Intro to FEM in 1D 2D

download Intro to FEM in 1D 2D

of 7

Transcript of Intro to FEM in 1D 2D

  • 8/19/2019 Intro to FEM in 1D 2D

    1/16

    04-02-20

    Gaurav

    Indian Institute of Technology Gandhinagar

    [email protected]

    Short course on

    Soil-Structure Interaction

    Computer Applications and Material Models

    19-23 January, 2015

    Beam on elastic foundation

    Seepage through a porous medium

    q x

     y, v

    k

    2

  • 8/19/2019 Intro to FEM in 1D 2D

    2/16

    04-02-20

     Analytical Solution ‘exact’ solution 

    Difficult for nonlinear problems defined in non-regulargeometries

    Finite Difference Method Easy computer implementation

    Difficult for problems defined in non-regular geometries

    Finite Element Method (FEM)

     Applicable in most scenarios, nice mathematicalstructure

    Cumbersome computer implementation

    Other methods 3

    Express the problem in energy/weak form  We don’t work with PDEs directly unlike the finite difference

    method

    Discretize domain into multiple finite sub-domains

    Compute quantities in all elements individually

    Gather (assemble) contributions of all elements in a centrallocation

    Enforce boundary conditions

    Solve resulting system of algebraic equations

    Compute quantities of interest (stress, strain, etc.)

    4

  • 8/19/2019 Intro to FEM in 1D 2D

    3/16

    04-02-20

    Element-level contribution

     Assembly

    It can be shown that

    This is one of the desiredcharacteristics of numerical methods

    that use discretization to solve governing equations

    5

    Linear elementsQuadratic convergence

    •  This is a typically observed errorconvergence behavior in FEA.

    n

      p

       –

       P  n

    2

    1

    3

    1

    Quadratic elementsCubic convergence

    6

  • 8/19/2019 Intro to FEM in 1D 2D

    4/16

    04-02-20

     Approximating area of circle  Approximating center of mass of an arbitrarily shaped

    object

    Estimation of the value of  

    7 x

      y

     

    Governing differential equation (strong form)

     Analytical solution

    q( x) x, u( x) P  

    8

  • 8/19/2019 Intro to FEM in 1D 2D

    5/16

    04-02-20

    Equivalent governing equation (energy form)

    Discretize geometry (say, we use three nodes)

    Energy form can be distributed over individual elements

     x = 0  x = L/2  x = L

    n = 1 n = 2 n = 3e = 1 e = 2

    9

    Represent u( x) using piecewise linear functions

    u(0) = u1

    12(0.5 –   x/L) 2( x/L  –  0.5)2 x/L 2(1 –   x/L)

    u( x) = N 1( x) u1 + N 2( x) u2 + N 3( x) u3

    u( L/2) = u2 u(L) = u3

    Unknown nodaldisplacements

    Known shape functions

     N 1( x)  + N 2( x)  + N 3( x) = 1  Partition of unity 10

  • 8/19/2019 Intro to FEM in 1D 2D

    6/16

    04-02-20

    Represent u( x) using piecewise linear functions

     Want u( x) as close to uexact as possible

    How? Principle of minimum potential energy (MPE)

    u1

    u( x)

    u2

    u3

    uexact

    11

     We have

    minimize wrt {u}

    Stiffness matrix Force vector

    Strain energy External work

    12

  • 8/19/2019 Intro to FEM in 1D 2D

    7/16

    04-02-20

    u(0) = 0, AE  = 1, L = 1, P  = 1/3, q( x) = –   x2.

    Can we solve for {u} in its present form? No! Stiffness matrix is singular

    Need to apply boundary conditions

    Know: u1 = 0Cancelled equation

    13

    u(0) = 0, AE  = 1, L = 1, P  = 1/3, q( x) = –   x2.

    14

  • 8/19/2019 Intro to FEM in 1D 2D

    8/16

    04-02-20

    Can we further improve/streamline the process?

    Shape functions defined in x – different definitions indifferent ranges of x

    Integrations over individual elements – limits depend onelements

    Makes it less amenable to computer implementation

    Solution?: Define standard reference element

    Real Element Reference Element

    15

    This allows formulation of standard, linear  bar element

    Reference Element

    u1 u2

    u( x) =  N 1(r ) u1 + N 2(r ) u2 

     N 1(r )  N 2(r )

     What does K ij physically represent? 16

  • 8/19/2019 Intro to FEM in 1D 2D

    9/16

    04-02-20

    Derivation of stiffness matrix using ‘unit deflectionmethod’  Properties: A, E , L

     –  AE/L  1  AE/L 

     AE/L  1  –  AE/L 

    a  a’   b 

    b  b’  a 

    17

    Reference element formulation also

    allows use of numerical quadrature Gauss-Legendre quadrature

    r i  

    w i

    N GP = 1

    0.000 000 000 000 000 2.000 000 000 000 000

    N GP = 2

    ±0.677 350 269 189 626 1.000 000 000 000 000

    N GP = 3

    ±0.744 596 669 241 483 0.555 555 555 555 556

    0.000 000 000 000 000 0.888 888 888 888 889

    If 2 N GP  ≥ n+1,quadrature is exact!

    18

  • 8/19/2019 Intro to FEM in 1D 2D

    10/16

    04-02-20

    q  x y, v

    Strain energy

    Element Stiffness

    Shape functions

    19

    q = 1

     x

     y, v

     EI  = 1

     L = 1

    q = 1

    What can we say about errors?

    20

  • 8/19/2019 Intro to FEM in 1D 2D

    11/16

    04-02-20

    Timoshenko beam element Considers shear deformation, separate approximations

    for v and θ .

    Beam-column element Considers axial deformations as well

    Essentially, combination of beam and bar elements

    These were 2D1D idealizations

     Also possible to do 3D1D idealizations Three displacements (u, v, w) and three rotations (θ  x, θ  y, 

    θ  z ) at each node

    •  A.J.M. Ferreira, MATLAB Codes for Finite Element Analysis: Solids and Structures,Springer, 2009.

    21

    Parallels 1D FE formulation via the ‘reference element’ 

    Real Element Reference Element

     x

     y

    r

     s

    22

  • 8/19/2019 Intro to FEM in 1D 2D

    12/16

    04-02-20

    Shape functions

    r

     sBilinear shape functions 

     N 1(r )

    r

     s

    1

     N 1(r , s)

    23

    Shape functions

    24

  • 8/19/2019 Intro to FEM in 1D 2D

    13/16

  • 8/19/2019 Intro to FEM in 1D 2D

    14/16

    04-02-20

    Based on Lagrange polynomials

    Linear 1D case

    Linear 2D case:

    order of polynomial

    node

    27

    2nd –order 1D element

     N 3(r )

     N 2(r )

     N 1(r )

    Reference Element

    28

  • 8/19/2019 Intro to FEM in 1D 2D

    15/16

    04-02-20

    2nd –order 2D element

    r

     s

    29

    Other possibilities Combine Lagrange polynomials of different order for r  

    and s

    e.g.: N (r , s) = l 22(r ) l 1

    1( s)

    Serendipity elements

    Elements with no interior nodes

    r

     s

    30

  • 8/19/2019 Intro to FEM in 1D 2D

    16/16

    04-02-20

    Gaurav

    Indian Institute of Technology Gandhinagar

    [email protected]