Innovative Human Computer Interactions for Wearable...

3
Innovative HumanComputer Interactions for Wearable Devices Wearable devices are a kind of technologies that can be worn on human body. This type of devices has become more and more important to be a part of our daily life because it provides much convenient and powerful functions. Many companies have started to develop more and more wearable devices embedded powerful sensors to collect and/or deliver information. Humancomputer interaction (commonly referred to as HCI) is a research to study how human interact with computers and to improve the interactive models to provide much convenient and powerful functions. There are many corporations and academic institutions now study HCI, such as University of California, Berkeley, Massachusetts Institute of Technology (MIT), Carnegie Mellon University (CMU), Adobe Research, Disney Research, Google Research, etc. The goal of this project is to design innovative humancomputer interactions that are essential for enhancing the interactive models of wearable devices. However, to design a good user interface for wearable devices is still a challenging problem, because it depends on understanding and recognizing the vast range of crossdisciplinary variables that affect user interactions with a wearable device. For increasing the user experiences on wearable user interfaces, we explored three directions to enable different interaction models: 1. FlexiBend: Designing ShapeAware Strip for Sensing Deformable. This work was published in the Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (ACM UIST 2015), which presents FlexiBend, an easily installable shapesensing strip that enables interactivity of multipart, deformable fabrications. The flexible sensor strip is composed of a dense linear array of strain gauges; therefore, it has shape sensing capability. After installation, FlexiBend can simultaneously sense user inputs in different parts of a fabrication or even capture the geometry of a deformable fabrication. Due to the feature of changeable, it can be worn on the user’s wrist to interact with user allow the user to control the remote device.

Transcript of Innovative Human Computer Interactions for Wearable...

Page 1: Innovative Human Computer Interactions for Wearable Devicesmtkntu.ntu.edu.tw/upload/edmfs170108151326023.pdf · Interface Software & Technology (ACM UIST 2015), which presents FlexiBend,

Innovative Human‐Computer Interactions for Wearable Devices  

Wearable devices are a kind of  technologies  that can be worn on human body. This  type of 

devices has become more and more  important  to be a part of our daily  life because  it provides 

much convenient and powerful functions. Many companies have started to develop more and more 

wearable devices embedded powerful sensors to collect and/or deliver information.   

Human‐computer interaction (commonly referred to as HCI) is a research to study how human 

interact with computers and  to  improve  the  interactive models  to provide much convenient and 

powerful functions. There are many corporations and academic institutions now study HCI, such as 

University  of  California,  Berkeley, Massachusetts  Institute  of  Technology  (MIT),  Carnegie Mellon 

University (CMU), Adobe Research, Disney Research, Google Research, etc. 

The goal of this project is to design innovative human‐computer interactions that are essential 

for enhancing the interactive models of wearable devices. However, to design a good user interface 

for  wearable  devices  is  still  a  challenging  problem,  because  it  depends  on  understanding  and 

recognizing  the  vast  range  of  cross‐disciplinary  variables  that  affect  user  interactions  with  a 

wearable device. 

For increasing the user experiences on wearable user interfaces, we explored three directions 

to enable different interaction models: 

 

1. FlexiBend: Designing Shape‐Aware Strip for Sensing Deformable. 

    This work was published  in  the Proceedings of  the 28th Annual ACM  Symposium on User 

Interface  Software  &  Technology  (ACM  UIST  2015),  which  presents  FlexiBend,  an  easily 

installable shape‐sensing strip that enables interactivity of multi‐part, de‐formable fabrications. 

The flexible sensor strip  is composed of a dense  linear array of strain gauges; therefore,  it has 

shape  sensing capability. After  installation, FlexiBend can simultaneously  sense user  inputs  in 

different parts of a fabrication or even capture the geometry of a deformable fabrication. Due 

to the feature of changeable, it can be worn on the user’s wrist to interact with user allow the 

user to control the remote device. 

Page 2: Innovative Human Computer Interactions for Wearable Devicesmtkntu.ntu.edu.tw/upload/edmfs170108151326023.pdf · Interface Software & Technology (ACM UIST 2015), which presents FlexiBend,

   

 

2. DigitSpace:  Designing  Thumb‐to‐fingers  Touch  Interfaces  for  One‐handed  and  Eyes‐Free 

Interactions. 

    This work was published  in the Proceedings of the 2016 ACM SIGCHI Conference on Human 

Factors  in Computing Systems (ACM CHI 2016), which presents DigitSpace, a thumb‐to‐fingers 

interface that considers hand anatomy and touch precision. Its first study identified the regions 

of  fingers  where  thumb‐to‐fingers  touch  interactions  can  be  comfortably  performed.  After 

identifying  the  comfort  regions,  the  second  and  the  third  studies  further  explored  how  to 

arrange  two  general  touch  widgets,  buttons  and  touchpads,  for  effective  discrete  and 

continuous  touch  input. The  study  results  reveal  several  factors  that  should be considered  in 

designs  for  thumb‐to‐fingers  touch  interactions.  A  DigitSpace  prototype,  a  wearable  device 

based on magnetic tracking to enable thumb‐to‐fingers interactions and its applications, is then 

developed based on the studies. As for future work, we have seen that allowing users to open 

their  fingers while performing thumb‐to‐fingers  interaction will  increase physical comfort. We 

consider  to  investigate  whether  this  increase  in  comfort  also  permits  a  boost  in  user 

performance. Sensing techniques for supporting this feature will also be explored. 

 

Page 3: Innovative Human Computer Interactions for Wearable Devicesmtkntu.ntu.edu.tw/upload/edmfs170108151326023.pdf · Interface Software & Technology (ACM UIST 2015), which presents FlexiBend,

 

3. NailTactors: Eyes‐Free Spatial Output Using an Nail‐Mounted Tactor Array. 

    This  work  was  published  in  the  Proceedings  of  the  18th  International  Conference  on 

Human‐Computer  Interaction with Mobile Devices and Services (ACM MobileHCI 2016), which 

presents  NailTactors,  a  system  of  nail‐mounted  tactor  array  for  enabling  eyes‐free  spatial 

output. By erecting  the disc‐like eccentric‐rotating‐mass  (ERM) vibrators on  the artificial nail, 

miniatured  high‐resolution  tactile  displays  are  realized.  To  understand  how  to  deliver  rich 

signals to users for valid signal perception, three user studies were conducted. The results not 

only suggest that users are able to recognize the delivered absolute and relative directional cues, 

as well as numerical characters in EdgeWrite pattern with an overall 89% recognition rate, but 

also identified the optimal placement of ERM actuators maximizing the information transfer. 

 

    

 

MediaTek‐NTU Center 

BL‐7H,Barry Lam Hall, 1 Roosevelt Road, Sec. 4 

National Taiwan University, Taipei, 10617   

Taiwan   

 

 

Tel: +886‐2‐3366‐1836 

 

About the Author 

Meng‐Ju Hsieh and Bing‐Yu Chen 

National Taiwan University