Intro. to High Temperature Gas Cooled Reactor

55
High Temperature Gas-cooled Reactor Topan Setiadipura [email protected] Pusat Teknologi dan Keselamatan Reaktor Nuklir BATAN T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015 4/23/2015 1

Transcript of Intro. to High Temperature Gas Cooled Reactor

Page 1: Intro. to High Temperature Gas Cooled Reactor

High Temperature Gas-cooled Reactor

Topan [email protected]

Pusat Teknologi dan Keselamatan Reaktor Nuklir

BATAN

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 20154/23/2015 1

Page 2: Intro. to High Temperature Gas Cooled Reactor

Bahasan

1. Desain HTGR (Vs. PWR)

2. Fitur Keselamatan HTGR

3. Desain dan Analisis HTGR

1. Konsep desain dan keselamatan

2. Perhitungan Kritikalitas

3. Perhitungan Equilibrium (burnup)

4. Sejarah HTGR

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 2

Page 3: Intro. to High Temperature Gas Cooled Reactor

Sejarah HTGR

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 3

Page 4: Intro. to High Temperature Gas Cooled Reactor

Sejarah HTGR (dan Kita)

4/23/2015T.Setiadipura, Workshop Evaluasi Desain

HTGR, BAPETEN, 22 April 20154

Page 5: Intro. to High Temperature Gas Cooled Reactor

4/23/2015T.Setiadipura, Workshop Evaluasi Desain

HTGR, BAPETEN, 22 April 20155

Sejarah HTGR (dan Kita)

Page 6: Intro. to High Temperature Gas Cooled Reactor

4/23/2015T.Setiadipura, Workshop Evaluasi Desain

HTGR, BAPETEN, 22 April 20156

Sejarah HTGR (dan Kita)

Page 7: Intro. to High Temperature Gas Cooled Reactor

Pressurized Water Reactor

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 7

Page 8: Intro. to High Temperature Gas Cooled Reactor

Teras Reaktor PWR

Fuel pin

Tampang lintang Fuel-pin

Fuel-Assembly(penampang lintang) teras reaktor

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

Bahanbakar UO2

berbentukpin/pellet.

4/23/2015 8

Page 9: Intro. to High Temperature Gas Cooled Reactor

High Temp. Gas-cooled Reactor

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 9

Page 10: Intro. to High Temperature Gas Cooled Reactor

Teras Reaktor (Prismatik) HTGR

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 10

Page 11: Intro. to High Temperature Gas Cooled Reactor

Bahan Bakar (Prismatic) HTGR

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 11

Page 12: Intro. to High Temperature Gas Cooled Reactor

KomponenUtama:- Bahan bakar bola- Pendingin He- Reflektor graphite- Batang kendali

Teras PBR

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 12

Page 13: Intro. to High Temperature Gas Cooled Reactor

Bahan bakar (Pebble) HTGR

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 13

Page 14: Intro. to High Temperature Gas Cooled Reactor

4/23/2015 14T.Setiadipura, Workshop Evaluasi Desain

HTGR, BAPETEN, 22 April 2015

Page 15: Intro. to High Temperature Gas Cooled Reactor

Fitur Keselamatan• Power density yang rendah (~3 W/cm3)• Heat capacity dan conductivity yang tinggi.• Pengungkungan produk fisi yang baik pada

bahan bakar hingga pada temp. tinggi. (limit 1620oC, karena teknologi TRISO ).

• Koeff. temp. negatif yang tinggi.• Kemampuan `afterheat removal through the

vessel wall` (diameter teras yang kecil ~3m)• Excess reactivity yang rendah (karena on-line

refueling).

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 15

Page 16: Intro. to High Temperature Gas Cooled Reactor

Fitur Keselamatan(1): ControlSecara inherent/melekat teras reaktor dapat mengkontrol laju reaksi fisi

bahkan hingga menghentikannya.

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 16

HTR-Module Siemens Design

Page 17: Intro. to High Temperature Gas Cooled Reactor

Fitur Keselamatan(1): ControlSecara inherent/melekat teras reaktor dapat mengkontrol laju reaksi fisi

bahkan hingga menghentikannya.

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 17

HTR-Module Siemens Design

Page 18: Intro. to High Temperature Gas Cooled Reactor

Fitur Keselamatan(2): CoolingMampu mengeluarkan panas yang dihasilkan dengan hanya bergantung

pada mekanisme alamiah tanpa perlu tindakan aktif:

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 18

rcore

Page 19: Intro. to High Temperature Gas Cooled Reactor

Fitur Keselamatan(3): Contain

Rilis zat radioaktif yang sangat kecil kepada lingkungan dalamkondisi apapun, bahkan pada kecelakaan terparah sekalipun:

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 19

Page 20: Intro. to High Temperature Gas Cooled Reactor

TRISO Integrity

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

Faktor utama dari fitur keselamatan `contain` tersebut adalah lapisan SiC(Silikon Karbida) pada partikel bahan bakar TRISO.

4/23/2015 20

Faile

d P

arti

cle

Fra

ctio

n

German Fuel

Page 21: Intro. to High Temperature Gas Cooled Reactor

TRISO Integrity

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

Faktor utama dari fitur keselamatan `contain` tersebut adalah lapisan SiC(Silikon Karbida) pada partikel bahan bakar TRISO.

4/23/2015 21

Page 22: Intro. to High Temperature Gas Cooled Reactor

Skema Operasi Pebble Bed Reactor(1)

Skema strategi pengisian bahan bakar Multipass dan OTTO pada reaktor PBR.

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 22

Page 23: Intro. to High Temperature Gas Cooled Reactor

Skema strategi pengisian bahan bakar peu-a-peu padareaktor PBR.

Skema Operasi Pebble Bed Reactor(2)

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 23

Page 24: Intro. to High Temperature Gas Cooled Reactor

Sistem Penanganan Bahan BakarHTR-Module

Siemens Design(Multipass)

4/23/2015 24T.Setiadipura, Workshop Evaluasi Desain

HTGR, BAPETEN, 22 April 2015

Page 25: Intro. to High Temperature Gas Cooled Reactor

Spesifikasi Teknis RDE

4/23/2015T.Setiadipura, Workshop Evaluasi Desain

HTGR, BAPETEN, 22 April 201525

Page 26: Intro. to High Temperature Gas Cooled Reactor

Siklus Pebble Bed Reactor

T.Setiadipura, Workshop Evaluasi

Desain HTGR, BAPETEN, 22 April

2015

4/23/2015 26

Page 27: Intro. to High Temperature Gas Cooled Reactor

Perhitungan Kritikalitas

• HTR-10 Benchmarking

– CFP Modeling

– Fuel Pebble Modeling

• ASTRA Benchmarking

– Fuel Pebble Modeling

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 27

Page 28: Intro. to High Temperature Gas Cooled Reactor

HTR-10 Benchmarking

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 28

Page 29: Intro. to High Temperature Gas Cooled Reactor

HTR-10 Design Features

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 29

Page 30: Intro. to High Temperature Gas Cooled Reactor

HTR-10 Full Core ModelingBromated

carbon bricks

Graphite reflector

structure

Cold Coolant Chamber

Top reflector

Top core cavity

Mix of Fuel and dummy pebbles

Dummy pebbles

Control rod borings

Carbon bricks

Bottom reflector

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 30

Page 31: Intro. to High Temperature Gas Cooled Reactor

HTR-10 Core Cross Section

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 31

Page 32: Intro. to High Temperature Gas Cooled Reactor

CFP Modeling

• Coated Fuel Particles (CFP) are modeled explicitly in this benchmarking calculation.

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 32

Page 33: Intro. to High Temperature Gas Cooled Reactor

Pebble Fuel Model

Statistical Geometry Model Regular Lattice Model

Statistical Vs. Regular Lattice Model

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 33

Page 34: Intro. to High Temperature Gas Cooled Reactor

ASTRA Benchmarking

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 34

Page 35: Intro. to High Temperature Gas Cooled Reactor

ASTRA Critical Assembly

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 35

Page 36: Intro. to High Temperature Gas Cooled Reactor

ASTRA Benchmark Model(1)1. Annular Core2. Bottom reflector3. Lower part IR support

structure (air)4. Upper part IR support

structure (metal)5. Side graphite

reflector6. Separating sheet7. Top reflector8. Internal reflector (IR)

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 36

Page 37: Intro. to High Temperature Gas Cooled Reactor

ASTRA Benchmark Model(2)Borings Function

CR1, … CR7 Channels for Control rods CR1-CR7

MR Channel for Manual Rod

SR1, …SR8 Channels for Safety rods SR1-SR8

LIPR1, LIPR2 Channels for Placement of Rods LIPR1 and LIPR2

Outer dimension of side reflector is 380 cmT.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 37

Page 38: Intro. to High Temperature Gas Cooled Reactor

ASTRA Benchmark Model(3)

Model of -Control Rods (CR)- Safety Rods (SR)- Leave in Place Rods (LIPR)Contain B4C material.

Model of Manual Rods (MR), made of Aluminum.

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 38

Page 39: Intro. to High Temperature Gas Cooled Reactor

ASTRA Benchmarking Cases

Cas

e

Position, Z, along the channel height,

cm*

Core

Height**

Packing

Fraction

LIPR1 LIPR2 MR CR5 Hc fi

1 OUT OUT 178.8 402.6 180.354 0.59914

2 42.6 OUT 160.5 402.6 215.134 0.60304

3 42.6 42.6 225.1 402.6 292.584 0.6048

4 42.6 42.6 403.5 184.6 321.044 0.60618

5 42.6 42.6 403.5 93 321.044 0.60618

CasePosition, Z, along the channel height, cm

CR1 CR2 CR3 CR4 CR6 CR6 SR 1-8

All

Case404.8 402.8 391.2 398.7 395.1 395 400

* Z vertical distance between the bottom of the graphite reflector (bottomsurface of SRf and BR) and bottom of the poison rod** Core height is from the upper boundary of the bottom reflector of lowerboundary of the core.

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 39

Page 40: Intro. to High Temperature Gas Cooled Reactor

HTGR Benchmark Summary

Carbon

thermal

capture

cross section

JENDL-4.0 JENDL-3.3 ENDF/B-VII.0 JEFF-3.1

3.85 mb 3.53 mb 3.36 mb 3.36 mb

0.98500

0.99000

0.99500

1.00000

1.00500

1.01000

1.01500

1.02000

1.02500

1.03000

HTR-10(IAEA)

HTR-10(IRPhEP)

ASTRA#1

ASTRA#2

ASTRA#3

ASTRA#4

ASTRA#5

HTTR

K-E

FF

Benchmark Model

ENDF/B-VII.0

JENDL-3.3

JENDL-4.0

EXP.

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 40

Page 41: Intro. to High Temperature Gas Cooled Reactor

Perhitungan Teras EquilibriumBurnup Calculation of Moving Core Pebble Bed Reactor

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 41

Page 42: Intro. to High Temperature Gas Cooled Reactor

Concept of PBR BU Calculation

The interdependence of neutron flux and nuclide density requiresthat the depletion equation should be solve simultaneously withneutronic core calculation. The common method applied multi-group neutron diffusion approximation for neutronic corecalculation.

Depletion analysis in PBR type needs to account simultaneously for themovement of the fuel elements and for the changes of their composition.

Modeled as

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 42

Page 43: Intro. to High Temperature Gas Cooled Reactor

Equilibrium Analysis of 10MWt Small PBR

Design parameters [units] Values

Power [MWt] 10

Core height [cm] 196.5

Core diameter [cm] 180

Top reflector height [cm] 90

Bottom reflector height [cm] 121

Void region height [cm] 42

Power density [W/cc] 2

U-235 enrichment [wt%] 10

Axial fuel velocity [cm/day] 0.5

Core residence time [days] 393

Initial and equilibrium keff for different HM/pebble

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 43

Page 44: Intro. to High Temperature Gas Cooled Reactor

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

• Effective multiplication factor for different HM-loading with 20% U-

235 enrichment. HM-loading of 2.1 g/pebble was the lowest to

achieve a critical equilibrium core.

• The related optimized burnup is of 69.4 MWd/kg-HM achieved

by 20% U-235 enrichment and 2.1 gHM/pebble.

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

0 100 200 300 400 500 600 700 800 900

Eff

ec

tive

Mu

ltip

lic

ati

on

Fa

cto

r

Operation Time (days)

1.4 gHM/pebble

1.6 gHM/pebble

1.8 gHM/pebble

2 gHM/pebble

2.1 gHM/pebble

2.5 gHM/pebble

3 gHM/pebble

4 gHM/pebble

Parametric survey for 20wt% enrichment

Equilibrium Analysis of 10MWt Small PBR

4/23/2015 44

Page 45: Intro. to High Temperature Gas Cooled Reactor

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

Effect of lower HM loading (also means lower burnup):- increase the burnup- increase and shift the peak power density to the upper part

of the core.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 2 4 6 8 10 12 14 16 18 20

Po

we

r D

en

sit

y [

W/c

m3

]

Axial Region (top to bottom)

4 ; 20wt%

3 ; 20wt%

2.5 ; 20wt%

2.1;20wt%

Power density profile for different HM-loading.

4/23/2015 45

Page 46: Intro. to High Temperature Gas Cooled Reactor

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

1.3494

1.3857

1.3597

1.32821.2867

1.26421.2338

1.0114

1.03331.0448 1.0537 1.0603 1.0565 1.0519

0.9000

1.0000

1.1000

1.2000

1.3000

1.4000

1.5000

5 7 9 11 13 15 17 19 21

Eff.

Mu

ltip

licat

ion

Fac

tor

HM-Loading[g-HM/pebble]

Init. Core

Equil. Core

Effective multiplication for different HM loading with 15wt% U-235 enrichment of initial and equilibrium core.

For 15wt% enrichment of U-235, the lowest HM-loading to achieve critical equilibrium condition is 8 gHM/pebble.

Equilibrium Analysis of 200MWt PBR

4/23/2015 46

Page 47: Intro. to High Temperature Gas Cooled Reactor

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

Effective multiplication for different HM loading with 17wt% U-235

enrichment of initial and equilibrium core

1.461 1.445

1.4351.427

1.3731.341

1.3001.278

1.250

1.0229

1.08001.0876 1.0862 1.0827 1.0805

0.900

1.000

1.100

1.200

1.300

1.400

1.500

0 5 10 15 20 25

Eff.

Mu

ltip

licat

ion

Fac

tor

HM-Loading [g-HM/pebble]

Init. Core

Equil. Core

For 17wt% enrichment of U-235, the lowest HM-loading to achieve critical equilibrium condition is 7 gHM/pebble.

Equilibrium Analysis of 10MWt Small PBR

4/23/2015 47

Page 48: Intro. to High Temperature Gas Cooled Reactor

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

Effective multiplication for different HM loading with

20wt% U-235 enrichment of initial and equilibrium core

1.4831.477

1.464

1.447

1.3931.360

1.3191.298

1.270

1.039

1.0831.121 1.125 1.121 1.116 1.115

0.900

1.000

1.100

1.200

1.300

1.400

1.500

1.600

0 5 10 15 20 25

Eff

. M

ultip

licatio

n F

acto

r

HM-Loading [g-HM/pebble]

Init. Core

Equil. Core

For 20wt% enrichment of U-235, the lowest HM-loading to achieve critical equilibrium condition is 6 gHM/pebble.

Equilibrium Analysis of 10MWt Small PBR

4/23/2015 48

Page 49: Intro. to High Temperature Gas Cooled Reactor

Effect of Fuel Velocity

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0 500 1000 1500 2000 2500

Eff.

Mu

ltip

licat

ion

Fac

tor

Operation Time (days)

v=0.5cm/day v=0.8cm/day

200MWt ; 20wt% ; 6 gHM/pebble

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 49

Page 50: Intro. to High Temperature Gas Cooled Reactor

Power Density & Effect of Velocity

6.34

3.41

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 2 4 6 8 10 12 14 16 18 20

Po

we

r D

en

sity

[kW

/pe

bb

le]

Axial Region (top to bottom)

v=0.5cm/day v=0.8cm/day

200MWt ; 20wt% ; 6 gHM/pebble

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 50

Page 51: Intro. to High Temperature Gas Cooled Reactor

Parameter Desain

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

• Skema pemuatan bahan bakar: Multipass / OTTO / Peu a Peu•Geometri teras dan bahan bakar• Pengayaan U-235• Pemuatan Heavy Metal (HM) per pebble (fraksi volume CFP di fuel zone pebble bed)• Kecepatan axial rerata bahan bakar / core residence time.• BU target

4/23/2015 51

Page 52: Intro. to High Temperature Gas Cooled Reactor

Tantangan dan Peluang ?

- Costmemperkecil biaya pembangkitan.- Resourcememperbesar energi densitas (energi

per bahan bakar, MWd/TU), membangun konseppembiak?.

- Accident Inherent safety aspect, keselamatanbergantung pada hukum alam yang availability-nya100%.

- Bomb aspek Non-proliferasi (kemudahan untukdigunakan sebagai bom).

- Waste konsep reaktor nuklir pemakan `sampahnuklir`, close-cycle system.

4/23/2015 52T.Setiadipura, Workshop Evaluasi Desain

HTGR, BAPETEN, 22 April 2015

Page 53: Intro. to High Temperature Gas Cooled Reactor

Sejarah HTGR(1)

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 53

Page 54: Intro. to High Temperature Gas Cooled Reactor

Sejarah HTGR(2)

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 54

Page 55: Intro. to High Temperature Gas Cooled Reactor

Terimakasih…

T.Setiadipura, Workshop Evaluasi Desain HTGR, BAPETEN, 22 April 2015

4/23/2015 55