Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC...

64
Computational Neuroscience ESPRC Workshop --Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari Shun-ichi Amari RIKEN Brain Science Institute Mathematical Neuroscience Unit

Transcript of Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC...

Page 1: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Computational Neuroscience ESPRC Workshop--Warwick

Information-GeometricStudies on Neuronal SpikeTrains

Shun-ichi AmariShun-ichi AmariRIKEN Brain Science Institute

Mathematical Neuroscience Unit

Page 2: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Neural Firing

1x 2x3

xn

x

higher-order correlations

orthogonal decomposition

1 2( ) ( , ,..., ) : joint probabilityn

p p x x x=x

[ ]i ir E x=

[ , ]ij i jv Cov x x=

----firing rate

----covariance: correlation

1,0i

x =

1 2{ ( , ,..., )}n

S p x x x=

Page 3: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

( ) 0,1i

x t =

time tneuron i

1 T

1 ( )11x

1( )x T

( )21x ( )2

x T

n ( )1n

x ( )nx T

Multiple spike sequence:

{ ( ), 1,..., ; 1,..., }i

x t i n t T= =

Page 4: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

( ){ } ( )( )

2

2

1; , ; , exp

22

xS p x p x

μμ μ= =

Information GeometryInformation Geometry ? ?

( ){ }p x

μ

( ){ };S p x= è

Riemannian metric

Dual affine connections

( , )μ=è

Page 5: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Information GeometryInformation Geometry

Systems Theory Information Theory

Statistics Neural Networks

Combinatorics PhysicsInformation Sciences

Riemannian Manifold

Dual Affine Connections

Manifold of Probability Distributions

Math. AI

Page 6: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Manifold of Probability DistributionsManifold of Probability Distributions

( )1 2 3 1 2 3

1, 2,3 { ( )}

, , 1

x p x

p p p p p p

=

= + + =

3p

2p

1p

p

( ){ };M p x=

Page 7: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Manifold of Probability DistributionsManifold of Probability Distributions

( ){ },

1, 2,3

P x

x

=

=

M p

3

21

( ) ( ) ( )3

3 1 2

1

, 1i i

i

P x p x p p p=

= =p

3

21

M

( )1 2 3

1 2 3

, ,

1

p p p

p p p

=

+ + =

p

2 2 2

1 2 31

i ip=

+ + =

( )

11

3 1 2

22

3

log

,

log

p

p

p

p

=

=

=

Page 8: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

InvarianceInvariance ( ){ },S p x=

1. Invariant under reparameterization1. Invariant under reparameterization

( )( , ) ,p x p x=

2. 2. Invariant under different representationInvariant under different representation

( ) ( ), { , } { ( , )}y y x p y p x= = ( ) ( )2

1 2

2

1 2

, ,

| ( , ) ( , ) |

p x p x dx

p y p y dy

2 2

i iD =

Page 9: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Two StructuresTwo Structures

Riemannian metricRiemannian metric

affine connection --- geodesicaffine connection --- geodesic

( )2,ij i jds g d d d d= =< >

Fisher informationFisher information

log logij

i j

g E p p=

Page 10: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Affine Connection

covariant derivative

geodesic X=X X=X(t)

( )

c

i j

ij

X Y

s g d d

=

=

minimal distance

& &

straight line

Page 11: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Affine Connectioncovariant derivative; parallel transport

,

geodesic =x x=x(t)

:

, ,

( )

X c

i j

i

i j

ij

j

Y X Y

x

s g d

X Y X

d

Y g X Y< >=< >

=

=

minimal distance straight line

& &

Page 12: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Duality: two affine connectionsDuality: two affine connections

, , ,i j

ijX Y X Y X Y g X Y= < >=

Riemannian geometry:Riemannian geometry: =

X

Y

X

Y

*

{ , , , *}S g

Page 13: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Dual Affine ConnectionsDual Affine Connections

e-geodesice-geodesic

m-geodesicm-geodesic

( ) ( ) ( ) ( ) ( )log , log 1 lgr x t t p x t q x c t= + +

( ) ( ) ( ) ( ), 1r x t tp x t q x= +

( ),

( )q x

( )p x

*( , )

( ) 0

* ( ) 0

x

x

x t

x t

=

=

&

&

&

&

Page 14: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Information GeometryInformation Geometry

-- Dually Flat Manifold-- Dually Flat Manifold

Convex Analysis

Legendre transformation

Divergence

Pythagorean theorem

I-projection

Page 15: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Dually Flat ManifoldDually Flat Manifold

1. Potential Functions1. Potential Functions

---convex (Bregman, Legendre transformation)

2. Divergence2. Divergence [ ]:D p q

3. Pythagoras Theorem3. Pythagoras Theorem

[ ] [ ] [ ]: : :D p q D q r D p r+ =

4.4. Projection TheoremProjection Theorem

5.Dual foliation5.Dual foliation

p

r

q

Page 16: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Pythagoras Theorem

p

q

r

D[p:r] = D[p:q]+D[q:r]

p,q: same marginals

r,q: same correlations

1 2, independent

correlations

( )[ : ] ( ) log

( )x

p xD p r p x

q x=

estimation correlationtesting

invariant under firing rates

Page 17: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Projection Theorem

[ ]min :Q M

D P Q

Q = m-geodesic

projection of P to M

[ ]min :Q M

D Q P

Q = e-geodesic projection of P to M

Page 18: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari
Page 19: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari
Page 20: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

( ) 0,1i

x t =

time tneuron i

1 T

1 ( )11x

1( )x T

( )21x ( )2

x T

n ( )1n

x ( )nx T

Multiple spike sequence:

{ ( ), 1,..., ; 1,..., }i

x t i n t T= =

Page 21: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

spatial correlationsspatial correlations

( )1, ,

nx x= Lx

( ) ( )1 1exp

i i ij i j n n

i j

p x x x x x<

= + + +L

LLx

[ ] { }

{ }Prob 1

Prob 1

i i i

ij i j i j

r E x x

r E x x x x

= = =

= = = =

( )

( )1

1

, , ,

, , ,

i ij n

i ij nr r r

=

=

L

L

L

Lr

L

orthogonal structure

( ){ }S p= x : coordinates

Page 22: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Spatio-temporal correlationsSpatio-temporal correlations

correlated Poisson

( )p x : temporally independent

correlated renewal process

( )tp x : firing rate ( )ir t modified

spatial correlations fixed

Page 23: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

firing rates:

correlation—covariance?

1x

2x

3x

00 01 10 11{ , , , }p p p p

1 2 12, ;r r r

Two neurons:

Page 24: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Correlations of Neural Firing

( ){ }{ }

1 2

00 10 01 11

1 1 10 11

2 1 01 11

,

, , ,

p x x

p p p p

r p p p

r p p p

= = +

= = +

11 00

10 01

logp p

p p=

1x 2

x

2

1

1 2{( , ), }r r

orthogonal coordinates

firing rates

correlations

Page 25: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

1 2{ ( , )}S p x x=

1 2, 0,1x x =

1 2{ ( ) ( )}M q x q x=

Independent Distributions

Page 26: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Orthogonal Coordinates:

firing rates

r

correlation fixedscale of correlation

r’

Page 27: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

two neuron casetwo neuron case

( )

( )( )

( )

( ) ( ) ( )( )

1 2 12 1 2 12

12 12 1 200 11

12

01 10 1 12 2 12

12 1 2

12 1 2

, , ; , ,

1log log

, ,

, ,

r r r

r r r rp p

p p r r r r

r f r r

r t f r t r t

+= =

=

=

Page 28: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Decomposition of KL-divergence

D[p:r] = D[p:q]+D[q:r]

p,q: same marginals

r,q: same correlations

1 2,

p

q

rindependent

correlations

( )[ : ] ( ) log

( )x

p xD p r p x

q x=

Page 29: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

pairwise correlations

ij ij i jc r r r=

independent distributions

,,ij i j ijk i j kr r r r r r r= = L

How to generate correlated spikes?

(Niebur, Neural Computation [2007])

higher-order correlations

covariance: not orthogonal

Page 30: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Orthogonalhigher-order correlations

( )

( )1

1

;

;

,

,

,

,

i i n

i n

j

i jrr r

=

=

L

L

L

Lr

Page 31: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

tractable models ofdistributions

Full model: parameters

Homogeneous model: n parameters

Boltzmann machine: only pairwise

correlations

Mixture model

2 1n

{ ( )}M p= x

Page 32: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Models of Correlated Spike Distributions (1)

Reference 0110001011 ( )y t

( )1x t%

( )2x t%

( )3x t%

1001011001

0101101101

Page 33: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Models of Correlated Spike Distributions (2)

( ) ( ) ( )i ix t x t y t= % o

additive interaction

eliminating interaction

Niebur replacement

( )y t

( )1

2 ( )

x t

x t

%

%

0110001011

1001001101

1100010011

Page 34: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Mixture Model

( ):y t 0110001011 mixing sequence

( ) ( )1; , when 1

i ip p x u y= =x u

( ) ( )2; , when 0

i ip p x v y= =x u

( , ) : 1 with probability p x u x u=

( ) ( ) ( | )p p y p y=x x

Page 35: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Mixture modelMixture model

( ) ( )

( ) ( ) ( )

; ,

; , , ; ;

i ip p x u

p m mp mp

=

= +

x u

x u v x u x v

( )

( )1

1

, , 1

, ,

n

n

u u m m

v v

= =

=

L

L

u

v

( ){ } ( ){ }; , , ,n n

M p m S p= =x u v x

: independent distribution

Page 36: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

firing ratesfiring rates

ij i j i jr mu u mv v= +

ijk i j k i j kr mu u u mv v v= +

i i ir mu mv= +

L

Page 37: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Conditional distributionsand mixture

1,2,3,...

( | ) : Hebb assembly

( ) ( ) ( | )

y

p y y

p p y p y

=

=

x

x x

Page 38: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

State transition of Hebb assembliesmixture and covariances

( ) ( ) ( ) ( ), 1u v

p t t p tp= +x x x

( ) ( ) ( ) ( ) ( )( )( )1 1ij ij ij i i j j

c t t c u tc v t t u v u v= + +

Extra increase (decrease) of covariances

within Hebb assemblis---- increase between Hebb assemblies ---decrease

Page 39: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Temporal correlations {x(t)}, t =1, 2, …T

Poisson sequence:

Markov chain

Renewal process

Prob{ (1),..., ( )}x x T

Page 40: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Orthogonal parameter ofcorrelation ---- Markov case

1

1

1 1

( | )

Pr{ | }

Pr{ } Pr( ) ( | )

t t

ij t t

t t t

p x x

a x i x j

x x p x x

+

+

+

= = =

=

1

2

11 1

11 00

10 01

Pr{ 1}

log

tr x

c r r

a a

a a

= =

=

=

Page 41: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Spatio-temporal correlation

correlated Poisson

1({ }) ( )

T

t tt

p p=

=x x

Page 42: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Correlated renewal process

,

Pr( ) ( ') : ' last spike time

Pr( ) ( ') ( | )

t

i t i

x k t t t

x k t t p x

=

= x

Page 43: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Neurons

1x

nx

( )1i i

x u=

Gaussian [ ]i i j

u E u u= =

2x

Population and Synfire

Page 44: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Population and Synfire

hswu jiji =

[ ]ii

ux 1=

(1 )i i

u h= +

( ), 0, 1i

N

s

1x

nx

2

[ ]

[ ] 1

i j

i

E u u

E u

=

=

Page 45: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

{ } timesame at the fire neurons Prob ipi=

Pr{ neurons fire}r

ir P nr

n= =

( ) ( )( , )

nH r nzq r e e d=

( ) ( ) ( )FrFrn

z = 1 log 1 log 2

2

( ) dt 2

1 2

0

2t

ha

ehaFF ==

Page 46: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

1 22 1( , ) exp[ { ( ) } ]

2(1 ) 2 1q r c F h=

1 2

1

...

( , ) exp{ ...}

(1/ )k

i i ij i j ijk i j k

k

i i i

p x x x x x x

O n

= + + +

=

x

Page 47: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Synfiring

( )

1( ) ( ,..., )

1

n

i

p p x x

r x q rn

=

=

x

( )q r

r

Page 48: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Bifurcation

r

rP

ix : independent---single delta peak

pairwise correlated

higher-order correlation

Page 49: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Semiparametric StatisticsSemiparametric Statistics

( ){ }( ) ( )

, ,

,

M p x r

p x r x

=

=

y x=

'

i i i

i i i

y

x

= +

= +

mle, least squre, total least square

( ) ( ) ( ), ; , ; ,p x y p x y r d=

x

y

Page 50: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Linear Regression: Semiparametrics

( )

( )

( )

1 1

2 2

,

,

,n n

x y

x y

x y

M

'

i i i

i i i

x

y

= +

= +

( )' 2, 0,

i iN

y x=

Page 51: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Statistical Model

( ) ( ) ( )

( )

( ) ( ) ( )

2 2

1

1 1, , exp

2 2

, , : , , ,

, , ,

i i i n

p x y c x y

p x y

p x y p x y Z d

=

=

L

semiparametric

Page 52: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Least squares?

( ) ( )

( )( )

2

2ˆmin :

1,

mle, TLS

0

Neyman-Scott

i i

i i

i

ii

i i

i i i i

x yL y x

x

yy

n x x

y x y x

= =

+ =

Page 53: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

( )

( ) ( )

( )

( )

'

1 2

,

,

, , , ,

, , 0

, 0

ˆ, 0

Z

Z

i

x x p x Z

y x E y x

E y x

y x

=

=

Semiparametric statistical model

Estimating function

Estimating equation

L

Page 54: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

( )

( ) ( )

( ){ }( )

( )( )

, ; , log

, ; ,

, ;

, ,I

u x y Z p

sE s

v x y Z E f s

k s x y

u x y u E u s

k x y y x

=

=

=

=

=

= +

L

Page 55: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Fibre bundreFibre bundre

function spacefunction space

r

Page 56: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

( ) ( )( ) ( )( )

2

2

,

, ,I

z N

u x Z x y c y x

c

μ

μ

= + +

=

( ) ( )( )

( )

2

222 2

, ;

1

1

i

i

f x c x y c y x

c

xn

xn

μ

μ

μ

= + +

=

=

=

Page 57: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Poisson process

Poisson Process: Instantaneous firing rate is constant over

time. dtFor every small time window dt,

generate a spike with probability dt.

T

Cortical Neuron Poisson Process

Poisson processPoisson process

cannot explain inter-cannot explain inter-

spike intervalspike interval

distributions.distributions.

TeTp =)(

(Softky & Koch, 1993)

Page 58: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Gamma distribution

Gamma Distribution: Every -th spike of the Poisson process is left.

: Firing rate

: Irregularity.T

)(

)(),q(T;

T1= e Two parameters

=1 (Poisson)

=3

T

Page 59: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Gamma distributionGamma distribution

( )( )( )

{ }1exp

rf T T r T=

1=

Integrate-and fire

Markov model

: Poisson

: regular

Page 60: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Irregularity is unique to

individual neurons.

t

t

t

Regular large

Irregular small

Irregularity varies among

neurons.)

We assume that We assume that is independent of is independent oftime.time.

Page 61: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Information geometry of

estimating function•Estimating function y(T, ):

(See poster for details)

)(

),(log),(

),(log),(

îk

kT;êpkT;êv

kT;êpdkT;êu

How to obtain an estimatingfunction y:

•Maximum likelihood Method:

vvv

vuuy

><

><=

Scorefunctions

E[y(T, )]=0

0);(1

==

N

l

lTy0);()()(log

1

1 ===

N

l

lN TuTpTpd

dL

Page 62: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

temporal correlationstemporal correlations

( ) ( ) ( )1 2x x x NL

independent with firing probability ( )r t

spike counts: Poisson

ISI: exponential

renewal:

( ) ( )ir t k t t= : last

spikeISI distribution ( )f t

( ) ( ) ( )0

exp

T

f T ck T k t dt=

Page 63: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Estimation of

by estimating functionsNo estimating function exists if the neighboring firing rates aredifferent.

m( ) consecutive observations must have the same firing rate.

Estimating function:

(E[y]=0)

Example:Example:m=2m=2

( ))(2)2(2log

2

21

21 êöêöTT

TTy +

+=

l-thset:

( )0)(2)2(2log

1

12

21

21 =++

==

êöêöTT

TT

Ny

,m

lll

ll

=0

2121 )(),;(),;(),;,( dkTqTqkTTp

)( 21

ll,TT

Model:

Page 64: Information-Geometric Studies on Neuronal Spike Trains · Computational Neuroscience ESPRC Workshop--Warwick Information-Geometric Studies on Neuronal Spike Trains Shun-ichi Amari

Case of m=1

(spontaneous discharge)

Firing rate continuously

changes and is driven by

Gaussian noise.: Correlation

( )0)(2)2(2log

1

12

21

21 =++

==

êöêöTT

TT

Ny

,m

lll

ll

can be approximated if can be approximated ifthe firing rate changesthe firing rate changesslowly.slowly.Estimating function (m=2):

slow