INTEGRATED CONTROL MECHANISM OF ELECTRICAL...

38
INTEGRATED CONTROL MECHANISM OF ELECTRICAL DISCHARGE MACHINING SYSTEM FOR HIGHER MATERIAL REMOVAL RATE TRIAS ANDROMEDA A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering) Faculty of Electrical Engineering Universiti Teknologi Malaysia MAY 2015

Transcript of INTEGRATED CONTROL MECHANISM OF ELECTRICAL...

Page 1: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

INTEGRATED CONTROL MECHANISM OF ELECTRICAL DISCHARGE

MACHINING SYSTEM FOR HIGHER MATERIAL REMOVAL RATE

TRIAS ANDROMEDA

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Electrical Engineering)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

MAY 2015

Page 2: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

iii

This thesis is gratefully dedicated to my beloved family for their prayers and

supports.

Page 3: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

iv

ACKNOWLEDGEMENT

First and foremost, I would like to thank Almighty Allah, Who is the most

Gracious, Merciful, Omniscient and Omnipotent for the continuous blessing and

giving me the strength and opportunity completing this study.

I wish to give my special thanks to both my project supervisor Dr. Azli

Yahya, and co-supervisor Dr. Nor Hisham Haji Khamis who gave constant guidance,

support and valuable advice with their brilliant idea on many important occasions

during the past years.

I am incredibly grateful to my family. My parents Abdur Rachim and

Sukartiyah, my beloved wife Yeny Mainita and my lovely daughters and son Alfa

Nadhya Maimanah, Beta Nadhya Maimunah and Gamma Nasim, my parents in law

Nasjah Djamin and Umi Nafiah, my brothers and sisters Ika, Dewi, Delta, Zeta, Eta,

Mega, Rini, Ipah and Rizal that gave their unconditional love, emotional support, and

their patient during all these years. I am also thankful to my colleagues and friends,

Teguh Santoso, Suwarno, Irsyad, M. Facta, Munawar, Iwan Setiawan, Hari Agung,

Kartiko, Ade, Nazriah, Liyana, Nima, Razak and Nabil for many valuable

discussions, their important advice, their encouragement, and the fun times in the

completion of this study.

Page 4: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

v

ABSTRACT

A servo control system in Electrical Discharge Machining (EDM) system is a

control system with an appropriate control algorithm to position electrode on a

particular distance from workpiece during machining process. The gap between the

electrode and the workpiece is in the range of 10 – 50 µm. This ideal gap is achieved

by applying an appropriate control algorithm to the servo control system of the

EDM, and maintaining this gap will improve the Material Removal Rate (MRR)

during the machining process. A considerable number of unique methods were

proposed in the control algorithm in order to bring the electrode to the optimum

position. This research proposes a new method called Integrated Control Mechanism

(ICM) to improve the MRR of the EDM system. A rotary encoder is used as an

additional mechanical sensor for the feedback control system in order to limit the

electrode movement. Modelling of EDM is further investigated to predict the MRR

parameter and optimization of electrode control position. A Neural Network system

is used to predict MRR where Particle Swarm Optimization (PSO) and Differential

Evolution (DE) are studied and simulated to optimize the Proportional Integral

Derivative (PID) control parameters for the EDM system. Research conducted shows

that the proposed Feed Forward Artificial Neural Network improves the accuracy of

prediction in determining MRR by 2.92% and PID parameter optimization is

successfully applied either using PSO or DE. The ICM is successfully implemented

and the result shows that MRR is higher when compared to the normal machining

process.

Page 5: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

vi

ABSTRAK

Sistem kawalan servo dalam sistem Pemesinan Nyahcas Elektrik (EDM)

adalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

elektrod pada jarak tertentu dari bahan kerja semasa proses pemesinan. Jarak antara

elektrod dan bahan kerja adalah dalam lingkungan 10 - 50 μm. Jarak ideal ini dicapai

dengan menggunakan algoritma kawalan yang sesuai untuk sistem kawalan servo

daripada EDM, dan dengan mengekalkan jarak ini akan meningkatkan Kadar

Hakisan Bahan (MRR) semasa proses pemesinan. Sebilangan besar kaedah unik

telah dicadangkan dalam algoritma kawalan untuk membawa elektrod ke kedudukan

yang optimum. Kajian ini mencadangkan satu kaedah baru yang dikenali sebagai

Mekanisme Kawalan Bersepadu (ICM) untuk meningkatkan MRR sistem EDM.

Pengekod putar digunakan sebagai pengesan mekanikal tambahan bagi sistem

kawalan maklum balas bagi menghadkan pergerakan elektrod. Pemodelan EDM

seterusnya dikaji guna untuk meramalkan parameter MRR dan mengoptimumkan

kedudukan kawalan elektrod. Sistem Rangkaian Neural digunakan untuk

meramalkan MRR di mana Pengoptimuman Kerumunan Zarah (PSO) dan Evolusi

Pembezaan (DE) dikaji dan disimulasi untuk mengoptimumkan parameter kawalan

Kadar Kamir Pembeza (PID) untuk sistem EDM tersebut. Penyelidikan yang

dijalankan menunjukkan bahawa Jaringan Saraf Buatan Suap Depan yang

dicadangkan dapat meningkatkan ketepatan ramalan dalam menentukan MRR

sebanyak 2.92% dan pengoptimuman parameter PID berjaya digunakan sama ada

menggunakan PSO atau DE. ICM berjaya dilaksanakan dan keputusan menunjukkan

bahawa MRR adalah lebih tinggi jika dibandingkan dengan proses pemesinan biasa.

Page 6: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

vii

TABLE OF CONTENTS

CHAPTER TITLE

PAGE

DECLARATION

DEDICATION

ACKNOWLEGMENT

ABSTRACT

ABSTRAK

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS

LIST OF ABBREVIATIONS

LIST OF APPENDICES

ii

iii

iv

v

vi

vii

xii

xiii

xviii

xx

xxii

1 INTRODUCTION

1

1.1 Background of Study

1

1.2 Problem Statement 2

1.3 Objectives

3

1.4 Scope of Research

4

1.5 Significance of Study

5

1.6 Summary of Methodology 5

Page 7: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

viii

2 LITERATURE REVIEW

8

2.1 Introduction

8

2.2 Electrical Discharge Machining (EDM) System

9

2.2.1 Types of EDM

15

2.2.1.1

Die-sinking EDM 16

2.2.1.2 Wire-cut EDM 17

2.2.1.3 Grinding EDM 17

2.2.2 Power Generator Configurations for EDM 18

2.2.2.1 Relaxation Generator 19

2.2.2.2 Pulse Power Generator 20

2.2.3 Machining Performance Evaluation 22

2.3 Control Methods for Electrical Discharge Machining 23

2.3.1 Electrode Control Based on Relative Velocity 24

2.3.2 Electrode Control Based on Gap Voltage 26

2.3.3 Electrode Control Based on Ignition Voltage 28

2.3.4 Electrode Control Based on Acoustic Signals 30

2.3.5 Electrode Control Based on Pulse

Discrimination

36

2.3.6 Electrode Control Based on Fuzzy Logic 43

2.4 Improving Electrical Discharge Machine’s Performance

45

2.4.1 Electrode Design

45

2.4.2 Process Parameter Control

47

2.4.3 EDM Variations 48

2.4.4 Powder Mixed Dielectric Fluid 51

2.4.5 Dry EDM and EDM with Fluid 53

2.4.6 Multi-spark EDM 54

2.5 Summary 55

3 MODELLING AND SIMULATION IN EDM SYSTEM

58

3.1 Methodology for Modelling and Simulation

59

3.2 Description of Control Loop in EDM System

59

Page 8: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

ix

3.3 Gap Control in EDM System

60

3.4 Model of EDM Process 66

3.5 Electrode Control Position 68

3.5.1 Results of Linear Model

70

3.5.2 Results of Stochastic Model without Limiter

71

3.5.3 Results of Stochastic Model including Limiter

72

3.6 Artificial Neural Network for Material Removal Rate

(MRR) Modelling

74

3.6.1 Experimental Data of EDM Process

78

3.6.2 New Training Algorithm in Feed Forward

Artificial Neural Network

81

3.6.3 Analysis, Results and Discussion 83

3.7

Summary 86

4 OPTIMIZATION IN THE EDM SYSTEM

88

4.1 Overview

89

4.2 Methodology for Optimization in EDM

90

4.3 Particle Swarm Optimization (PSO)

91

4.4 Differential Evolution (DE) 93

4.4.1 Initialization

93

4.4.2

Mutation

94

4.4.3 Recombination 94

4.4.4 Selection 95

4.5 Implementation of PID Controller Tuning on EDM 96

4.6 Simulation Results

97

4.6.1 Particle Swarm Optimization Tuning Simulation

Results

97

4.6.2 Differential Evolution Tuning Simulation

Results

99

4.7 Analysis for Optimization in EDM System

101

4.8 Summary

102

Page 9: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

x

5 INTEGRATED CONTROL SYSTEM IN THE EDM

MACHINING

103

5.1 Overview

103

5.2 Methodology for Integrated Control in EDM

104

5.3 Laboratory Scaled EDM System

104

5.3.1 EDM Pulse Power Supply

108

5.3.1.1 DC Supply Circuit 109

5.3.1.2 Power Resistor 110

5.3.1.3 Power Semiconductor Switch 111

5.3.1.4 Pulse Timer 112

5.3.2 Motor Control 113

5.3.3 DC Motor Driver 115

5.4 Flushing

117

5.5 Integrated Control Mechanism (ICM)

117

5.5.1 Encoder Signal Feedback as Limitation

Mechanism

118

5.5.2 dsPIC 30F4011 Based System 120

5.5.3 Incremental Rotary Encoder 121

5.5.4 Algorithm to Limit the Electrode Movement 123

5.6 Summary

126

6 EXPERIMENTAL WORK

127

6.1 Experimental Work Set Up

128

6.2 Material Removal Rate Measurements

132

6.3 Experimental Work of Brass Workpiece and Copper

Electrode

134

6.4 Experimental Work of Steel Workpiece and Copper

Electrode

136

6.5 Delay Time Measurement

137

6.6 Analysis for Experimental Work Results

142

Page 10: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

xi

7 CONCLUSION AND FUTURE WORKS

146

7.1 Summary of Research and Conclusions

146

7.2 Suggestions for Future Works

149

7.2.1 Prediction Machining Time 150

7.2.2 Digital Filter Application to Improve Voltage

Drop Signal

150

7.2.3 Digital Controller Application to Drive the

Electrode Movement

150

REFERENCES

152

Appendices A-B

162-165

Page 11: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

xii

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Summary of electrode control method

56

3.1 Finishing Machining Parameters

80

3.2 Roughing Machining Parameters

80

3.3 Testing data and results for FFANN

84

3.4 Testing data and results for ANFFANN 86

4.1 Experimental result for P, PI, PID and PD by PSO 97

4.2 Experimental result for P, PI, PID and PD by DE 100

5.1 Typical number for Pulse Power EDM 111

5.2 Signal output of motor control 115

5.3 Label function of MD30B 116

6.1 Experimental data for Brass workpiece 133

6.2 MRR results for Brass workpiece and Copper electrode 135

6.3 MRR results for Steel workpiece and Copper electrode 136

6.4 Delay time machining without ICM for Igap = 2.6A 139

6.5 Delay time machining with ICM for Igap = 2.6A 139

6.6 Delay time machining without ICM for Igap = 5.8A 140

6.7 Delay time machining with ICM for Igap = 5.8A 140

6.8 Delay time machining without ICM for Igap = 9.6A 140

6.9 Delay time machining with ICM for Igap = 9.6A 141

6.10 Average delay time for machining 141

Page 12: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

xiii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Flow of research work 6

2.1 Classification of EDM processes 10

2.2 Basic elements of an EDM system

11

2.3 Phase for ignition

12

2.4 Phase for discharge

13

2.5 Interval phase between discharges

13

2.6 Die Sinking EDM process

16

2.7 Wire cut EDM process 17

2.8 Grinding EDM 18

2.9 RC Generator 19

2.10 Voltage and current waveforms for a basic relaxation

circuit

20

2.11 Pulse Power Generator 21

2.12 Voltage, current and pulses waveforms for a basic

Pulse Power Generator

21

2.13 Diagram of electrode control proposed by Martin and

Vuache

24

2.14 Dither circuit arrangement proposed by Bell et al. 27

2.15 Schematic of Arc protection circuit design proposed

by Syria et al.

29

2.16 Sound spectrum of sound energy emitted vs

frequency (KHz)

31

Page 13: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

xiv

2.17 Waveforms occurring in an EDM machine and in

amplifier coupled to a piezoelectric transducer in the

vicinity of the machine

32

2.18 Schematics and block diagram of the ultrasound

transducer

33

2.19 Ultrasound sensor in EDM setup arrangement 1 34

2.20 Ultrasound sensor in EDM setup arrangement 2 35

2.21 Gap voltage level classification for different

thresholds

37

2.22 Pulse diagram under different time durations 39

2.23 Flow chart of the pulse discrimination program 40

2.24 Gap voltage and gap current thresholds of the

proposed pulse discrimination

41

2.25 Flow chart of the pulse discrimination method 42

2.26 Pulse discrimination simulation block diagram 42

2.27 Various design illustration for 3D form, frame and

plate type tool

46

2.28 Vibratory, rotary and vibro-rotary electrode 49

2.29 Basic Principle of PMEDM 51

2.30 Basic Principle of Dry EDM 53

2.31 Basic Principle of Multi-spark EDM 55

3.1 EDM system model 60

3.2 Die Sinking EDM system 61

3.3 EDM control block diagram 62

3.4 Practical gap control of EDM process 63

3.5 Gain distribution of the feedback device 65

3.6 Block diagram of the EDM gap control system 65

3.7 Breakdown curve 67

3.8 Linear model of EDM process 68

3.9 Block diagram of EDM system 68

3.10 Block diagram EDM system in Simulink 69

Page 14: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

xv

3.11 Electrode position response of EDM system using

linear model

70

3.12 Gap voltage response of EDM system using linear

model

70

3.13 Gap response of EDM system using stochastic model 71

3.14 Gap voltage response of EDM system using

stochastic model

72

3.15 Gap response of EDM system using stochastic model

with limiter mechanism

73

3.16 Gap voltage response of EDM system using

stochastic model with limiter mechanism

73

3.17 Architecture of the neural network model 75

3.18 Single neuron 76

3.19 Multiple neurons 77

3.20 Method used to measure the material removal rate 79

3.21 A new architecture of neural network model

proposed

82

3.22 Comparisons between target and output neural

network using FFANN

83

3.23 Comparison between actual and predicted value using

FFANN

84

3.24 Comparison between target and output neural

network using ANFFANN

85

3.25 Comparison between actual and predicted value using

ANFFANN

86

4.1 Block diagram of EDM servo control system 89

4.2 Optimization of PID controller block diagram 90

4.3 PSO-PID flow chart for EDM 92

4.4 Flow graph of differential evolution algorithm 93

4.5 Electrode movement response of PSO PID 98

4.6 Zoomed of initial response of PSO PID 98

4.7 Zoomed of steady state response of PSO PID 99

Page 15: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

xvi

4.8 Electrode movement response of DE PID 100

5.1 Laboratory scaled EDM die sinking 105

5.2 Laboratory scaled EDM diagram 105

5.3 Laboratory scaled EDM dual loop block diagram 106

5.4 Pulse power EDM diagram 108

5.5 DC supply circuit 109

5.6 Transformer, Bridge Diode and Capacitor 109

5.7 Power resistor bank 110

5.8 Power semiconductor switch and mosfet driver 112

5.9 Block diagram of timer 113

5.10 Pulse timer signal 113

5.11 DC motor control circuit 114

5.12 DC motor driver 116

5.13 General idea of limitation 119

5.14 Block diagram of ICM 120

5.15 DC motor limitation (force stop) mechanism 121

5.16 Encoder mounted to a DC motor 122

5.17 Illustration of output signals from encoder 122

5.18 Dip Switch and resolutions of AMT 102 123

5.19 Flowchart for limiter algorithm 125

6.1 Experimental work set up 128

6.2 Placement of probes in the EDM machine 129

6.3 EDM Gap voltage and current waveforms,

time/div=100µs

130

6.4 EDM Gap voltage and current waveforms with

shorter time delay, time/div=100µs

131

6.5 EDM Gap voltage and current waveforms with

longer time delay, time/div=100µs

131

6.6 Experimental results for Brass workpiece 134

6.7 MRR with and without ICM System for Brass

workpiece

135

6.8 Experimental results for Steel workpiece 136

Page 16: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

xvii

6.9 MRR with and without ICM for Steel workpiece 137

6.10 Ignition delay time measurements 138

6.11 Average delay time measurements 142

Page 17: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

xviii

LIST OF SYMBOLS

α - Material properties factor

c1, c2 - Inertia coefficients

d - Dimension variables optimization problems

d(s) - Actual position of electrode

dd(s) - Disturbed distance

de(s) - Actual gap length

dm(s) - Distance caused by metal removal

e(s) - Deviation between r(s) and feedback signal y(s)

fr(s) - Feed rate

F - Mutation scaling factor

G - Generation number

Gbest - Best particle in the group

H(s) - Gap controller

I, Igap

- Current, Maximum discharge current

ks

- Magnification constant

Kd - Derivative gain

Ki - Integral gain

Kp - Proportional gain

n - Number of particle in the group

N - Nonlinear and time varying gain

�n - Natural frequency

� - Damping ratio

Pbest - Particle with best value

r1, r2 - Random value

Page 18: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

xix

r(s) - Reference

t, tm - Time, machining time

tD - Ignition delay time

Toff - Off time period

Ton - On time period

Ui,G - Trial vector in DE

vi, vt+1 - Velocity of particle, new value of particle’s velocity

V - Voltage

V(s) - Actual speed

Vg - Gap voltage

Vi,G - A donor vector in DE

Vs - Voltage reference

Vsd - Deviation between Vs and Vg

Vspark - Voltage level when the spark is occurred

w - Inertia weight

Wa - Weight of workpiece material after machining

Wb - Weight of workpiece material before machining

xi, xt+1 - Particle, updated particle position

Xi,G - Vector as a candidate solution in DE

y(s) - Feedback signal

Page 19: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

xx

LIST OF ABBREVIATIONS

AC - Alternating Current

ANFFANN - A New Feed Forward Artificial Neural Network

ANN - Artificial Neural Network

CB - Circuit Breaker

CCW - Counter Clock Wise

CNC - Computer Numerical Control

CPU - Central Processing Unit

CW - Clock Wise

DC - Direct Current

DE - Differential Evolution

DSP - Digital Signal Processor

EDG - Electrical Discharge Grinding

EDM - Electrical Discharge Machining

EWR - Electrode Wear Rate

EWW - Electrode Wear Weight

FFANN - Feed Forward Artificial Neural Network

GA - Genetic Algorithm

HMP - Hybrid Machining Process

IAE - Integral Absolute Error

ICS - Integrated Control System

ISM - Integrated Servo Mechanic

LCD - Liquid Crystal Display

MRR - Material Removal Rate

P - Proportional

Page 20: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

xxi

PD - Proportional Derivative

PI - Proportional Integral

PID - Proportional Integral Derivative

PMEDM - Powder Mixed Electric Discharge Machining

PPG - Pulse Power Generator

PSO - Particle Swarm Optimization

PWM - Pulse Width Modulation

QEI - Quadrature Encoder Interface

RC - Resistor Capacitor

RISC - Reduced Instruction Set Computer

SR - Surface Roughness

TWR - Tool Wear Rate

WRW - Workpiece Removal Weight

Page 21: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

xxii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A List of Author’s Publications

162

B List of Author’s Awards

165

Page 22: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Along with the rapid growth in the industrial machining processes, Electrical

Discharge Machining (EDM) has gained widespread recognition as a spark erosion

machine which can provide important practical and economic advantages in many

fields, notably in production engineering and tool making. An EDM system is a

significant machining technique used for finishing parts, for example, in an

automotive industry, aerospace and other commercial components [1]. This

technique allows for processing high strength alloys and ceramics polycrystalline

diamond ultra-hard conductive material because the machining process is not directly

affected by the substance of the workpiece. Ceramic (ultra-hard conductive material)

also can be machined using this method. In addition, with the use of hard material in

Biomedical Engineering, the EDM process contributes greatly to this field.

The machining performance indicator of EDM machines, which includes

Material Removal Rate (MRR), Tool Wear Rate (TWR) and Surface Roughness

(SR) are important values in order to enhance the capability of the EDM machine.

Many studies have been carried out in order to discuss and discover a suitable

Page 23: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

2

approach to improve the performance of EDM machines. Efforts have also been

made to enhance the performance of the power generator, controller to adjust the

position of the electrode gap, materials which are suitable for use as an electrode and

workpiece, the flushing system, engineered dielectric materials, and vibrating

electrodes. Researchers have also studied methods of implementing the multi-spark

in EDM to increase the MRR [2-5]. Furthermore, several studies have reported

various simulations and models for MRR prediction [6-9]. Among the three

parameters above, the most dominant is MRR, since MRR directly affects the

production cost even though the value of MRR is not the only indicator that

measures the performance of EDM machines. Higher MRR means the faster the

machining process, that will save time and production cost. The value of MRR is

strongly influenced by the performance of the control system to position the

electrode towards the workpiece during the machining process. Therefore, using a

control mechanism in order to increase the MRR is very challenging. In the EDM

process, electrical parameters such as current, frequency, and duration of injected

pulse (Ton and Toff) influence the MRR, while mechanical movement of the electrode

position also has a significant effect on machining output, MRR. Estimating

electrical parameters to predict MRR is possible by modelling, however, the

available models from previous studies need to be improved. On the other hand, the

challenge in research is to maintain the distance of the electrode towards the

workpiece, therefore a shorter machining time could be achieved with better MRR.

1.2 Problem Statement

Material removal rate (MRR) is an important parameter in determining the

performance of an Electrical Discharge Machining (EDM) System. MRR is

determined by the ability of the controller to position the electrode to the workpiece

or, in other word, to regulate the gap between the electrode and the workpiece.

Currently controllers rely on the feedback voltage as an input to the controller that

has a stochastic process in nature, so sometimes the position of the electrode will be

Page 24: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

3

too far away from the workpiece. This situation causes the ignition delay time

becoming too large and eventually resulted in missing spark, thus reducing the MRR.

To overcome this problem, an additional feedback sensor is proposed that monitors

the electrode movement mechanically which is not affected by the stochastic nature

of the gap voltage. When the electrode is moving upwards and too far away from the

workpiece, the retraction movement will be forced to stop as to maintain the gap. By

maintaining a suitable gap, an appropriate delay time is achieved while machining

take place.

1.3 Objectives

Based on the current issue of EDM, there is a demand to research designing

EDM’s servo control system. The expected outcome of this work would be to

maintain the electrode position towards the workpiece that increases the material

removal rate during the machining process. During the research work, several

objectives are listed as follows:

(i) To develop an EDM model to predict MRR using Artificial Neural

Network (ANN).

(ii) To optimize the PID (Proportional Integral and Derivative) controller

by application of Particle Swarm Optimization (PSO) and Differential

Evolution (DE)

(iii) To improve Material Removal Rate (MRR) by applying additional

mechanical sensor to control the electrode movement within the

acceptable limit.

Page 25: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

4

1.4 Scope of Research

Scope of research for this study is outlined as follows:

(i) A critical literature review of the effort to improve MRR by

considering several EDM systems. In this regard, fundamental theory,

control mechanism and EDM performance are reviewed.

(ii) An attempt to predict the MRR by considering related parameters is

carried out by developing a model based on the Artificial Neural

Network. The related parameters become an input to the model and

MRR is the output. In this modelling process, experimental data are

obtained from past research to train and investigate the capability of

the MRR prediction.

(iii) An optimization process to achieve optimum PID parameters is

carried out by PSO and DE algorithms. Several PID controller

formations, i.e., P, PD, PI and PID are optimized using Integral

Absolute Error as an objective function.

(iv) The implementation of ICM is applied to the laboratory scaled EDM

machine. The limitation is activated when the electrode retraction is

too wide. This forces the gap to be around 10 – 50 microns. During

the experimental work Copper is used as the electrode, whereas Brass

and Steel are used as the workpieces. MRR and ignition delay time

are measured for comparison and analysis.

(v) Experimentation of machining process for Copper-electrode and Brass

or Steel-workpiece in order to measure MRR and ignition delay time.

Page 26: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

5

1.5 Significance of Study

Higher MRR is the key performance of the EDM process in order to

accomplish faster machining. The study of MRR is important as it directly affects the

duration of the time processes and consecutively influences the cost of production.

Moreover, the study to predict MRR is significant in estimating the time of the EDM

process based and based on the experimentation parameters, the ANN is expected to

accurately predict the MRR

The value of MRR is essential to the selection of suitable control systems for

positioning the electrode accordingly. Therefore the study of the acceptable distance

between the electrode and the workpiece is necessary. An incremental rotary encoder

as a sensor to limit the electrode movement is proposed as part of the Integrated

Control Mechanism (ICM) to keep retraction in an effective range. The application

of Particle Swarm Optimization (PSO) and Differential Evolution (DE) in order to

gain maximum optimization of PID is crucial to ensure the best performance of PID

as a controller to govern the DC motor.

1.6 Summary of Methodology

During this research work, some activities are arranged in order to reach the

main objective of this research and generally the flow is described as shown in

Figure 1.1.

Page 27: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

6

Figure 1.1 Flow of research work.

Generally, this research work is conducted through modelling, simulation and

implementation. The following methodology will be implemented in order to

accomplish the objectives of this research:

(i) Literature review of EDM systems

A study of previous EDM work, especially servo mechanics used for

controlling electrode positions is reviewed. Their strong points and

limitations based on several evaluating factors are emphasized. In

addition, finding a gap in this field becomes the main concern of this

review, particularly on the issue of controlling electrodes during

machining in EDM systems.

(ii) Modelling and predicting MRR of EDM system using the Artificial

Neural Network.

In order to achieve a deep understanding of EDM systems, designing a

proper and accurate model of the EDM control system is essential. A

simulation is conducted to determine a suitable model which affects the

machining performance. The Artificial Neural Network (ANN) is used to

model the EDM system, especially in terms of the determination of MRR.

Page 28: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

7

(iii) Optimization of PID controller gain using Particle Swarm Optimization

PSO) and Differential Evolution (DE) Algorithms.

Once a functional EDM model is developed, it can be used to simulate the

EDM control system which describes the dynamic of the EDM process.

The PID controller, which is used in this control system, will be tuned in

order to get an optimum result. Particle Swarm Optimization and

Differential Evolution algorithms are applied and compared. This

optimization process will provide a reference when implementing the

integrated servo mechanics methods throughout this research.

(iv) Integrated Control Mechanism of the EDM system

An Integrated Control Mechanism (ICM) of the EDM system will be

implemented to improve the machine’s capability. Its performance is

evaluated through comparing machining results between the existing

control system and the proposed method. The proposed technique uses an

incremental rotary encoder as an additional sensor to control the electrode

movement within the acceptable limit. The effectiveness of this proposed

controller is validated through some experiments conducted using Copper

electrode and Brass and/or Steel workpieces.

Page 29: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

REFERENCES

1. Ho, K.H. and S.T. Newman, State of the art electrical discharge machining

(EDM). International Journal of Machine Tools and Manufacture, 2003.

43(13): p. 1287-1300.

2. Kunieda, M. and H. Muto, Development of Multi-Spark EDM. CIRP Annals -

Manufacturing Technology, 2000. 49(1): p. 119-122.

3. Han, F. and M. Kunieda, Development of parallel spark electrical discharge

machining. Precision Engineering, 2004. 28(1): p. 65-72.

4. Rajurkar, K.P., M.M. Sundaram, and A.P. Malshe, Review of Electrochemical

and Electrodischarge Machining. Procedia CIRP, 2013. 6(0): p. 13-26.

5. Paixão, T.R.L.C., et al., The use of a new twin-electrode thin-layer cell to the

study of homogeneous processes coupled to electrode reactions. Journal of

Electroanalytical Chemistry, 2006. 596(2): p. 101-108.

6. Andromeda, T., et al. Predicting Material Removal Rate of Electrical

Discharge Machining (EDM) using Artificial Neural Network for High Igap

current. in Electrical, Control and Computer Engineering (INECCE), 2011

International Conference on. 2011.

7. Porwal, R.K. and V. Yadava, Experimentation and prediction of material

removal rate of electrical discharge micromachining of nickel-based super

alloy thin sheet. International Journal of Computer Aided Engineering and

Technology, 2014. 6(1): p. 62-73.

8. Porwal, R.K., V. Yadava, and J. Ramkumar, Artificial neural network

modelling and multi objective optimisation of hole drilling electro discharge

micro machining of invar. International Journal of Mechatronics and

Manufacturing Systems, 2012. 5(5-6): p. 470-494.

Page 30: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

153

9. Andromeda, T., A. Yahya, and N.H.b.H. Khamis, Predicting Material

Removal Rate of Electrical Discharge Machining (EDM) using Artificial

Neural Network for low Igap current. International Conference on

Experimental Mechanics (ICEM 2010), 2010.

10. Yahya, A., Digital Control of an Electro Discharge Machining (EDM)

system. 2005, PhD Thesis, Loughborough university.

11. Jameson, E.C., Electrical Discharge Machining. 2001.

12. Cheng, X., et al., Development of a computer assistant programming system

for micro/nano milling tool fabrication by multi-axis wire EDM. International

Journal of Computer Integrated Manufacturing, 2009. 22(9): p. 847-856.

13. Kansal, H.K., S. Singh, and P. Kumar, Technology and research

developments in powder mixed electric discharge machining (PMEDM).

Journal of Materials Processing Technology, 2007. 184(1–3): p. 32-41.

14. Sommer, C., Non-traditional machining handbook. First ed. 2000, Houston:

Advance Publishing.

15. Pawade, M.M. and S.S. Banwait, A Brief Review of Die Sinking Electrical

Discharging Machining Process towards Automation. American Journal of

Mechanical Engineering, 2013. 1(2): p. 43-49.

16. Higuerey, E.E., Neural Network Modeling of Process Parameters for

Electrical Discharge Machining. 1998, Lehigh University.

17. Scalari, F., and Vignale, M. , The Influence of EDM Pulse Shape on

Machined Surfaces, in Tool Design and Research Conference. 1982:

Manchester. p. 23: 275-282.

18. Sen, B., et al., Developments in Electric Power Supply Configurations fior

Electrical-Discharge -Machining (EDM). 2002.

19. K.H. Ip, H., et al., A Survey of Control Methods for Electrical Discharge

Machining Process. Recent Patents on Electrical & Electronic Engineering

(Formerly Recent Patents on Electrical Engineering), 2013. 6(1): p. 7-28.

20. Tarng, Y.S., S.C. Ma, and L.K. Chung, Determination of optimal cutting

parameters in wire electrical discharge machining. International Journal of

Machine Tools and Manufacture, 1995. 35(12): p. 1693-1701.

21. Tosun, N., C. Cogun, and A. Inan, The Effect of Cutting Parameters on

Workpiece Surface Roughness in Wire EDM. Machining Science and

Technology, 2003. 7(2): p. 209-219.

Page 31: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

154

22. Luo, H., et al., Wire electrical discharge machining (Wire EDM) cutting of

flexures for a rotary flexural bearing fabrication, in Advanced Materials

Research. 2011. p. 1727-1733.

23. G. V. Smith. Progress in Spark-Erosion Machining. in Conference on

Electrical Methods of Machining and Forming. 1975.

24. Kachhara, N.L. and K.S. Shah, The Electric Discharge Machining Process.

Journal of the Institution of Engineers (India)-Mechanical Engineering

Division, 1971. 51(5): p. 67-73.

25. Sen, B., et al. Developments in electric power supply configurations for

electrical-discharge-machining (EDM). in Power Electronics and Drive

Systems, 2003. PEDS 2003. The Fifth International Conference on. 2003.

26. Fleming, B., Build a Pulse EDM Machine. 2011.

27. K.S.Banker, A.D. Oza, and R.B. Dave, Performance Capabilities of EDM

machining using Aluminum, Brass and Copper for AISI 304L Material.

International Journal of Application or Innovation in Engineering &

Management, 2013. 2(8): p. 6.

28. C.J. Luis, I.P., G. Villa, Material removal rate and electrode wear study on

the EDM of silicon carbide. Journal of Materials Processing Technology,

2005. 164–165: p. 889–896.

29. Assardeh, S. and M. Ghoreishi, Neural-network-based modeling and

optimization of the electro-discharge machining process. Int. J. Adv. Manuf.

Technol., 2008. 39: p. 488-500.

30. Asokan, T., Sudhakar, R.S., and De Costa, P., Electrical Discharge Drilling

of Titanium Alloys for Aerospace Applications, in Manufacturing

Technology-Proc. Of 19th AIMTDR Conf. 2000. 2000, Narosa Publishing

House. p. 161-165.

31. Rajurkar, K.P., W.M. Wang, and R.P. Lindsay, A New Model Reference

Adaptive Control of EDM. CIRP Annals - Manufacturing Technology, 1989.

38(1): p. 183-186.

32. Kruth, J.P., R. Snoeys, and H. Van Brussel, Adaptive control optimization of

the EDM process using minicomputers. Computers in Industry, 1979. 1(2): p.

65-75.

Page 32: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

155

33. Snoeys, R., D. Dauw, and J.P. Kruth, Improved Adaptive Control System for

EDM Processes. CIRP Annals - Manufacturing Technology, 1980. 29(1): p.

97-101.

34. Martin, R., Control means for the relative displacement of the electrodes of

an EDM apparatus. 1981, Google Patents.

35. Balleys, F. and J. Dupraz, Electric discharge machining method and device

with preset electrode feed. 1977, Google Patents.

36. Bell, O.A., R.C. Gilleland, and D.J. Chance, Servo feed circuit for electrical

discharge machining apparatus. 1979, Google Patents.

37. Syria, R.L., J.J. Purrett, and E. Jefferson, Electrical discharge machining

apparatus including gap condition detection circuitry. 1987, Google Patents.

38. El-Menshawy, M.F., P.A. Woodrow, and S.K. Bhattacharyya, Methods and

apparatus for electrical discharge machining. 1982, Google Patents.

39. Behrens, A. and J. Ginzel, Neuro-Fuzzy Process Control System for Sinking

EDM. Journal of Manufacturing Processes, 2003. 5(1): p. 33-39.

40. Behrens, A.W., J. Ginzel, and F.L. Bruhns, Threshold technology and its

application for gap status detection. Journal of Materials Processing

Technology, 2004. 149(1–3): p. 310-315.

41. Yan, M.T. and Y.S. Liao, Adaptive control of the WEDM process using the

fuzzy control strategy. Journal of Manufacturing Systems, 1998. 17(4): p.

263-274.

42. Liao, Y.S., T.Y. Chang, and T.J. Chuang, An on-line monitoring system for a

micro electrical discharge machining (micro-EDM) process. Journal of

Micromechanics and Microengineering, 2008. 18(3): p. 035009.

43. Pey Tee, K.T., et al., Pulse Discrimination for Electrical Discharge

Machining with Rotating Electrode. Machining Science and Technology,

2013. 17(2): p. 292-311.

44. Zadeh, L.A., Fuzzy sets. Information and Control, 1965. 8(3): p. 338-353.

45. Zadeh, L.A., A rationale for fuzzy control, in Fuzzy sets, fuzzy logic, and

fuzzy systems, J.K. George and Y. Bo, Editors. 1996, World Scientific

Publishing Co., Inc. p. 123-126.

46. Mamdani, E.H. Application of fuzzy algorithms for control of simple dynamic

plant. in Electrical Engineers, Proceedings of the Institution of. 1974.

Page 33: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

156

47. Kaneko, T. and M. Tsuchiya, Three-dimensional numerically controlled

contouring by electric discharge machining with compensation for the

deformation of cylindrical tool electrodes. Precision Engineering, 1988.

10(3): p. 157-163.

48. Bayramoglu, M. and A.W. Duffill, Manufacturing linear and circular

contours using CNC EDM and frame type tools. International Journal of

Machine Tools and Manufacture, 1995. 35(8): p. 1125-1136.

49. Saito, K., et al., Development of Numerical Contouring Control Electric

Discharge Machining (NCC-EDM). CIRP Annals - Manufacturing

Technology, 1986. 35(1): p. 117-120.

50. Bayramoglu, M. and A.W. Duffill, CNC EDM of linear and circular contours

using plate tools. Journal of Materials Processing Technology, 2004. 148(2):

p. 196-203.

51. Soni, J.S. and G. Chakraverti, Machining characteristics of titanium with

rotary electro-discharge machining. Wear, 1994. 171(1–2): p. 51-58.

52. Wang, C.C. and B.H. Yan, Blind-hole drilling of Al2O3/6061Al composite

using rotary electro-discharge machining. Journal of Materials Processing

Technology, 2000. 102(1–3): p. 90-102.

53. Mohan, B., A. Rajadurai, and K.G. Satyanarayana, Effect of SiC and rotation

of electrode on electric discharge machining of Al–SiC composite. Journal of

Materials Processing Technology, 2002. 124(3): p. 297-304.

54. Mohan, B., A. Rajadurai, and K.G. Satyanarayana, Electric discharge

machining of Al–SiC metal matrix composites using rotary tube electrode.

Journal of Materials Processing Technology, 2004. 153–154(0): p. 978-985.

55. Sohani, M.S., et al., Investigations into the effect of tool shapes with size

factor consideration in sink electrical discharge machining (EDM) process.

The International Journal of Advanced Manufacturing Technology, 2009.

45(11-12): p. 1131-1145.

56. Ojha, K., R. Garg, and K. Singh, MRR Improvement in Sinking Electrical

Discharge Machining: A Review. Journal of Minerals and Materials

Characterization and Engineering, 2010. 9(8): p. 709-739.

57. Kansal, H.K., S. Singh, and P. Kumar, Application of Taguchi method for

optimisation of powder mixed electrical discharge machining. International

Page 34: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

157

Journal of Manufacturing Technology and Management, 2005. 7(2): p. 329-

341.

58. Kansal, H.K., S. Singh, and P. Kumar, Parametric optimization of powder

mixed electrical discharge machining by response surface methodology.

Journal of Materials Processing Technology, 2005. 169(3): p. 427-436.

59. Wong, Y.S., L.C. Lim, and L.C. Lee, Effects of flushing on electro-discharge

machined surfaces. Journal of Materials Processing Technology, 1995. 48(1–

4): p. 299-305.

60. Masuzawa, T., X. Cui, and N. Taniguchi, Improved Jet Flushing for EDM.

CIRP Annals - Manufacturing Technology, 1992. 41(1): p. 239-242.

61. Li, L., et al., Influence of flushing on performance of EDM with bunched

electrode. The International Journal of Advanced Manufacturing Technology,

2012. 58(1-4): p. 187-194.

62. Guo, Z.N., et al., A study of ultrasonic-aided wire electrical discharge

machining. Journal of Materials Processing Technology, 1997. 63(1–3): p.

823-828.

63. Ghoreishi, M. and J. Atkinson, A comparative experimental study of

machining characteristics in vibratory, rotary and vibro-rotary electro-

discharge machining. Journal of Materials Processing Technology, 2002.

120(1–3): p. 374-384.

64. Zhang, Q.H., et al., An investigation of ultrasonic-assisted electrical

discharge machining in gas. International Journal of Machine Tools and

Manufacture, 2006. 46(12–13): p. 1582-1588.

65. Prihandana, G., et al., Effect of low-frequency vibration on workpiece in EDM

processes. Journal of Mechanical Science and Technology, 2011. 25(5): p.

1231-1234.

66. Han, F., Y. Wang, and M. Zhou, High-speed EDM milling with moving

electric arcs. International Journal of Machine Tools and Manufacture, 2009.

49(1): p. 20-24.

67. Aspinwall, D.K., et al., Hybrid High Speed Machining (HSM): System Design

and Experimental Results for Grinding/HSM and EDM/HSM. CIRP Annals -

Manufacturing Technology, 2001. 50(1): p. 145-148.

68. Altan, T., et al., Advanced Techniques for Die and Mold Manufacturing.

CIRP Annals - Manufacturing Technology, 1993. 42(2): p. 707-716.

Page 35: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

158

69. Xu, M.G., et al., Material removal mechanisms of cemented carbides

machined by ultrasonic vibration assisted EDM in gas medium. Journal of

Materials Processing Technology, 2009. 209(4): p. 1742-1746.

70. Zhao, W.S., Q.G. Meng, and Z.L. Wang, The application of research on

powder mixed EDM in rough machining. Journal of Materials Processing

Technology, 2002. 129(1–3): p. 30-33.

71. Tzeng, Y.F. and C.Y. Lee, Effects of Powder Characteristics on

Electrodischarge Machining Efficiency. The International Journal of

Advanced Manufacturing Technology, 2001. 17(8): p. 586-592.

72. Wong, Y.S., et al., Near-mirror-finish phenomenon in EDM using powder-

mixed dielectric. Journal of Materials Processing Technology, 1998. 79(1–3):

p. 30-40.

73. Furutania, K., et al., Accretion of titanium carbide by electrical discharge

machining with powder suspended in working fluid. Precision Engineering,

2001. 25(2): p. 138-144.

74. Erden, A. and S. Bilgin. Role of impurities in electric discharge machining. in

21st International Machine Tool Design and Research Conference. 1980.

Macmillan, London.

75. Jeswani, M.L., Effect of the addition of graphite powder to kerosene used as

the dielectric fluid in electrical discharge machining. Wear, 1981. 70(2): p.

133-139.

76. Ming, Q.Y. and L.Y. He, Powder-suspension dielectric fluid for EDM.

Journal of Materials Processing Technology, 1995. 52(1): p. 44-54.

77. Choudhary, S.K. and R.S. Jadoun, Current Research Issue, Trend &

Applications of Powder Mixed Dielectric Electric Discharge Machining (PM-

EDM): A Review. International Journal of Engineering Sciences & Research

Technology, 2014. 3(7).

78. Kunieda, M., M. Yoshida, and N. Taniguchi, Electrical Discharge Machining

in Gas. CIRP Annals - Manufacturing Technology, 1997. 46(1): p. 143-146.

79. Zhang, Q.H., et al., Ultrasonic vibration electrical discharge machining in

gas. Journal of Materials Processing Technology, 2002. 129(1–3): p. 135-

138.

Page 36: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

159

80. Kunieda, M., S. Furuoya, and N. Taniguchi, Improvement of EDM Efficiency

by Supplying Oxygen Gas into Gap. CIRP Annals - Manufacturing

Technology, 1991. 40(1): p. 215-218.

81. Kunleda, M., et al., High Speed 3D Milling by Dry EDM. CIRP Annals -

Manufacturing Technology, 2003. 52(1): p. 147-150.

82. Yu, Z., T. Jun, and K. Masanori, Dry electrical discharge machining of

cemented carbide. Journal of Materials Processing Technology, 2004. 149(1–

3): p. 353-357.

83. Mohri, N., et al., A New Process of Finish Machining on Free Surface by

EDM Methods. CIRP Annals - Manufacturing Technology, 1991. 40(1): p.

207-210.

84. Joshi, S.N. and S.S. Pande, Thermo-physical modeling of die-sinking EDM

process. Journal of Manufacturing Processes, 2010. 12(1): p. 45-56.

85. Joshi, S.N. and S.S. Pande, Intelligent process modeling and optimization of

die-sinking electric discharge machining. Applied Soft Computing, 2011.

11(2): p. 2743-2755.

86. Hewidy, M.S., et al., Modelling the performance of ECM assisted by low

frequency vibrations. Journal of Materials Processing Technology, 2007.

189(1–3): p. 466-472.

87. Andromeda, T., A. Yahya, and N.H.H. Khamis, Gap Response of Linear and

Non-Linear Discharge Model in Electrical Discharge Machining System.

Applied Mechanics and Materials 2014. 554: p. 648-652.

88. Kozak, J., A.F. Budzynski, and P. Domanowski, Computer simulation

electrochemical shaping (ECM-CNC) using a universal tool electrode.

Journal of Materials Processing Technology, 1998. 76(1–3): p. 161-164.

89. Rajurkar, K.P. and W.M. Wang, Improvement of EDM Performance With

Advanced Monitoring and Control Systems. Journal of Manufacturing

Science and Engineering, 1997. 119: p. 770-775.

90. Chang, Y.F., Mixed H2/H∞ optimization approach to gap control on EDM.

Control Engineering Practice, 2005. 13(1): p. 95-104.

91. Chang, Y.F., VSS Controller Design for Gap Control of EDM. The Japan

Society of Mechanical Engineers, 2002. 45(3).

Page 37: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

160

92. Yahya, A., et al., Comparison Studies of Electrical Discharge Machining

(EDM) Process Model for Low Gap Current. Advanced Materials Research,

2012. 433-440: p. 650-654.

93. Panda, D.K. and R.K. Bhoi, Artificial Neural Network Prediction of Material

Removal Rate in Electro Discharge Machining. Materials and Manufacturing

Processes, 2005. 20(4): p. 645-672.

94. Mandal, D., S.K. Pal, and P. Saha, Modeling of electrical discharge

machining process using back propagation neural network and multi-

objective optimization using non-dominating sorting genetic algorithm-II.

Journal of Materials Processing Technology, 2007. 186(1–3): p. 154-162.

95. Spedding, T.A. and Z.Q. Wang, Study on modeling of wire EDM process.

Journal of Materials Processing Technology, 1997. 69(1–3): p. 18-28.

96. Wan, W., et al., Enhancing the generalization ability of neural networks

through controlling the hidden layers. Applied Soft Computing, 2009. 9(1):

p. 404-414.

97. Shrestha, S.B. and Q. Song, Adaptive learning rate of SpikeProp based on

weight convergence analysis. Neural Networks, 2015. 63(0): p. 185-198.

98. Cohn, D., L. Atlas, and R. Ladner, Improving generalization with active

learning. Machine Learning, 1994. 15(2): p. 201-221.

99. Liu, G.P. and S. Daley, Optimal-tuning PID control for industrial systems.

Control Engineering Practice, 2001. 9(11): p. 1185-1194.

100. Wang, Y.-G. and H.-H. Shao, Optimal tuning for PI controller. Automatica,

2000. 36(1): p. 147-152.

101. Shen, J.-C., New tuning method for PID controller. ISA Transactions, 2002.

41(4): p. 473-484.

102. Cai, J., et al., A multi-objective chaotic particle swarm optimization for

environmental/economic dispatch. Energy Conversion and Management,

2009. 50(5): p. 1318-1325.

103. Lian, Z., A united search particle swarm optimization algorithm for

multiobjective scheduling problem. Applied Mathematical Modelling, 2010.

34(11): p. 3518-3526.

104. Mousa, A.A., M.A. El-Shorbagy, and W.F. Abd-El-Wahed, Local search

based hybrid particle swarm optimization algorithm for multiobjective

optimization. Swarm and Evolutionary Computation, 2012. 3(0): p. 1-14.

Page 38: INTEGRATED CONTROL MECHANISM OF ELECTRICAL …eprints.utm.my/id/eprint/77960/1/TriasAndromedaPFKE2015.pdfadalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan

161

105. Urade, H.S. and R. Patel, Dynamic Particle Swarm Optimization to Solve

Multi-objective Optimization Problem. Procedia Technology, 2012. 6(0): p.

283-290.

106. Andromeda, T., et al. PID controller tuning by particle swarm optimization

on electrical discharge machining servo control system. in Intelligent and

Advanced Systems (ICIAS), 2012 4th International Conference on. 2012.

107. Andromeda, T., et al., PID Controller Tuning by Differential Evolution

Algorithm on EDM Servo Control System. Applied Mechanics and Materials,

2013. 284: p. 2266-2270.

108. Andromeda, T., et al., Differential Evolution For Optimization of PID Gain

in Electrical Discharge Machining Control System. Canadian Society for

Mechanical Engineering, 2012. 37(3): p. 293-301.