYU/sD5/AEU1o5D</latexit>

y<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

|A|<latexit sha1_base64="DQzIhwjJIrChV6lMMAIdE6xRN/k=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwVZIq6LLqxmUF+4AmlJvptB06mYSZiVDT4q+4caGIW//DnX/jpM1CWw8MHM65l3vmBDFnSjvOt7W0vLK6tl7YKG5ube/s2nv7DRUlktA6iXgkWwEoypmgdc00p61YUggDTpvB8Cbzmw9UKhaJez2KqR9CX7AeI6CN1LEPvSHEMeCxF4IeEODp1WTcsUtO2ZkCLxI3JyWUo9axv7xuRJKQCk04KNV2nVj7KUjNCKeTopcoGgMZQp+2DRUQUuWn0/QTfGKULu5F0jyh8VT9vZFCqNQoDMxkllHNe5n4n9dOdO/ST5mIE00FmR3qJRzrCGdV4C6TlGg+MgSIZCYrJgOQQLQprGhKcOe/vEgalbJ7Vq7cnZeq13kdBXSEjtEpctEFqqJbVEN1RNAjekav6M16sl6sd+tjNrpk5TsH6A+szx+6YZVn</latexit>

k1 k23

<latexit sha1_base64="K+HuMmY7oQmzH639pM+olYNyAN8=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4sSStoMuiG5cV7APaGCbTSTtk8mBmopTYT3HjQhG3fok7/8ZJm4W2Hrjcwzn3MneOl3AmlWV9Gyura+sbm6Wt8vbO7t6+WTnoyDgVhLZJzGPR87CknEW0rZjitJcIikOP064XXOd+94EKyeLoTk0S6oR4FDGfEay05JqVwLUHyZidBW497/cN16xaNWsGtEzsglShQMs1vwbDmKQhjRThWMq+bSXKybBQjHA6LQ9SSRNMAjyifU0jHFLpZLPTp+hEK0Pkx0JXpNBM/b2R4VDKSejpyRCrsVz0cvE/r58q/9LJWJSkikZk/pCfcqRilOeAhkxQovhEE0wE07ciMsYCE6XTKusQ7MUvL5NOvWY3avXb82rzqoijBEdwDKdgwwU04QZa0AYCj/AMr/BmPBkvxrvxMR9dMYqdQ/gD4/MHJ82TSA==</latexit>

f<latexit sha1_base64="aj1VrWgqSrqkgqJ/bLgtsTmRK/w=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZtgvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPzD+M7g==</latexit>

(y(f))<latexit sha1_base64="s3NFqO6cPRKm8ssVnj7XFPMB6zM=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSK0l7JbBT0WvXisYD+wXUo2zbahSXZJssKy9F948aCIV/+NN/+NabsHbX0w8Hhvhpl5QcyZNq777aytb2xubRd2irt7+weHpaPjto4SRWiLRDxS3QBrypmkLcMMp91YUSwCTjvB5Hbmd56o0iySDyaNqS/wSLKQEWys9NhvjlklrYTV6qBUdmvuHGiVeDkpQ47moPTVH0YkEVQawrHWPc+NjZ9hZRjhdFrsJ5rGmEzwiPYslVhQ7Wfzi6fo3CpDFEbKljRorv6eyLDQOhWB7RTYjPWyNxP/83qJCa/9jMk4MVSSxaIw4chEaPY+GjJFieGpJZgoZm9FZIwVJsaGVLQheMsvr5J2veZd1Or3l+XGTR5HAU7hDCrgwRU04A6a0AICEp7hFd4c7bw4787HonXNyWdO4A+czx8WaI/g</latexit>

Let Φ(y) = y, then if Ay ≤ f then y is a solution of (QVI) =⇒ Mutiplesolutions - Not isolated solutions.

12/33 QVIs

Page 20: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

The class of elliptic QVIs - Cardinality of Q(f )

Find y ≤ Φ(y) : ⟨Ay − f, v − y⟩ ≥ 0, ∀v ≤ Φ(y). (QVI)

If Φ : V → V is Lipschitz with small Lipschitz constant =⇒ Unique solution.

Let A = −∆, V = H10(Ω), f ∈ R =⇒ Two solutions or one.

x<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

<latexit sha1_base64="U7EeqmYiKeTo/r/N2HofpG7Xero=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY9FLx4r2A9oQ9lsN83S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4IlnICDa5NEwiNqrW3Lq7AFonXkFqUKA9qn4NxzFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8oQNLJRZU+9ni1jm6sMoYhbGyJQ1aqL8nMiy0nonAdgpsIr3q5eJ/3iA14Y2fMZmkhkqyXBSmHJkY5Y+jMVOUGD6zBBPF7K2IRFhhYmw8FRuCt/ryOuk26t5VvfHQrLVuizjKcAbncAkeXEML7qENHSAQwTO8wpsjnBfn3flYtpacYuYU/sD5/AEU1o5D</latexit>

y<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

|A|<latexit sha1_base64="DQzIhwjJIrChV6lMMAIdE6xRN/k=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwVZIq6LLqxmUF+4AmlJvptB06mYSZiVDT4q+4caGIW//DnX/jpM1CWw8MHM65l3vmBDFnSjvOt7W0vLK6tl7YKG5ube/s2nv7DRUlktA6iXgkWwEoypmgdc00p61YUggDTpvB8Cbzmw9UKhaJez2KqR9CX7AeI6CN1LEPvSHEMeCxF4IeEODp1WTcsUtO2ZkCLxI3JyWUo9axv7xuRJKQCk04KNV2nVj7KUjNCKeTopcoGgMZQp+2DRUQUuWn0/QTfGKULu5F0jyh8VT9vZFCqNQoDMxkllHNe5n4n9dOdO/ST5mIE00FmR3qJRzrCGdV4C6TlGg+MgSIZCYrJgOQQLQprGhKcOe/vEgalbJ7Vq7cnZeq13kdBXSEjtEpctEFqqJbVEN1RNAjekav6M16sl6sd+tjNrpk5TsH6A+szx+6YZVn</latexit>

k1 k23

<latexit sha1_base64="K+HuMmY7oQmzH639pM+olYNyAN8=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4sSStoMuiG5cV7APaGCbTSTtk8mBmopTYT3HjQhG3fok7/8ZJm4W2Hrjcwzn3MneOl3AmlWV9Gyura+sbm6Wt8vbO7t6+WTnoyDgVhLZJzGPR87CknEW0rZjitJcIikOP064XXOd+94EKyeLoTk0S6oR4FDGfEay05JqVwLUHyZidBW497/cN16xaNWsGtEzsglShQMs1vwbDmKQhjRThWMq+bSXKybBQjHA6LQ9SSRNMAjyifU0jHFLpZLPTp+hEK0Pkx0JXpNBM/b2R4VDKSejpyRCrsVz0cvE/r58q/9LJWJSkikZk/pCfcqRilOeAhkxQovhEE0wE07ciMsYCE6XTKusQ7MUvL5NOvWY3avXb82rzqoijBEdwDKdgwwU04QZa0AYCj/AMr/BmPBkvxrvxMR9dMYqdQ/gD4/MHJ82TSA==</latexit>

f<latexit sha1_base64="aj1VrWgqSrqkgqJ/bLgtsTmRK/w=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZtgvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPzD+M7g==</latexit>

(y(f))<latexit sha1_base64="s3NFqO6cPRKm8ssVnj7XFPMB6zM=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSK0l7JbBT0WvXisYD+wXUo2zbahSXZJssKy9F948aCIV/+NN/+NabsHbX0w8Hhvhpl5QcyZNq777aytb2xubRd2irt7+weHpaPjto4SRWiLRDxS3QBrypmkLcMMp91YUSwCTjvB5Hbmd56o0iySDyaNqS/wSLKQEWys9NhvjlklrYTV6qBUdmvuHGiVeDkpQ47moPTVH0YkEVQawrHWPc+NjZ9hZRjhdFrsJ5rGmEzwiPYslVhQ7Wfzi6fo3CpDFEbKljRorv6eyLDQOhWB7RTYjPWyNxP/83qJCa/9jMk4MVSSxaIw4chEaPY+GjJFieGpJZgoZm9FZIwVJsaGVLQheMsvr5J2veZd1Or3l+XGTR5HAU7hDCrgwRU04A6a0AICEp7hFd4c7bw4787HonXNyWdO4A+czx8WaI/g</latexit>

Let Φ(y) = y, then if Ay ≤ f then y is a solution of (QVI) =⇒ Mutiplesolutions - Not isolated solutions.

12/33 QVIs

Page 21: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Historical note on quasi-variationalinequalities

13/33 QVIs

Page 22: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

A little history on QVIs

For x ∈ RN , σ > 0, w a Wiener process and g : RN → RN Lipschitz andbounded, consider

dz = g(z) dt + σI dw(t) +∑

i

δ(t − θi)ξi

z(0) = x.(Px)

Admissible controls U for (Px) are given by (θi, ξi)∞i=1 where

Time instants θi such that 0 = θ0 ≤ θ1 ≤ θ2 ≤ . . . and limi θi = +∞ State jumps ξi on some compact subset K ⊂ RN ,

z(θ+i ) = z(θ−

i ) + ξi.

A. Bensoussan and J. L. Lions considered the optimal impulse control problem

Given k > 0 and α > 0, consider

minν∈U

J(x, ν) := E

∫ ∞

0e−αtf (zx(t)) dt + k

∑i

e−αθi

, (P)

where ν = (θi, ξi), and zx solves (Px).

14/33 QVIs

Page 23: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

A little history on QVIs

For x ∈ RN , σ > 0, w a Wiener process and g : RN → RN Lipschitz andbounded, consider

dz = g(z) dt + σI dw(t) +∑

i

δ(t − θi)ξi

z(0) = x.(Px)

Admissible controls U for (Px) are given by (θi, ξi)∞i=1 where

Time instants θi such that 0 = θ0 ≤ θ1 ≤ θ2 ≤ . . . and limi θi = +∞ State jumps ξi on some compact subset K ⊂ RN ,

z(θ+i ) = z(θ−

i ) + ξi.

A. Bensoussan and J. L. Lions considered the optimal impulse control problem

Given k > 0 and α > 0, consider

minν∈U

J(x, ν) := E

∫ ∞

0e−αtf (zx(t)) dt + k

∑i

e−αθi

, (P)

where ν = (θi, ξi), and zx solves (Px).

14/33 QVIs

Page 24: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

A little history on QVIs

Given k > 0 and α > 0, consider

minν∈U

J(x, ν) := E

∫ ∞

0e−αtf (zx(t)) dt + k

∑i

e−αθi

, (P)

where ν = (θi, ξi), and zx solves (Px).

dz = g(z) dt + σI dw(t) +∑

i

δ(t − θi)ξi

z(0) = x.(Px)

Define the value function

y∗(x) := infν∈U

J(x, ν∗).

Benoussan-Lions(1974)

Under certain conditions, ∃y solution to: Find y ∈ H1(RN) such y ≤ My and⟨−σ

2∆y −

∑i

gi(x)∂y

∂x+ αy − f, v − y

⟩≥ 0, ∀v ≤ My,

where My(x) := k + infξ∈K y(x + ξ). The value function y∗ is a solution to the QVI above.

There exists a solution to (P) → it can be constructed via a solution y.

Page 25: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

A little history on QVIs

Given k > 0 and α > 0, consider

minν∈U

J(x, ν) := E

∫ ∞

0e−αtf (zx(t)) dt + k

∑i

e−αθi

, (P)

where ν = (θi, ξi), and zx solves (Px).

dz = g(z) dt + σI dw(t) +∑

i

δ(t − θi)ξi

z(0) = x.(Px)

Define the value function

y∗(x) := infν∈U

J(x, ν∗).

Benoussan-Lions(1974)

Under certain conditions, ∃y solution to: Find y ∈ H1(RN) such y ≤ My and⟨−σ

2∆y −

∑i

gi(x)∂y

∂x+ αy − f, v − y

⟩≥ 0, ∀v ≤ My,

where My(x) := k + infξ∈K y(x + ξ). The value function y∗ is a solution to the QVI above.

There exists a solution to (P) → it can be constructed via a solution y.

Page 26: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

A little history on QVIs

Given k > 0 and α > 0, consider

minν∈U

J(x, ν) := E

∫ ∞

0e−αtf (zx(t)) dt + k

∑i

e−αθi

, (P)

where ν = (θi, ξi), and zx solves (Px).

dz = g(z) dt + σI dw(t) +∑

i

δ(t − θi)ξi

z(0) = x.(Px)

Define the value function

y∗(x) := infν∈U

J(x, ν∗).

Benoussan-Lions(1974)

Under certain conditions, ∃y solution to: Find y ∈ H1(RN) such y ≤ My and⟨−σ

2∆y −

∑i

gi(x)∂y

∂x+ αy − f, v − y

⟩≥ 0, ∀v ≤ My,

where My(x) := k + infξ∈K y(x + ξ).

The value function y∗ is a solution to the QVI above.

There exists a solution to (P) → it can be constructed via a solution y.

Page 27: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

A little history on QVIs

Given k > 0 and α > 0, consider

minν∈U

J(x, ν) := E

∫ ∞

0e−αtf (zx(t)) dt + k

∑i

e−αθi

, (P)

where ν = (θi, ξi), and zx solves (Px).

dz = g(z) dt + σI dw(t) +∑

i

δ(t − θi)ξi

z(0) = x.(Px)

Define the value function

y∗(x) := infν∈U

J(x, ν∗).

Benoussan-Lions(1974)

Under certain conditions, ∃y solution to: Find y ∈ H1(RN) such y ≤ My and⟨−σ

2∆y −

∑i

gi(x)∂y

∂x+ αy − f, v − y

⟩≥ 0, ∀v ≤ My,

where My(x) := k + infξ∈K y(x + ξ). The value function y∗ is a solution to the QVI above.

There exists a solution to (P) → it can be constructed via a solution y.

Page 28: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

A little history on QVIs

Given k > 0 and α > 0, consider

minν∈U

J(x, ν) := E

∫ ∞

0e−αtf (zx(t)) dt + k

∑i

e−αθi

, (P)

where ν = (θi, ξi), and zx solves (Px).

dz = g(z) dt + σI dw(t) +∑

i

δ(t − θi)ξi

z(0) = x.

(Px)

Define the value function

y∗(x) := infν∈U

J(x, ν∗).

Bensoussan-Lions(1974)

Under certain conditions, ∃y solution to: Find y ∈ H1(RN) such y ≤ My and⟨−σ

2∆y −

∑i

gi(x)∂y

∂x+ αy − f, v − u

⟩≥ 0, ∀v ≤ My,

where Mw(x) := k + infξ∈K u(x + ξ). The value function y∗ is a solution to the QVI above.

There exists a solution to (P) → it can be constructed via a solution y.

Page 29: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

QVIs are powerful models

17/33 QVIs

Page 30: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Stationary QVI models

Stationary Magnetization of a superconductorDetermination of the magnetic field[Rodrigues, Prigozhin, Yousept]

A(y) = −div|∇y|p−2∇y K(y) = v : |∇v| ≤ Φ(y),

Φ is a superposition operator.

Flow trough semi-permeable membranes/anomalousdiffusion. Pressure of a chemical solution of a slightlyincompressible fluid [Antil, R. (2018)].

A = (−∆)s K(y) = v : v ≤ Φ(y),

with s ∈ (0, 1), and Φ solution map of a PDE.0

0.20.4

0.60.8

00.2

0.40.6

0.8

0

0.005

0.01

Thermo-elastic equilibrium of a locking material. Determination of a thedisplacement field [Rodrigues-Santos (2019)].

⟨A(y), v⟩ = µ(Dy, Dv)+λ(∇·y, ∇·v) K(y) = v ∈ H10(Ω) : |Dv| ≤ Φ(y)

18/33 QVIs

Page 31: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

The compactness approach

19/33 QVIs

Page 32: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Existence theory - Compactness approaches

Find y ∈ K(y) : ⟨A(y) − f, v − y⟩ ≥ 0, ∀v ∈ K(y). (QVI)

Define S(f, K), for a fixed closed, and convex set K as the unique solution to:

Find z ∈ K : ⟨A(z) − f, v − z⟩ ≥ 0, ∀v ∈ K.

Then, for non-constant v 7→ K(v), consider T (v) := S(f, K(v)) so that

y = T (y) ⇐⇒ y solves (QVI).

Proposition

Since V is reflexive, if T : V → V is completely continuous, i.e.,

vn v implies T (vn) → T (v),

then T has fixed point à la Schauder (T (BR(0, V )) ⊂ BR(0, V ) is simple to obtain).

Since T (v) = S(f, K(v)), we need a concept of set convergence so that

S(f, Kn) → S(f, K).

20/33 QVIs

Page 33: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Existence theory - Compactness approaches

Find y ∈ K(y) : ⟨A(y) − f, v − y⟩ ≥ 0, ∀v ∈ K(y). (QVI)

Define S(f, K), for a fixed closed, and convex set K as the unique solution to:

Find z ∈ K : ⟨A(z) − f, v − z⟩ ≥ 0, ∀v ∈ K.

Then, for non-constant v 7→ K(v), consider T (v) := S(f, K(v)) so that

y = T (y) ⇐⇒ y solves (QVI).

Proposition

Since V is reflexive, if T : V → V is completely continuous, i.e.,

vn v implies T (vn) → T (v),

then T has fixed point à la Schauder (T (BR(0, V )) ⊂ BR(0, V ) is simple to obtain).

Since T (v) = S(f, K(v)), we need a concept of set convergence so that

S(f, Kn) → S(f, K).

20/33 QVIs

Page 34: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Existence theory - Compactness approaches

Find y ∈ K(y) : ⟨A(y) − f, v − y⟩ ≥ 0, ∀v ∈ K(y). (QVI)

Define S(f, K), for a fixed closed, and convex set K as the unique solution to:

Find z ∈ K : ⟨A(z) − f, v − z⟩ ≥ 0, ∀v ∈ K.

Then, for non-constant v 7→ K(v), consider T (v) := S(f, K(v)) so that

y = T (y) ⇐⇒ y solves (QVI).

Proposition

Since V is reflexive, if T : V → V is completely continuous, i.e.,

vn v implies T (vn) → T (v),

then T has fixed point à la Schauder (T (BR(0, V )) ⊂ BR(0, V ) is simple to obtain).

Since T (v) = S(f, K(v)), we need a concept of set convergence so that

S(f, Kn) → S(f, K).

20/33 QVIs

Page 35: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Mosco convergence

Find y ∈ K(y) : ⟨A(y) − f, v − y⟩ ≥ 0, ∀v ∈ K(y). (QVI)

Define S(f, K), for a fixed closed, and convex set K as the unique solution to:

Find z ∈ K : ⟨A(z) − f, v − z⟩ ≥ 0, ∀v ∈ K.

Then, for non-constant v 7→ K(v), consider T (v) := S(f, K(v)) so that

y = T (y) ⇐⇒ y solves (QVI).

The sequence of sets Kn is said to converge to K in the sense of Mosco as

n → ∞, denoted by KnM−→ K, if the following two conditions are fulfilled:

(i) For each w ∈ K, ∃ wn′ such that wn′ ∈ Kn′ and wn′ → w in V .

(ii) If wn ∈ Kn and wn w in V along a subsequence, then w ∈ K.

If KnM−−→ K then S(f, Kn) → S(f, K) in V .

If vn v in V implies K(vn) M−−→ K(v) then T is completely continuous.

21/33 QVIs

Page 36: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Mosco convergence

Find y ∈ K(y) : ⟨A(y) − f, v − y⟩ ≥ 0, ∀v ∈ K(y). (QVI)

Define S(f, K), for a fixed closed, and convex set K as the unique solution to:

Find z ∈ K : ⟨A(z) − f, v − z⟩ ≥ 0, ∀v ∈ K.

Then, for non-constant v 7→ K(v), consider T (v) := S(f, K(v)) so that

y = T (y) ⇐⇒ y solves (QVI).

The sequence of sets Kn is said to converge to K in the sense of Mosco as

n → ∞, denoted by KnM−→ K, if the following two conditions are fulfilled:

(i) For each w ∈ K, ∃ wn′ such that wn′ ∈ Kn′ and wn′ → w in V .

(ii) If wn ∈ Kn and wn w in V along a subsequence, then w ∈ K.

If KnM−−→ K then S(f, Kn) → S(f, K) in V .

If vn v in V implies K(vn) M−−→ K(v) then T is completely continuous.

21/33 QVIs

Page 37: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Mosco convergence - One Example

The sequence of sets Kn is said to converge to K in the sense of Mosco as

n → ∞, denoted by KnM−→ K, if the following two conditions are fulfilled:

(i) For each w ∈ K, ∃ wn′ such that wn′ ∈ Kn′ and wn′ → w in V .

(ii) If wn ∈ Kn and wn w in V along a subsequence, then w ∈ K.

Example: The obstacle case

Consider Kn = v ∈ H10(Ω) : v ≤ ϕn and ϕn → ϕ in H1

0(Ω).

(i) For each w ∈ K, i.e., w ≤ ϕ. How do we construct wn so that wn ≤ ϕn

and wn → w in H10(Ω)? Consider

wn := w − ϕ + ϕn.

(ii) Suppose wn ∈ Kn and wn w in H10(Ω), since ϕn → ϕ pointwise

a.e. along a subsequence =⇒ w ∈ K.

ϕn → ϕ in H10(Ω) is very strong. How can we relax this?

22/33 QVIs

Page 38: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Mosco convergence - One Example

The sequence of sets Kn is said to converge to K in the sense of Mosco as

n → ∞, denoted by KnM−→ K, if the following two conditions are fulfilled:

(i) For each w ∈ K, ∃ wn′ such that wn′ ∈ Kn′ and wn′ → w in V .

(ii) If wn ∈ Kn and wn w in V along a subsequence, then w ∈ K.

Example: The obstacle case

Consider Kn = v ∈ H10(Ω) : v ≤ ϕn and ϕn → ϕ in H1

0(Ω).(i) For each w ∈ K, i.e., w ≤ ϕ. How do we construct wn so that wn ≤ ϕn

and wn → w in H10(Ω)?

Consider

wn := w − ϕ + ϕn.

(ii) Suppose wn ∈ Kn and wn w in H10(Ω), since ϕn → ϕ pointwise

a.e. along a subsequence =⇒ w ∈ K.

ϕn → ϕ in H10(Ω) is very strong. How can we relax this?

22/33 QVIs

Page 39: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Mosco convergence - One Example

The sequence of sets Kn is said to converge to K in the sense of Mosco as

n → ∞, denoted by KnM−→ K, if the following two conditions are fulfilled:

(i) For each w ∈ K, ∃ wn′ such that wn′ ∈ Kn′ and wn′ → w in V .

(ii) If wn ∈ Kn and wn w in V along a subsequence, then w ∈ K.

Example: The obstacle case

Consider Kn = v ∈ H10(Ω) : v ≤ ϕn and ϕn → ϕ in H1

0(Ω).(i) For each w ∈ K, i.e., w ≤ ϕ. How do we construct wn so that wn ≤ ϕn

and wn → w in H10(Ω)? Consider

wn := w − ϕ + ϕn.

(ii) Suppose wn ∈ Kn and wn w in H10(Ω), since ϕn → ϕ pointwise

a.e. along a subsequence =⇒ w ∈ K.

ϕn → ϕ in H10(Ω) is very strong. How can we relax this?

22/33 QVIs

Page 40: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Mosco convergence - One Example

The sequence of sets Kn is said to converge to K in the sense of Mosco as

n → ∞, denoted by KnM−→ K, if the following two conditions are fulfilled:

(i) For each w ∈ K, ∃ wn′ such that wn′ ∈ Kn′ and wn′ → w in V .

(ii) If wn ∈ Kn and wn w in V along a subsequence, then w ∈ K.

Example: The obstacle case

Consider Kn = v ∈ H10(Ω) : v ≤ ϕn and ϕn → ϕ in H1

0(Ω).(i) For each w ∈ K, i.e., w ≤ ϕ. How do we construct wn so that wn ≤ ϕn

and wn → w in H10(Ω)? Consider

wn := w − ϕ + ϕn.

(ii) Suppose wn ∈ Kn and wn w in H10(Ω), since ϕn → ϕ pointwise

a.e. along a subsequence =⇒ w ∈ K.

ϕn → ϕ in H10(Ω) is very strong. How can we relax this?

22/33 QVIs

Page 41: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Mosco convergence - One Example

The sequence of sets Kn is said to converge to K in the sense of Mosco as

n → ∞, denoted by KnM−→ K, if the following two conditions are fulfilled:

(i) For each w ∈ K, ∃ wn′ such that wn′ ∈ Kn′ and wn′ → w in V .

(ii) If wn ∈ Kn and wn w in V along a subsequence, then w ∈ K.

Example: The obstacle case

Consider Kn = v ∈ H10(Ω) : v ≤ ϕn and ϕn → ϕ in H1

0(Ω).(i) For each w ∈ K, i.e., w ≤ ϕ. How do we construct wn so that wn ≤ ϕn

and wn → w in H10(Ω)? Consider

wn := w − ϕ + ϕn.

(ii) Suppose wn ∈ Kn and wn w in H10(Ω), since ϕn → ϕ pointwise

a.e. along a subsequence =⇒ w ∈ K.

ϕn → ϕ in H10(Ω) is very strong. How can we relax this?

22/33 QVIs

Page 42: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Mosco convergence for obstacle constraints

Kn = v ∈ V : v ≤ ϕn

For V = W 1,p0 (Ω), necessary and sufficient conditions on the convergence

ϕn → ϕ for KnM−−→ K are given in terms of capacity

([Attouch-Picard (1979-1982), Dal Maso (1985)])

The above is not so useful in applications: It is of theoretical interest though, but hardto prove unless high regularity is available for obstacles!

A useful result is the following ([Boccardo-Murat (1982)]): For V = W 1,p0 (Ω),

ϕn ϕ in W 1,q(Ω) or W 1,q0 (Ω), for q > p =⇒ Kn

M−−→ K.

The lesson is that you need only an ϵ > 0 more of regularity of your obstacles thanin your state space. This is simple to prove in applications, e.g., in the case whenΦ(v) = ϕ is given by the PDE

−∆ϕ = g(v) + g0.

23/33 QVIs

Page 43: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Mosco convergence for obstacle constraints

Kn = v ∈ V : v ≤ ϕn

For V = W 1,p0 (Ω), necessary and sufficient conditions on the convergence

ϕn → ϕ for KnM−−→ K are given in terms of capacity

([Attouch-Picard (1979-1982), Dal Maso (1985)])

The above is not so useful in applications: It is of theoretical interest though, but hardto prove unless high regularity is available for obstacles!

A useful result is the following ([Boccardo-Murat (1982)]): For V = W 1,p0 (Ω),

ϕn ϕ in W 1,q(Ω) or W 1,q0 (Ω), for q > p =⇒ Kn

M−−→ K.

The lesson is that you need only an ϵ > 0 more of regularity of your obstacles thanin your state space. This is simple to prove in applications, e.g., in the case whenΦ(v) = ϕ is given by the PDE

−∆ϕ = g(v) + g0.

23/33 QVIs

Page 44: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Mosco convergence for gradient constraints

Kn = v ∈ H10(Ω) : |∇v| ≤ ϕn

If ϕn → ϕ in C(Ω) if ∂Ω is regular enough then KnM−−→ K. Regularity of

∂Ω plays a role if ϕ is not strictly positive.

If ϕn → ϕ in L∞ν (Ω) then Kn

M−−→ K.([Santos-Assis (2004), Hintermüller-R. (2015)])

Extension from L∞(Ω) or C(Ω) to other spaces is rather complex due to thenon-Lipschitz dependence of the solution w.r.t. the gradient obstacle.

(Open problem) Necessary and sufficient conditions on ϕn so thatKn

M−−→ K holds are not known.

This is a complex task! Let |∇y| ≤ ϕ and ϕn → ϕ in some topology X , try toconstruct yn such that |∇yn| ≤ ϕn and yn → y!

24/33 QVIs

Page 45: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Mosco convergence for gradient constraints

Kn = v ∈ H10(Ω) : |∇v| ≤ ϕn

If ϕn → ϕ in C(Ω) if ∂Ω is regular enough then KnM−−→ K. Regularity of

∂Ω plays a role if ϕ is not strictly positive.

If ϕn → ϕ in L∞ν (Ω) then Kn

M−−→ K.([Santos-Assis (2004), Hintermüller-R. (2015)])

Extension from L∞(Ω) or C(Ω) to other spaces is rather complex due to thenon-Lipschitz dependence of the solution w.r.t. the gradient obstacle.

(Open problem) Necessary and sufficient conditions on ϕn so thatKn

M−−→ K holds are not known.

This is a complex task! Let |∇y| ≤ ϕ and ϕn → ϕ in some topology X , try toconstruct yn such that |∇yn| ≤ ϕn and yn → y!

24/33 QVIs

Page 46: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Mosco convergence for mixed constraints

Let L ∈ V ′ and consider the sequence of setsKn = v ∈ V : |v| ≤ ϕn & L(v) = αn

(Open problem) Nontrivial sufficient conditions on ϕn and αn so thatKn

M−−→ K holds are not known.

Unilateral and isoperimetric type constraints do not mix easily.

25/33 QVIs

Page 47: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Mosco convergence for mixed constraints

Let L ∈ V ′ and consider the sequence of setsKn = v ∈ V : |v| ≤ ϕn & L(v) = αn

(Open problem) Nontrivial sufficient conditions on ϕn and αn so thatKn

M−−→ K holds are not known.

Unilateral and isoperimetric type constraints do not mix easily.

25/33 QVIs

Page 48: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

The contraction approach

26/33 QVIs

Page 49: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Contractions

Find y ≤ Φ(y) : ⟨A(y) − f, v − y⟩ ≥ 0, ∀v ≤ Φ(y).

If Φ : V → V is Lipschitz with small Lipschitz constant =⇒ Unique solution.

Find y : |∇y| ≤ Φ(y) & ⟨A(y) − f, v − y⟩ ≥ 0, ∀v : |∇v| ≤ Φ(y).

Theorem ([Hintermüller-R.(2013), Rodrigues-Santos(2019)])

Let V = H10(Ω), f ∈ L2(Ω), and suppose that Φ : V → L∞

ν (Ω) is defined as

Φ(y) = λ(y)ϕ

with ϕ ∈ L∞(Ω) and λ a Lipschitz continuous nonlinear functional on V . Then,provided ∥f∥L2 or Lλ are sufficiently small, the QVI of interest has a uniquesolution.

(Open problem) Extension to Φ(y) = λ1(y)ϕ1 + λ2(y)ϕ2 is not direct nor known.

27/33 QVIs

Page 50: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Contractions

Find y ≤ Φ(y) : ⟨A(y) − f, v − y⟩ ≥ 0, ∀v ≤ Φ(y).

If Φ : V → V is Lipschitz with small Lipschitz constant =⇒ Unique solution.

Find y : |∇y| ≤ Φ(y) & ⟨A(y) − f, v − y⟩ ≥ 0, ∀v : |∇v| ≤ Φ(y).

Theorem ([Hintermüller-R.(2013), Rodrigues-Santos(2019)])

Let V = H10(Ω), f ∈ L2(Ω), and suppose that Φ : V → L∞

ν (Ω) is defined as

Φ(y) = λ(y)ϕ

with ϕ ∈ L∞(Ω) and λ a Lipschitz continuous nonlinear functional on V . Then,provided ∥f∥L2 or Lλ are sufficiently small, the QVI of interest has a uniquesolution.

(Open problem) Extension to Φ(y) = λ1(y)ϕ1 + λ2(y)ϕ2 is not direct nor known.

27/33 QVIs

Page 51: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

The contraction approachSome problems with the QVI literature

28/33 QVIs

Page 52: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Some problems with the literature

Unfortunately, a significant amount of the literature on QVIs attempts to extendthe famous Lions-Stampacchia result (for existence and design of algorithms)with an extreme assumption on the projection map v 7→ PK(v).

Suppose V is a Hilbert space, and consider

Find y ∈ K(y) : ⟨A(y) − f, v − y⟩ ≥ 0, ∀v ∈ K(y), (QVI)

then...

y solves (QVI) ⇐⇒ y = Bρ(y) := PK(y)(y − ρj(A(y) − f )).

K(v) ≡ K constant

[Lions-Stampacchia (1967)]

For some ρ > 0, Bρ is contractive=⇒ the (VI) has a unique solution.

For a closed, convex C ⊂ V

∥PC(v) − v∥V := infw∈C

∥w − v∥.

29/33 QVIs

Page 53: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Some problems with the literature

Unfortunately, a significant amount of the literature on QVIs attempts to extendthe famous Lions-Stampacchia result (for existence and design of algorithms)with an extreme assumption on the projection map v 7→ PK(v).

...(QVI) can be equivalently written (ρ > 0) as

Find y ∈ K(y) : (y − j (iy − ρ(A(y) − f ))) , v − y) ≥ 0, ∀v ∈ K(y),

where i : V → V ′ is the duality operator and j := i−1 the Riesz map.

y solves (QVI) ⇐⇒ y = Bρ(y) := PK(y)(y − ρj(A(y) − f )).

K(v) ≡ K constant

[Lions-Stampacchia (1967)]

For some ρ > 0, Bρ is contractive=⇒ the (VI) has a unique solution.

For a closed, convex C ⊂ V

∥PC(v) − v∥V := infw∈C

∥w − v∥.

29/33 QVIs

Page 54: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Some problems with the literature

Unfortunately, a significant amount of the literature on QVIs attempts to extendthe famous Lions-Stampacchia result (for existence and design of algorithms)with an extreme assumption on the projection map v 7→ PK(v).

...(QVI) can be equivalently written (ρ > 0) as

Find y ∈ K(y) : (y − j (iy − ρ(A(y) − f ))) , v − y) ≥ 0, ∀v ∈ K(y),

where i : V → V ′ is the duality operator and j := i−1 the Riesz map.

y solves (QVI) ⇐⇒ y = Bρ(y) := PK(y)(y − ρj(A(y) − f )).

K(v) ≡ K constant

[Lions-Stampacchia (1967)]

For some ρ > 0, Bρ is contractive=⇒ the (VI) has a unique solution.

For a closed, convex C ⊂ V

∥PC(v) − v∥V := infw∈C

∥w − v∥.

29/33 QVIs

Page 55: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Some problems with the literature

Unfortunately, a significant amount of the literature on QVIs attempts to extendthe famous Lions-Stampacchia result (for existence and design of algorithms)with an extreme assumption on the projection map v 7→ PK(v).

...(QVI) can be equivalently written (ρ > 0) as

Find y ∈ K(y) : (y − j (iy − ρ(A(y) − f ))) , v − y) ≥ 0, ∀v ∈ K(y),

where i : V → V ′ is the duality operator and j := i−1 the Riesz map.

y solves (QVI) ⇐⇒ y = Bρ(y) := PK(y)(y − ρj(A(y) − f )).

K(v) ≡ K constant

[Lions-Stampacchia (1967)]

For some ρ > 0, Bρ is contractive=⇒ the (VI) has a unique solution.

For a closed, convex C ⊂ V

∥PC(v) − v∥V := infw∈C

∥w − v∥.

29/33 QVIs

Page 56: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Some problems with the literature

If v 7→ K(v) not constant, to follow the same approach, the assumption used is

∥PK(y)(w) − PK(z)(w)∥V ≤ η∥y − z∥V (@@H)

for some 0 < η < 1 and all y, z, w in some sufficiently large set in V .

Non-expansiveness

∥PC(w1) − PC(w2)∥V ≤ ∥w1 − w2∥V , ∀w1, w2 ∈ V,

holds but it is not the above one!

The 1/2 exponent in the right hand side expression is optimal.

Examples (even in finite dimensions) can be found where equality holds

In Banach spaces like Lp(Ω) or ℓp(N), the exponent further degrades: it is1/p if 2 < p < +∞ and 1/p′ if 1 < p < 2.

30/33 QVIs

Page 57: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Some problems with the literature

If v 7→ K(v) not constant, to follow the same approach, the assumption used is

∥PK(y)(w) − PK(z)(w)∥V ≤ η∥y − z∥V (@@H)

for some 0 < η < 1 and all y, z, w in some sufficiently large set in V .

THEOREM ([Attouch-Wets])

Let V be a Hilbert space and K1, K2 any two closed, convex, non-empty subsetsof V . For y0 ∈ V , we have that

∥PK1(y0) − PK2(y0)∥V ≤ ρ1/2Hausρ(K1, K2)1/2

with ρ := ∥y0∥ + d(y0, K1) + d(y0, K2).

The 1/2 exponent in the right hand side expression is optimal.

Examples (even in finite dimensions) can be found where equality holds

In Banach spaces like Lp(Ω) or ℓp(N), the exponent further degrades: it is1/p if 2 < p < +∞ and 1/p′ if 1 < p < 2.

30/33 QVIs

Page 58: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Some problems with the literature

If v 7→ K(v) not constant, to follow the same approach, the assumption used is

∥PK(y)(w) − PK(z)(w)∥V ≤ η∥y − z∥V (@@H)

for some 0 < η < 1 and all y, z, w in some sufficiently large set in V .

THEOREM ([Attouch-Wets])

Let V be a Hilbert space and K1, K2 any two closed, convex, non-empty subsetsof V . For y0 ∈ V , we have that

∥PK1(y0) − PK2(y0)∥V ≤ ρ1/2Hausρ(K1, K2)1/2

with ρ := ∥y0∥ + d(y0, K1) + d(y0, K2).

The 1/2 exponent in the right hand side expression is optimal.

Examples (even in finite dimensions) can be found where equality holds

In Banach spaces like Lp(Ω) or ℓp(N), the exponent further degrades: it is1/p if 2 < p < +∞ and 1/p′ if 1 < p < 2.

30/33 QVIs

Page 59: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Some problems with the literature

What does the Attouch-Wets result imply for real applications?

Example: Gradient constraints

Let Ω = (0, 1) and V = v ∈ H1(Ω) : v(0) = 0.Let Ki := v ∈ V : |v′| ≤ ϕi with ϕ2, ϕ1 > 0 constant, so that

Hausρ(K1, K2) = |ϕ1 − ϕ2|,

for sufficiently large ρ > 0. So that for

K(w) = z ∈ V : |z′| ≤ Φ(w),

and Attouch-Wets imply if Φ : V → R is Lipschitz continuous

∥PK(y)(w) − PK(z)(w)∥V ≤ ρ1/2L1/2Φ ∥y − z∥1/2

V .

Are there examples for which

∥PK(y)(w) − PK(z)(w)∥V ≤ η∥y − z∥V ,

holds?

31/33 QVIs

Page 60: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Some problems with the literature

What does the Attouch-Wets result imply for real applications?

Example: Gradient constraints

Let Ω = (0, 1) and V = v ∈ H1(Ω) : v(0) = 0.Let Ki := v ∈ V : |v′| ≤ ϕi with ϕ2, ϕ1 > 0 constant, so that

Hausρ(K1, K2) = |ϕ1 − ϕ2|,

for sufficiently large ρ > 0. So that for

K(w) = z ∈ V : |z′| ≤ Φ(w),

and Attouch-Wets imply if Φ : V → R is Lipschitz continuous

∥PK(y)(w) − PK(z)(w)∥V ≤ ρ1/2L1/2Φ ∥y − z∥1/2

V .

Are there examples for which

∥PK(y)(w) − PK(z)(w)∥V ≤ η∥y − z∥V ,

holds?

31/33 QVIs

Page 61: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Some problems with the literature

Yes, there are, e.g., some obstacle cases with Φ : V → V Lipschitz with

K(w) := z ∈ V : z ≤ Φ(w).

Q: Is it worthwhile to use (@@H) in the QVI setting?

Let c > 0 and C > 0 be the coercivity and the bound for A : V → V ′, i.e.,

c∥v∥2V ≤ ⟨Av, v⟩ and ∥Av∥V ′ ≤ C∥v∥V , ∀v ∈ V.

The use of (@@H) provides existence,uniqueness and fixed point iterationfor (QVI). As a consequence, wehave that

2C

cLΦ < 1.

Contraction factor is ≥ 2Cc LΦ.

The change of variables y = y −Φ(y), transforms (QVI) to a (VI). Ex-istence, uniqueness, and a fixed pointiteration if

C

cLΦ < 1.

Contraction factor is Cc LΦ.

A: Not exactly...

32/33 QVIs

Page 62: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Some problems with the literature

Yes, there are, e.g., some obstacle cases with Φ : V → V Lipschitz with

K(w) := z ∈ V : z ≤ Φ(w).

Q: Is it worthwhile to use (@@H) in the QVI setting?

Let c > 0 and C > 0 be the coercivity and the bound for A : V → V ′, i.e.,

c∥v∥2V ≤ ⟨Av, v⟩ and ∥Av∥V ′ ≤ C∥v∥V , ∀v ∈ V.

The use of (@@H) provides existence,uniqueness and fixed point iterationfor (QVI). As a consequence, wehave that

2C

cLΦ < 1.

Contraction factor is ≥ 2Cc LΦ.

The change of variables y = y −Φ(y), transforms (QVI) to a (VI). Ex-istence, uniqueness, and a fixed pointiteration if

C

cLΦ < 1.

Contraction factor is Cc LΦ.

A: Not exactly...

32/33 QVIs

Page 63: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Some problems with the literature

Yes, there are, e.g., some obstacle cases with Φ : V → V Lipschitz with

K(w) := z ∈ V : z ≤ Φ(w).

Q: Is it worthwhile to use (@@H) in the QVI setting?

Let c > 0 and C > 0 be the coercivity and the bound for A : V → V ′, i.e.,

c∥v∥2V ≤ ⟨Av, v⟩ and ∥Av∥V ′ ≤ C∥v∥V , ∀v ∈ V.

The use of (@@H) provides existence,uniqueness and fixed point iterationfor (QVI). As a consequence, wehave that

2C

cLΦ < 1.

Contraction factor is ≥ 2Cc LΦ.

The change of variables y = y −Φ(y), transforms (QVI) to a (VI). Ex-istence, uniqueness, and a fixed pointiteration if

C

cLΦ < 1.

Contraction factor is Cc LΦ.

A: Not exactly...

32/33 QVIs

Page 64: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Some problems with the literature

Yes, there are, e.g., some obstacle cases with Φ : V → V Lipschitz with

K(w) := z ∈ V : z ≤ Φ(w).

Q: Is it worthwhile to use (@@H) in the QVI setting?

Let c > 0 and C > 0 be the coercivity and the bound for A : V → V ′, i.e.,

c∥v∥2V ≤ ⟨Av, v⟩ and ∥Av∥V ′ ≤ C∥v∥V , ∀v ∈ V.

The use of (@@H) provides existence,uniqueness and fixed point iterationfor (QVI). As a consequence, wehave that

2C

cLΦ < 1.

Contraction factor is ≥ 2Cc LΦ.

The change of variables y = y −Φ(y), transforms (QVI) to a (VI). Ex-istence, uniqueness, and a fixed pointiteration if

C

cLΦ < 1.

Contraction factor is Cc LΦ.

A: Not exactly...

32/33 QVIs

Page 65: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Some problems with the literature

Yes, there are, e.g., some obstacle cases with Φ : V → V Lipschitz with

K(w) := z ∈ V : z ≤ Φ(w).

Q: Is it worthwhile to use (@@H) in the QVI setting?

Let c > 0 and C > 0 be the coercivity and the bound for A : V → V ′, i.e.,

c∥v∥2V ≤ ⟨Av, v⟩ and ∥Av∥V ′ ≤ C∥v∥V , ∀v ∈ V.

The use of (@@H) provides existence,uniqueness and fixed point iterationfor (QVI). As a consequence, wehave that

2C

cLΦ < 1.

Contraction factor is ≥ 2Cc LΦ.

The change of variables y = y −Φ(y), transforms (QVI) to a (VI). Ex-istence, uniqueness, and a fixed pointiteration if

C

cLΦ < 1.

Contraction factor is Cc LΦ.

A: Not exactly...

32/33 QVIs

Page 66: Introduction to Quasi-variational Inequalities in Hilbert Spaces …math.gmu.edu/~crautenb/ContentHP/Prints/Lecture1.pdf · 2020-03-04 · Introduction to Quasi-variational Inequalities

Thanks for your attention!

33/33 QVIs