Influent fractionation using a respirometric method for...

65
Faculty of Bioscience Engineering Academic year 2013 – 2014 Influent fractionation using a respirometric method for the characterisation of primary sedimentation Ellen Vanassche Promotor: Prof. dr. ir. Ingmar Nopens Tutor: ing. Youri Amerlinck Master’s dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Environmental Sanitation and Management

Transcript of Influent fractionation using a respirometric method for...

Page 1: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

Faculty of Bioscience Engineering

Academic year 2013 – 2014

Influent fractionation using a respirometric method for the characterisation of primary sedimentation

Ellen Vanassche Promotor: Prof. dr. ir. Ingmar Nopens Tutor: ing. Youri Amerlinck

Master’s dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Environmental Sanitation and

Management

Page 2: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

   

Page 3: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

 

                                                           The  author  and  the  promoter  give  the  permission  to  use  this  thesis  for  consultation  and  to  copy   parts   of   it   for   personal   use.   Every   other   use   is   subject   to   the   copyright   laws,  more  specifically  the  source  must  be  extensively  specified  when  using  results  from  this  thesis.      De   auteur   en   de   promotor   geven   de   toelating   dit   afstudeerwerk   voor   consultatie  beschikbaar   te   stellen   en   delen   ervan   te   kopiëren   voor   persoonlijk   gebruik.   Elk   ander  gebruik  valt  onder  de  beperkingen  van  het  auteursrecht,  in  het  bijzonder  met  betrekking  tot  de   verplichting   uitdrukkelijk   de   bron   te   vermelden   bij   het   aanhalen   van   resultaten   uit   dit  afstudeerwerk.      De  promotor             De  auteur  Prof.  dr.  ir.  I.  Nopens           Ellen  Vanassche    

Page 4: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

 

         

Page 5: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  i  

WOORD  VOORAF  

Het   tot   stand   brengen   van   een   eindwerk   is   een   leerrijke   en   boeiende   opdracht  maar   verliep   niet  altijd  even  gemakkelijk.  Het  schrijven  van  dit  eindwerk  was  echter  nooit  gelukt  zonder  de  hulp  van  heel  veel  mensen.   In  de  eerste  plaats  wil  ik  mijn  promotor  Ingmar  Nopens  bedanken  voor  de  kans  die  hij  me  gegeven  heeft  om  in  zijn  labo  dit  eindwerk  te  maken.      Verder  wil  ik  mijn  begeleider  Youri  Amerlinck  bedanken  voor  het  vele  verbeterwerk  en  de  uitleg  die  hij  me  geduldig  gaf  .      Graag  wil  ik  ook  alle  mensen  van  het  labo  bedanken  voor  hun  hulp  en  de  aangename  werksfeer.  In  het  bijzonder  denk  ik  aan  Tinne  en  Giacomo,  die  altijd  klaar  stonden  om  mij  te  helpen.  Zonder  mijn  collega-­‐thesisstudenten  Hélène,  Stijn  en  Chaïm  zou  ik  bijlange  niet  zoveel  plezier  beleefd  hebben  in  het   labo.  Bedankt  ook  aan  Maud  en  Merel  voor  alle   fijne  ontspanningsmomenten.  Tenslotte  wil   ik  mijn  ouders  en  Gert  in  de  bloemetjes  zetten  omdat  ze  mij  in  alles  wat  ik  doe  altijd  steunen.      Ellen    

Page 6: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  ii  

TABLE  OF  CONTENTS  

LIST  OF  ABBREVIATIONS  ...................................................................................................  IV  

SUMMARY  ........................................................................................................................  VI  

SAMENVATTING  ..............................................................................................................  VII  

INTRODUCTION  .................................................................................................................  1  

1   LITERATURE  REVIEW  ....................................................................................................  3  

1.1   Primary  sedimentation  ..........................................................................................  3  

1.1.1   Types  of  sedimentation  ...........................................................................................  3  

1.1.2   Design  of  ideal  sedimentation  tank  .........................................................................  5  

1.1.3   Circular  tanks  ..........................................................................................................  7  

1.1.4   Sedimentation  tank  performance  ...........................................................................  8  

1.1.5   Design  considerations  .............................................................................................  8  

1.2   Activated  sludge  modelling  ....................................................................................  9  

1.2.1   Introduction  .............................................................................................................  9  

1.2.1.1   The  carbonaceous  fraction  ............................................................................................  9  

1.2.1.2   The  Nitrogenous  fraction  ............................................................................................  11  

1.2.1.3   The  phosphorus  fraction  .............................................................................................  11  

1.2.2   Processes  in  ASM2d  ...............................................................................................  12  

1.2.2.1   Hydrolysis  processes  ...................................................................................................  12  1.2.2.2   Processes  of  facultative  heterotrophic  organisms  ......................................................  12  1.2.2.3   Processes  of  phosphate  accumulating  organisms  .......................................................  13  1.2.2.4   Nitrification  processes  .................................................................................................  13  1.2.2.5   Chemical  precipitation  of  phosphates  ........................................................................  13  

1.3   Wastewater  characterisation  ................................................................................  14  

1.3.1   Biological  characterisation  ....................................................................................  14  

2   MATERIAL  AND  METHODS  ..........................................................................................  18  

2.1   Measurement  campaigns  at  full-­‐scale  WWTPs  ......................................................  18  

2.1.1   WWTP  of  Roeselare  (Belgium)  ..............................................................................  18  

2.1.2   WWTP  of  Eindhoven  (The  Netherlands)  ................................................................  18  

2.2   Respirometer  ........................................................................................................  20  

2.2.1   Introduction  ...........................................................................................................  20  

Page 7: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  iii  

2.2.2   Experimental  setup  ...............................................................................................  21  

2.2.3   Experimental  protocol  for  respirometric  analysis  .................................................  21  

2.2.3.1   Flowing  gas  –  static  liquid  ...........................................................................................  22  2.2.3.2   Static  gas  –  static  liquid  ...............................................................................................  24  

2.3   Simulation  software:  WEST  ...................................................................................  26  

3   RESULTS  AND  DISCUSSION  ..........................................................................................  27  

3.1   Analysis  of  the  respirogram  ...................................................................................  27  

3.2   Acetate  as  substrate  .............................................................................................  28  

3.3   Glucose  as  substrate  .............................................................................................  31  

3.4   PST  influent  and  effluent  as  substrate  ...................................................................  32  

3.4.1   Evaluation  respirogram  .........................................................................................  32  

3.4.1.1   Direct  evaluation  method  ...........................................................................................  32  3.4.1.2   WEST  ...........................................................................................................................  33  

3.4.2   Dry  weather  conditions  .........................................................................................  35  

3.4.2.1   One-­‐day  measurement  campaign  ...............................................................................  35  3.4.2.2   Weekly  measurements  ................................................................................................  36  

3.4.3   Wet  weather  conditions  ........................................................................................  37  

3.4.3.1   Batch  test  with  diluted  sludge  .....................................................................................  39  3.4.3.2   Batch  test  with  concentrated  sludge  ..........................................................................  40  3.4.3.3   Comparison  between  the  different  respirograms  .......................................................  42  3.4.3.4   Batch  test  with  larger  volume  of  wastewater  .............................................................  42  3.4.3.5   Static  gas  -­‐  static  liquid  respirometry  ..........................................................................  43  

3.4.3.5.1  Acetate  as  substrate  ..............................................................................................  43  3.4.3.5.2  Wastewater  as  substrate  ......................................................................................  44  

4   CONCLUSIONS  AND  PERSPECTIVES  ..............................................................................  47  

5   REFERENCES  ................................................................................................................  49  

 

Page 8: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  iv  

LIST  OF  ABBREVIATIONS  

ASM   Activated  sludge  model  A   Area  of  top  of  sedimentation  basin  in  settling  zone  (m2)  ATU   Allylthiourea  BOD   Biological  oxygen  demand  COD     Chemical  oxygen  demand  CODdeg   Amount  of  readily  biodegradable  COD  added  to  the  batch  reactor  (mg  COD/l)  CS     Total  biodegradable  COD  concentration  of  the  sample  (mg  COD/l)  CSO   Combined  Sewer  Overflow  CSR     Total  biodegradable  COD  concentration  in  the  reactor  (mg  COD/l)  CTKN   Total  Kjeldahl  nitrogen  CTN   Total  nitrogen  concentration  CTP   Total  phosphorus  concentration  DO   Dissolved  Oxygen  Δ02   Change  in  oxygen  concentration  (mg/l)  due  to  substrate  degradation  ΔtS   Time  needed  to  degrade  the  biodegradable  substrate  present  in  sample  (s)  EBPR   Excess  biological  phosphorous  removal    h   Distance  from  water  surface  (m)  h0   Depth  of  settling  zone  in  sedimentation  basin  (m)  

hS  Height  of  particle  from  bottom  of  sedimentation  basin  at  position  entering  settling  zone  (m)  

IUWS   Integral  urban  water  system  IWA   International  Water  Association    kLa   The  oxygen  transfer  coefficient  LDO   Led  dissolved  oxygen  N.A.   Not  available  OR   Overflow  rate  (m3/m2.h)  OUR   Oxygen  uptake  rate  OURend   Endogenous  oxygen  uptake  rate  OURex   Exogenous  oxygen  uptake  rate  PAO   Phosphorous  accumulating  organism    PE   Person  equivalent  PHB   Polyhydroxybutyrate  PST   Primary  settling  tank  Q   Wastewater  flow  rate    (m3/h)  r   Distance  measured  from  centre  of  sedimentation  basin  (m)  r0   Radius  of  inlet  zone  and  settling  zone  of  sedimentation  basin    (m)  ri   Radius  of  inlet  zone  of  sedimentation  basin    (m)  rpm   Revolutions  per  minute  S   Soluble  S0   Initial  substrate  concentration  (g/l)  

Page 9: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  v  

SA   Volatile  fatty  acids  SF   Readily  fermentable-­‐  biodegradable  organic  substrate  SI   Inert,  non-­‐biodegradable  soluble  organics  SN2   Dinitrogen    SNH4   Ammonium-­‐  and  ammonia-­‐nitrogen  SNO3   Nitrate-­‐  and  nitrite-­‐nitrogen    SO   Dissolved  oxygen  concentration  (mg/l)  SO,eq   Saturated  steady  oxygen  level  (mg/l)  SO,t0   Dissolved  oxygen  concentration  of  the  solution  before  aeration  is  restarted  

(mg/l)  SPO4   Soluble  inorganic  phosphorus    Ss   Soluble  readily  biodegradable  substrate  STKN   Soluble  Kjeldahl  nitrogen    STP   Soluble  phosphorus    t   Settling  time  (h)  τ     Hydraulic  detention  time  of  sedimentation  basin  (h)  TSS   Total  suspended  solids  v0   Terminal  settling  velocity  (m/h)  vc   Particle  settling  velocity    (m/h)  vf   Fluid  velocity  (m/h)  VFA   Volatile  fatty  acids  VR   Volume  of  the  batch  reactor  (l)  vS   Particle  settling  velocity  smaller  than  vc  (m/h)  VWW   Volume  of  the  wastewater  used  in  the  experiment  (l)  WDD     Waterboard  de  Dommel  WEST   World-­‐wide  Engine  for  Simulation,  Training  and  automation    WFD   Water  Framework  Directive  WWTP   Wastewater  Treatment  Plant  X   Particulate  X0   Initial  biomass  concentration  (g/l)  XAUT   Nitrifying,  autotrophic  biomass  XH   Heterotrophic  biomass  XI   Particulate  organics    XMeP   Metal-­‐phosphate  XPAO   Phosphorus  accumulating  organisms  XPHA   Poly-­‐hydroxy-­‐alkanoate    XPP   Polyphosphate  Xs   Slowly  biodegradable  substrate    XTKN   Particulate  Kjeldahl  nitrogen    XTP   Particulate  phosphorus  YH   Heterotrophic  yield  coefficient  (mg  cell  COD/mg  COD)      

Page 10: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  vi  

SUMMARY  

This  work  focuses  on  the  role  of  the  primary  settling  tank  (PST)   in  wastewater  treatment.  The  fact  that   the   PST   changes   the   wastewater   fractions   during   the   sedimentation   process   is   often  overlooked.    However,  this  is  a  very  important  aspect  for  the  determination  of  the  organic  loading  that  has  to  be  treated   in   the   succeeding   biological   treatment   process.   This   thesis   concentrates   on   respirometric  measurements  to  characterize  the  different  COD  fractions  of  the  wastewater.      First   of   all,   ‘flowing   gas   -­‐   static   liquid’   respirometric   batch   measurements   were   performed   with  acetate  and  glucose  as  substrate.  By  dosing  a  known  amount  of   readily  biodegradable  COD  to   the  batch   reactor,   the   results  obtained  with   the   respirometer  could  be  validated.  For  both   substrates,  the   concentration   of   readily   biodegradable   substrate   could   not   be   totally   recovered   from   the  respirogram.  This  possibly  suggests  that  a  higher  yield  value  than  the  default  value  of  0.67  g  COD/g  COD   has   to   be   used   for   the   calculations.   Calculation   of   the   yield   from   the   obtained   respirograms  gives  a  value  of  0.80  g  COD/g  COD  and  0.91  g  COD/g  COD  for  acetate  and  glucose  respectively.  This  possibly   suggests   the   occurrence   of   storage,   however   no   storage   tail   was   observed.   This   could  indicate  the  occurrence  of  both  growth  and  storage  processes  simultaneously.      Secondly,  respirometric  measurements  were  performed  on  polluted  wastewater  sampled  during  dry  weather  conditions.  Results  of  the  one-­‐day  measurement  campaign  show  that  the  PST  reduces  the  biodegradable  COD  load,  as  expected.  However,  the  results  of  the  weekly  measurement  campaigns  show  the  opposite  effect,  namely  a  higher  biodegradable  COD  load  after  primary  settling.  This  could  be  caused  by  short-­‐circuiting  or  improper  sludge  withdrawal.  Further  investigation  is  needed  to  get  more  insight  on  the  impact  and  influence  of  the  primary  settler  in  wastewater  treatment.  Moreover,  simulation  experiments  in  WEST  were  performed  to  mimic  the  respirometric  profiles  obtained  after  addition  of  wastewater  to  the  batch  reactor.  It  can  be  concluded  that  simulation  of  the  experimental  data  is  possible.      Finally,   respirometric   measurements   were   performed   on   dilute   wastewater   sampled   during   wet  weather  conditions.  The   ‘flowing  gas  -­‐  static   liquid’  respirometric  protocol  seemed  not  suitable  for  the   determination   of   the   biodegradable   COD   concentration   in   the  wastewater   samples.   Changing  the   initial   substrate   to   biomass   ratio   did   not   yield   significant   improvement.   Finally   another  respirometric   principle,   namely   ‘static   gas   -­‐   static   liquid’   respirometry   was   performed.   First,   this  method   was   validated   by   adding   a   known   amount   of   readily   biodegradable   acetate.   Parameter  estimation   experiments   in   WEST   yielded   the   best   results.   However,   the   estimated   results  underestimate   the   actual   dosed   COD   concentration.   This   possibly   indicates   the   occurrence   of  storage.  However,  this  approach  seems  not  useful  for  the  determination  of  the  biodegradable  COD  concentration   in   wastewater   due   to   the   presence   of   slowly   biodegradable   substrate   (XS).   The   XS  fraction  was   probably   not   completely   degraded   before   a   new   sample  was   dosed   to   the   activated  sludge.  Therefore  the  activated  sludge  was  not  yet  in  the  endogenous  state.  However,  endogenous  conditions  of  activated  sludge  in  the  beginning  of  each  measurement  cycle  are  crucial  for  a  correct  determination  of  the  biodegradable  substrate  present  in  a  dosed  sample.    

Page 11: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  vii  

SAMENVATTING  

Dit  eindwerk  bestudeert  de  rol  van  de  primaire  bezinkingstank  in  het  afvalwaterzuiveringsproces.  Er  wordt   vaak   geen   rekening   gehouden   met   de   invloed   van   de   primaire   bezinkingstank   op   de  verschillende   biodegradeerbare   fracties   in   het   afvalwater.   Dit   is   echter   heel   belangrijk   voor   de  bepaling   van   de   organische   belasting   die   in   het   verdere   biologische   zuiveringsproces   moet  behandeld   worden.   Dit   eindwerk   richt   zich   op   de   respirometrische   karakterisatie   van   de  verschillende  CZV  (chemisch  zuurstof  verbruik)  fracties  van  het  afvalwater.    Eerst   en   vooral,   werden   ‘flowing   gas   -­‐   static   liquid’   respirometrische   metingen   uitgevoerd   met  acetaat  en  glucose  als  substraat.  Door  een  gekende  hoeveelheid  van  deze  snel  afbreekbare  stoffen  toe  te  voegen  aan  het  reactorvat,  kunnen  de  resultaten  die  verkregen  worden  met  de  respirometer  gevalideerd   worden.   Na   afleiding   van   de   snel   afbreekbare   substraat   (SS)   concentratie   uit   het  respirogram  werd  vastgesteld  dat  de  berekende  waarden  lager  waren  dan  de  werkelijk  gedoseerde  concentratie.  Een  mogelijke  verklaring  hiervoor  is  dat  er  bij  de  berekeningen  van  de  SS  concentratie  een  hogere  heterotrofe  opbrengstcoëfficiënt  (YH)  dan  de  standaardwaarde  (0.67  g  CZV/g  CZV)  moet  gebruikt  worden.  Na  afleiding  van  de  YH  uit  de  respirogrammen,  werd  voor  acetaat  en  glucose  een  waarde   van   respectievelijk   0.80   g   CZV/g   CZV   en   0.91   g   CZV/g   CZV   bekomen.   Deze   hoge  waarden  kunnen  wijzen  op  de  vorming  en  omzetting  van   reservestoffen,  hoewel  dit  niet  duidelijk   zichtbaar  was  in  het  respirogram.  Er  was  namelijk  geen  typische  opslag-­‐‘staart’  te  zien.  Dit  kan  wijzen  op  het  feit   dat   de   opslag   van   reservestoffen   en   de   groei   aan   biomassa   tegelijkertijd   plaatsvinden   en   niet  kunnen  onderscheiden  worden  in  het  respirogram.      Vervolgens   werden   respirometrische   metingen   uitgevoerd   met   afvalwater,   bemonsterd   tijdens  droog  weer,  als  substraat.  Uit  de  resultaten  van  de  eendaagse  meetcampagne  blijkt  dat  de  primaire  bezinkingstank,   zoals  verwacht,  de  organische  belasting   reduceert,  niettegenstaande  de   resultaten  van   de   wekelijkse   meetcampagnes   het   tegenovergestelde   beweren.   Uit   deze   data   kan   afgeleid  worden   dat   de   organische   belasting   na   de   primaire   bezinkingstank   groter   is.   Dit   kan   veroorzaakt  worden  door  kortsluitstromen  en  onvoldoende  verwijdering  van  het  geaccumuleerde  slib  in  de  tank.  Om   meer   inzicht   te   verkrijgen   in   de   rol   van   de   primaire   bezinkingstank   in   het  afvalwaterzuiveringsproces,   moet   bijkomend   onderzoek   uitgevoerd   worden.   Daarnaast   werden  simulatie-­‐experimenten   uitgevoerd   in   WEST   om   de   zuurstofprofielen   die   verkregen   werden   na  dosering  van  de  afvalwaterstalen  na  te  bootsen.  Hieruit  kon  besloten  worden  dat  simulatie  van  de  experimentele  data  mogelijk  was.      Tenslotte  werden  metingen  uitgevoerd  met  verdund  afvalwater,  bemonsterd  tijdens  regenweer,  als  substraat.  De  ‘flowing  gas  -­‐  static  liquid’  methode  lijkt  echter  niet  geschikt  voor  de  bepaling  van  de  concentratie   van  het  biologisch  afbreekbaar   substraat   in   sterk   verdund  afvalwater.  Het  aanpassen  van   de   initiële   substraat-­‐biomassa   verhouding,   leverde   geen   betere   resultaten   op.   Daarnaast  werden  experimenten  uitgevoerd  volgens  het  ‘static  gas  -­‐  static  liquid”  principe.  Deze  methode  werd  eerst   gevalideerd  door  een  gekende  hoeveelheid  acetaat   te  doseren.  Parameterschatting   in  WEST  leverde   de   beste   resultaten   op,   niettegenstaande   telkens   een   lagere   waarde   dan   de   werkelijk  gedoseerde   concentratie   verkregen   werd.   Dit   kan   wijzen   op   de   vorming   en   omzetting   van  reservestoffen.   Deze   methode   lijkt   echter   ook   niet   geschikt   voor   de   bepaling   van   de  

Page 12: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  viii  

biodegradeerbare  substraat  concentratie  in  afvalwater  door  de  aanwezigheid  van  traag  afbreekbaar  substraat  (XS).  Deze  XS-­‐fractie  was  waarschijnlijk  niet  volledig  afgebroken  door  de  micro-­‐organismen  vooraleer  een  nieuw  staal  werd  gedoseerd  aan  het  reactorvat.  Hierdoor  waren  de  micro-­‐organismen  in   het   actief   slib   nog   niet   in   de   endogene   respiratiefase.   Voor   een   correcte   bepaling   van   de  biodegradeerbare   substraat   concentratie   is   het   nochtans   van   cruciaal   belang   dat   de   micro-­‐organismen  in  endogene  toestand  zijn  voordat  nieuw  substraat  wordt  toegevoegd.  

Page 13: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  1  

INTRODUCTION  

Wastewater  treatment  can  be  defined  as  the  manipulation  of  water  from  various  sources  to  remove  pollutants  or  reduce  them  to  an  acceptable   level.   In  this  way,  a  water  quality  that  meets  specified  standards   set   by   a   regulatory   agency   is   obtained   (Crittenden   et   al.,   2005).   Over   the   years,  wastewater   engineering   has   progressed   from   collection   and   open   dumping   to   collection   and  treatment   prior   to   reuse.  Nowadays,   the   activated   sludge   process   has   been   applied  worldwide   in  wastewater   treatment   plants.   In   this   biological   process  wastewater   is  mixed  with   a   concentrated  suspension   of   microorganisms   (the   activated   sludge).   These   organisms   purify   the   wastewater   by  degrading   the   pollutants.   Since   several   decades,   activated   sludge   models   (ASMs)   have   been  developed  to  simulate  these  processes.      Since   2007,   a   close   collaboration  was   set   up  between  Waterboard  De  Dommel   (WDD)   and  Ghent  University  (BIOMATH)  to  model  the  Wastewater  Treatment  Plant  (WWTP)  of  Eindhoven.  This  WWTP  is  the  largest  treatment  plant  of  WDD  and  the  third  largest  treatment  plant  of  the  Netherlands  with  a   treatment   capacity   of   750,000   Person   Equivalent   (PE).   The  WWTP   discharges   effluent   into   the  Dommel,   a   relatively   small   and   sensitive   river   flowing   through   Eindhoven   (The   Netherlands).   The  river   runs   from  the  Belgian  border   (South)   into   the   river  Meuse   (North).  The  WWTP  of  Eindhoven  treats  the  wastewater  of  10  municipalities.  Under  conditions  of  heavy  rainfall,  overflows  as  a  result  of   combining   sewage   and   rainfall   water   occur   because   the   maximum   capacity   of   the   combined  sewer  system  is  reached.  Approximately  200  combined  sewer  overflows  (CSO)  are  situated  along  the  Dommel.  Due  to  the  discharge  of  effluent  from  the  WWTP  and  the  CSOs,  the  Dommel  does  not  meet  the   requirements   set   by   the   Water   Frame   Directive   (WFD)   (2000/60/EC).   This   directive   was  implemented   in   the   year   2000   and   aims   to   obtain   a   good   ecological   and   chemical   status   of   all  surface   water   by   2015   in   all   European   member   states   (Amerlinck   et   al.,   2013).   To   meet   the  requirements,  WDD   set   up   a   research   project   two   years   ago,   named   KALLISTO   (Benedetti   et   al.,  2013).  The  purpose  of  this  project  is  a  smart  improvement  of  the  surface  water  quality  of  the  river  Dommel  in  a  cost-­‐effective  manner.  The  focus  is  to  avoid  oxygen  dips  and  ammonia  peaks  caused  by  combined   discharges   of   the   biologically   treated  WWTP   effluent,   a   rainwater   settling   tank   at   the  WWTP   and   over   200   CSOs   within   the   Eindhoven   area.   By   monitoring,   modelling   and   controlling  water   flows   and   pollutions   in   combination  with   adequate   technical   and   infrastructural  measures,  WDD  tries  to  meet  the  goals  of  the  project  (Amerlinck  et  al.,  2013;  Benedetti  et  al.,  2013;  Cierkens  et  al.,  2012).    With   the  aid  of   the  WWTP  model  of  Eindhoven   the  effects  of  proposed  measures  on   the  effluent  quality  and  operation  of  the  total  system  can  be  evaluated.  This  model  has  been  integrated  within  a  model  of  the  integral  urban  water  system  (IUWS)  of  Eindhoven.  It  is  this  IUWS  model  that  the  WDD  uses  for  the  global  optimization  (Amerlinck  et  al.,  2013;  Benedetti  et  al.,  2013;  Cierkens  et  al.,  2012).  The  model   of   the  WWTP   of   Eindhoven   is   composed   of   different   submodels   of   all   subunits   in   the  WWTP  (Cierkens  et  al.,  2012).      This  thesis  will  focus  on  the  role  of  the  primary  settling  tank  (PST)  in  wastewater  treatment.  Primary  settling  has  often  been  neglected,  although  previous  studies  showed  that  typical  wastewater  ratios,  like  biodegradable  to  unbiodegradable  ratio,  are  modified  by  primary  treatment  (Bachis  et  al.,  2014).  In   order   to   improve   the   WWTP   model   special   attention   needs   to   be   given   to   the   primary  

Page 14: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  2  

sedimentation   tanks   because   the   current   models   are   not   able   to   describe   system   behavior.   To  simulate  the  different  processes,  the  wastewater  is  divided  into  several  fractions,  which  requires  an  intensive  wastewater  characterisation.      Objectives  The  objective  of  this  thesis  is  to  characterize  the  wastewater  of  primary  settlers  in  view  of  improving  the  WWTP   model   of   Eindhoven   under   different   weather   conditions   (dry   and   rain   weather).   This  thesis   focuses   on   the   biological   characterisation   of   the   different   COD   fractions   of   the  wastewater  based  on  respirometric  analysis.  The  influence  of  primary  settlers  on  the  wastewater  COD  fractions  is  investigated  by  comparing  these  fractions  in  inlet  and  outlet  samples  taken  from  primary  settlers.  Special   attention   will   be   given   to   the   respirometric   analysis   of   wastewater   sampled   during   wet  weather  conditions.      Outline  First  of  all,   a   literature   review   is  given   in  chapter  1.  The   first   section  deals  with   the  principles  and  different  types  of  sedimentation.  The  general  layout  of  a  sedimentation  tank  is  discussed,  including  the   different   design   considerations.   The   second   part   gives   an   overview   of   the   activated   sludge  models.  Special  attention  is  given  to  the  ASM2d  model,  which  serves  as  a  basis  for  the  WWTP  model  for   the   biological   processes.   In   the   last   section,   the   principle   of   respirometry   is   explained   and   an  overview  of  different  methodologies  is  given.    In  the  second  part,  the  different  materials  and  methods  used  during  this  thesis  are  described.  First  of  all,  a  description  is  given  of  the  layout  of  the  different  WWTPs  where  measurements  campaigns  took  place.   Then  an  overview  of   the   respirometric  protocol   is  presented,   including  a  description  of   the  methods  used  to  obtain  the  different  COD  fractions.  Finally,  the  modelling  software  is  introduced.      In   the   third  part,   the  obtained   results  are  presented.  Firstly,   the  applied  method   for  evaluation  of  the   respirograms   is   discussed.   Thereafter   the   respirometric  measurements  of   acetate   and  glucose  are  interpreted.  In  the  next  section,  the  measurements  of  wastewater  of  real  full-­‐scale  WWTPs  are  presented.  A  distinction   is  made  between  the  results  obtained  for  wastewater  sampled  during  dry  weather  conditions  and  wet  weather  conditions.  First  of  all,  the  results  of  the  wastewater  sampled  during  dry  weather  conditions  are  discussed.  The  different  COD  wastewater  fractions  of  the  influent  and  effluent  of  the  PST  are  illustrated  and  compared.  Thereafter,  the  different  efforts  to  characterize  the   dilute   wastewater   sampled   during   wet   weather   conditions   are   presented.   The   ratio   of   initial  substrate  to  initial  biomass  is  adapted  and  a  ‘static  gas  -­‐  static  liquid’  approach  is  applied.    Finally,   in   the   last  part   the  general   conclusions   that   can  be  drawn   from  the   results  are  presented.  Moreover,  some  suggestions  and  ideas  for  further  research  are  given.    

     

Page 15: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  3  

1 LITERATURE  REVIEW    

1.1 Primary  sedimentation  

Primary   sedimentation   is   a   preliminary   step   in   the   further   processing   of   the   wastewater.   Some  WWTPs   use   mechanically   cleaned   sedimentation   tanks   of   standardized   circular   or   rectangular  design.  The  primary  settling  tanks  are  designed  to  reduce  the  suspended  solids  content  by  removing  the  readily  settleable  solids  and  floating  material.  Approximately  50  to  70%  of  the  suspended  solids  and  25  to  40%  of  the  biological  oxygen  demand  (BOD)  are  removed.  This  helps  to  reduce  the  load  on  the   secondary   biological   reactors   (Metcalf   and   Eddy,   2003;   Riffat,   2013).   Rules   and   regulations   of  local  control  authorities,  local  site  conditions,  size  of  the  plant  and  the  experience  and  judgement  of  the  engineer  determine  the  type  of  clarifier  selected.  Two  or  more  tanks  should  be  provided  in  order  to  allow  for  downtime  due  to  cleaning  or  maintenance  and  to  enable  continuous  operation  (Riffat,  2013;  Tchobanoglous  et  al.,  2003).      

1.1.1  Types  of  sedimentation    During   the   sedimentation   process,   suspended   particles   heavier   than   water   are   separated,   by  gravitational  settling  (Metcalf  and  Eddy,  2003).  Wastewater  consists  of  a  wide  variety  of  suspensions  ranging   from   a   very   low   concentration   of   nearly   discrete   particles   to   a   high   concentration   of  flocculent   solids.   These   suspensions   have   different   settling   characteristics   and   are   separated   into  four  categories  based  on  their  concentration  and  morphology,  as  shown  in  Figure  1-­‐1  (Crittenden  et  al.,  2005;  Riffat,  2013).      

Page 16: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  4  

 Figure  1-­‐1:  Relationship  between  settling  type,  concentration,  and  flocculent  nature  of  particles  (Crittenden  et  al.,  2005)  

 1) Type  I:  discrete  particle  settling    

Discrete  particles  are   those  whose   size,   shape  and   specific   gravity  do  not   change  with  time   (Peavy   et   al.,   1985).   This   type   of   sedimentation   refers   to   settling   of   discrete  particles  in  dilute  suspensions  in  relatively  low  concentrations  (≤ ~  200  mg/l).  Discrete  particles  will   not   readily   flocculate  and   settle   as   individual   entities  because  of   the   low  particle   concentration.   Moreover   they   do   not   significantly   interact   with   neighbouring  particles.  An  example  of  this  type  of  settling  is  encountered  in  wastewater  grit  chambers  and   in   clarification   of   certain   industrial   wastes   (e.g.,   sand   and   gravel   washings)  (Crittenden  et  al.,  2005;  Metcalf  and  Eddy,  2003;  Montgomery,  1985;  Riffat,  2013).    

 2) Type  II:  flocculent  settling  

Flocculent  particles  are  those  with  a  tendency  to  flocculate  as  they  come  in  contact  with  other   particles   during   the   sedimentation   process.   Flocculation   is   caused   by   two  phenomena:    

Water  displaced  from  pores  as  particles  settle  and  

compress  Particles  compact  as  settling  proceeds  

Type  IV    Compression    

settling  

Type  III  Hindered    Or  zone  settling  

Type  I  Discrete  particle  

settling  

Particles  settling  without  influencing  other  particles  

Type  II    Flocculant    settling  

Differential  flow  paths  

Flocculant    particles  

Particle  con

centratio

n,  m

g/l  

1000

 

       Discrete   Flocculant    Particle  morphology  

3000

 20

0  

Page 17: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  5  

a) Due   to   presence   of   particles   with   different   settling   velocities,   faster   settling  particles  overtake  the  slowly  settling  particles  and  flocculate  with  them.    

b) Velocity  gradients  in  the  liquid  cause  particles  in  a  region  of  a  higher  velocity  to  flocculate   with   those   in   adjacent   stream   paths   moving   at   slower   velocities.  However,  this  occurs  to  a  lesser  degree  in  a  PST.      

This  leads  to  particles  increasing  in  size,  shape  and  mass,  thus  resulting  in  particles  with  a  larger  settling  rate.  This  type  of  sedimentation  is  observed  in  PSTs  during  the  removal  of   suspended   solids,   in   the   upper   portion   of   secondary   clarifiers   and   in   clarifiers  following   coagulation-­‐flocculation   (Crittenden   et   al.,   2005;  Montgomery,   1985;   Riffat,  2013).    

 3) Type  III:  hindered  settling  or  zone  settling  

This  type  of  settling  refers  to  sedimentation  of  particles  in  suspensions  of   intermediate  concentration  (~  200  mg/l   -­‐  1000  mg/l).   Interparticle  forces  tend  to  hinder  the  settling  of   adjacent   particles   by   decreasing   the   settling   velocity.   This   type   of   settling   is  mostly  observed  in  secondary  clarifiers  following  biological  treatment.  The  influent  of  the  PSTs  is  not  often  of  sufficient  particle  concentration  to  encounter  zone  settling  (Montgomery,  1985;  Riffat,  2013).    

 4) Type  IV:  compression  settling    

Compression  settling  occurs  in  highly  concentrated  suspensions,  where  due  to  the  high  concentration  (~  1000  -­‐  3000  mg/l)  a  structure  is  formed  and  settling  can  occur  only  by  compression   of   that   structure   caused   by   the   weight   of   the   particles.   Compression  settling   is   observed   at   the   bottom   of   secondary   clarifiers   following   activated   sludge  reactors  and  also  in  solid  thickeners  (Riffat,  2013).    

 

1.1.2 Design  of  ideal  sedimentation  tank    An  ideal  sedimentation  tank  is  designed  to  completely  remove  the  particles  with  a  specified  settling  velocity  vo.  All  particles  with  a  terminal  settling  velocity  greater  than  vo  will  be  completely  removed,  while  particles  with  a   lower   settling   velocity  will   be   fractionally   removed.   Let  us   consider   an   ideal  circular   clarifier   as   shown   in   Figure   1-­‐2.   The   settling   zone   extends   from   radius   ri   to   r0   and   the  wastewater  flow  rate  is  Q.  The  flow  paths  of  two  particles,  P1  and  P2,  are  illustrated,  along  with  their  horizontal  and  vertical  components  of  velocity.  The  fluid  enters  the  basin  in  the  centre  of  the  basin  (inlet  zone)   through  the  settling  zone  and   its  velocity  changes  according   to   the   following  equation  (Crittenden  et  al.,  2005;  Metcalf  and  Eddy,  2003):  

𝑣! =𝑄

2𝜋 𝑟 − 𝑟! ℎ!   (1-­‐1)  

  where       vf  =  fluid  velocity,  m/h         Q  =  flow  rate,  m3/h         r  =  distance  measured  from  centre  of  basin,  m         ri  =  radius  of  inlet  zone,  m         h0  =  depth  of  settling  zone,  m  

Figure  1-­‐2  shows  the  flow  path  of  particle  1,  starting  at   the  top  of   the   inlet  zone  and  entering  the  sludge  zone  just  before  the  outlet  zone.  The  settling  velocity  vc  of  particle  1  and  the  distance  it  has  settled  are  related  as  follows:    

Page 18: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  6  

ℎ = 𝑡𝑣! =𝜋 𝑟! − 𝑟!! ℎ!

𝑄𝑣!   (1-­‐2)  

where       h  =  distance  from  water  surface  for  particle  1  (Figure  1-­‐2),  m         t  =  settling  time,  h         vc  =  particle  settling  velocity,  m/h  

Discrete  particles  follow  a  parabolic  path  in  a  circular  sedimentation  basin.  Particles  with  a  settling  velocity   greater   than   or   equal   to   vc   will   be   completely   removed.   The   settling   velocity   and   the  overflow  rate  are  related  as  follows:    

𝑣! =ℎ!𝜏=

ℎ!𝑄𝜋 𝑟! − 𝑟!! ℎ!

=𝑄

𝜋 𝑟! − 𝑟!!=𝑄𝐴= 𝑂𝑅    (1-­‐3)  

where       h0  =  depth  of  settling  zone,  m       τ  =  hydraulic  detention  time  of  basin,  h  

Q  =  flow  rate,  m3/h  r0  =  radius  of  settling  zone  and  inlet  zone,  m  ri  =  radius  of  inlet  zone,  m  

    A  =  area  of  top  of  basin  in  settling  zone,  m2         vc  =  particle  settling  velocity,  m/h    

OR  =  overflow  rate,  m3/m2.h  Assuming   the   inlet   zone   is   homogenous,   particles   can   enter   the   settling   zone   at   any   height   hs.  Particles  with   a   settling   velocity   vs   greater   than   or   equal   to   the   critical   settling   velocity   vc   will   be  completely   removed   irrespective   of   the   starting   height   because   they   will   reach   the   sludge   zone  before  they  exit  the  basin.    Particles  with  a   settling   velocity   less   then   vc  may  also  be   removed  but   their   starting  position   is   of  critical   importance.  Particles  at   the  top  of   the  basin  will  not  be  removed  as   they  will  pass   through  the  settling  zone  and  exit   in  the  outlet  zone.  On  the  other  hand,  particles  starting  at  height  hs  and  lower  will  be  removed  because  they  will  enter  the  sludge  zone  before  exiting  the  basin,  as  shown  in  Figure  1-­‐2.  The  fraction  of  particles  that  will  be  removed  is  equal  to:    

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑜𝑓  𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠  𝑟𝑒𝑚𝑜𝑣𝑒𝑑 =ℎ!ℎ!

=ℎ! 𝜏ℎ! 𝜏

=𝑣!𝑂𝑅

=𝑣!𝑣!  (𝑣! < 𝑣!)  

(1-­‐4)  

where     hs  =  height  of  particle  from  bottom  of  tank  at  position  entering  settling  zone,  m    

    vs  =  particle  settling  velocity  smaller  than  vc,  m/h  other   terms   are   defined   above   (Crittenden   et   al.,   2005;  Metcalf   and   Eddy,  2003;  Riffat,  2013).    

Page 19: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  7  

Figure  1-­‐2:  Analysis  of  particle  settling  in  an  ideal  circular  sedimentation  tank:  (a)  plan  view  of  circular  sedimentation  tank  and  (b)  particle  trajectory  of  discrete  particles  in  settling  zone  of  circular  sedimentation  tank  (Crittenden  et  al.,  2005)  

 

1.1.3 Circular  tanks  Conventional   primary   sedimentation   tanks   used   in   wastewater   treatment   are   of   rectangular,  circular,   or   square   configuration.   Only   circular   tanks   will   be   discussed   because   the   WWTPs   of  Roeselare  and  Eindhoven  used   in   this  work  both  have   circular   sedimentation   tanks.  The  design  of  primary  clarifiers   is  determined  by  the  detention  time,  the  overflow  rate  and  the  weir   loading  rate  (Riffat,  2013).  The  diameter  of  the  circular  basins  is  normally  calculated  on  the  basis  of  the  overflow  rate  (Montgomery,  1985).  As  shown  in  Figure  1-­‐3,  the  wastewater  typically  enters   in  the  center  of  the   basin   to   obtain   a   radial   flow   pattern.   The   inlet   structure   normally   consists   of   a   circular   weir  around  the   influent  vertical  rise  pipe,  which   is  designed  to  distribute  the  water  uniformly  over  the  entire  cross  section  of  the  tank.  The  inlet  weir  provides  space  for  energy  dissipation  and  directs  the  flow  downward  into  the  depths  of  the  settling  tank  where  particles  are  removed  (Metcalf  and  Eddy,  2003;  Montgomery,  1985;  Riffat,  2013).  The  bottom  of  the  basin  is  sloped  to  form  an  inverted  cone.  The  solids,  which  settle  out,  are  removed  by  scrapers  that  move  along  the  bottom  of  the  tank,  into  a  hopper   located   near   the   center.   There,   they   are   withdrawn   by   sludge   pumps   (Heynderickx   and  Defrancq,  2013;  Metcalf  and  Eddy,  2003;  Montgomery,  1985).  The  outlet  structure  normally  consists  of  a   single,  V-­‐notch  weir   constructed  at   the  outside  perimeter  of   the   tank.  Baffles  near   the  outlet  and  surface-­‐skimming  devices  are  usually  not  provided,  unless  the  influent  water  has  problems  with  debris  and  flotable  material  (Montgomery,  1985).    

Effluent  launder  (Outlet  zone)   Inlet  zone  

r0  r  

ri  

dh  dr  

Particle  1  

Particle  2   vf1  vf2      vs1  =  vc  

vs2   Settling  zone  

Sludge  zone  

Inlet  zon

e  

Outlet  zon

e  h  

h0  

hS  Effluent  

Influent  

Flow  rate    Q  

Settling  zone  

Area,  A  

(a)   (b)  

Page 20: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  8  

 Figure  1-­‐3:  Circular  sedimentation  tank  with  central  feed  (Riffat,  2013)  

 

1.1.4 Sedimentation  tank  performance  Typical   performance   curves   for   the   BOD   and   total   suspended   solids   (TSS)   removal   in   primary  sedimentation   tank,   as   a   function   of   the   detention   time   and   BOD   concentration   has   been  established.   But   the   fact   that   the   PST   changes   the   wastewater   characteristics   through   the  sedimentation   process   is   often   overlooked.   Larger,   more   slowly   biodegradable   suspended   solids  settle   first,   while   the   soluble   fraction   remains   in   the   primary   tank   effluent.   Values   describing   the  removal  efficiencies  of  PSTs  for  the  different  COD  fractions  of  wastewater  have  rarely  been  reported  in  literature.  Nevertheless  the  removal  efficiency  of  PSTs  is  very  important  for  the  determination  of  the  organic   loading   that  has   to  be   treated   in   the  succeeding  biological   treatment  process   (Metcalf  and  Eddy,  2003).    

1.1.5 Design  considerations  The   efficiency   of   a   sedimentation   tank   for   the   removal   of   BOD   and   TSS   is   reduced   by   (1)   eddy  currents   formed   by   the   inertia   of   the   incoming   fluid,   (2)  wind-­‐induced   circulation   cells   formed   in  uncovered  tanks,  (3)  thermal  convection  currents,  (4)  cold  or  warm  water   leading  to  the  formation  of   density   currents   that  move   along   the   bottom   of   the   basin   and  warm  water   rising   and   flowing  across  the  top  of  the  tank  and  (5)  thermal  stratification  in  hot  arid  climates  (6)  outlet  currents  and  (7)   currents   due   to   the   movement   of   equipment   within   the   basin   (e.g.   sludge   collection  mechanisms).   The   impact   of   these   effects   depends   on   the   material   being   removed   and   its  characteristics   (Metcalf  and  Eddy,  2003).  Due  to  these  effects,  many  parameters,  such  as  overflow  rate,   detention   period,   weir-­‐loading   rate,   shape   and   dimensions   of   the   basin,   inlet   and   outlet  structures  and  sludge  removal  systems  need  to  be  considered  during  the  design  of  a  sedimentation  basin  (Crittenden  et  al.,  2005;  Metcalf  and  Eddy,  2003).  The  most  important  design  parameters  for  PSTs   are   (1)   detention   time,   (2)   overflow   rate,   and   (3)  weir   loading   rate.   Sedimentation   tanks   are  designed   for   average   flow   rate   conditions.   During   peak   flow   conditions,   flow   rates   can   be   2   to   6  times   the  average   rates.  Hence   the  detention  period  gets   reduced  due   to  an   increase   in  overflow  rate  and  consequent  overloading  for  a  short  period.  Because  of  this,  equalization  tanks  can  be  build  ahead   of   the   PSTs   to   provide   an   uniform   loading   and   thereby  maximizing   the   PST   efficiency   and  reducing  the  load  on  downstream  biological  processes  (Riffat,  2013).       Overflow   rate   or   surface   loading   rate:   the   surface   loading   rate   represents   the   hydraulic  loading  expressed  as   cubic  meter  per   square  meter  of   surface  area  per  day,  m3/m2.d.  The   type  of  

Drive  motor   Walkway  

Skimmer  

Flow  

Sludge  scraper  

Effluent  overflow    weir  

 Flow  

Influent  well  

Sludge  Influent  

Page 21: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  9  

suspension  to  be  separated  determines  the  loading  rate.  After  establishing  the  area  of  the  tank,  the  detention   period   is   determined   by   the  water   depth.   Based   on   average   flow,   typically   a   detention  time   of   1.5   to   2.5h   is   achieved.   It   is   important   that   overflow   rates   are   low   enough   to   ensure  adequate  performance  at  peak  flow  conditions  (Metcalf  and  Eddy,  2003).       Detention  time:  PSTs  have  normally  a  detention  period  of  1.5  to  2.5  h  based  on  the  average  rate  of  wastewater  flow.  Shorter  detention  periods  lead  to  less  removal  of  suspended  solids  and  are  sometimes  used   for  preliminary   treatment  ahead  of  biological   treatment  units.   In   colder   climates,  the  detention  time  necessary   to  achieve  an  adequate  efficiency   is  higher   than   in   tropical  climates.  Lower  temperatures  increase  the  water  viscosity  and  subsequently  retard  particle  settling.  Thus,   in  cold   climates,   safety   factors   need   to   be   considered   in   clarifier   design   to   ensure   adequate  performance  (Metcalf  and  Eddy,  2003).    

Weir  loading  rates:  In  general,  there  is  no  evidence  that  weir  loading  rates  have  a  significant  influence   on   the   efficiency   of   PSTs.   Typically   the   weir   loading   is   250   m3/m.d   (Metcalf   and   Eddy,  2003).    

Scour   velocity:   the   horizontal   velocities   through   the   tank   should   be   kept   low   enough   to  avoid  the  resuspension  of  settled  particles  (Metcalf  and  Eddy,  2003).      

1.2 Activated  sludge  modelling    

1.2.1 Introduction  In   1983   the   International  Water   Association   (IWA)   assigned   a   task   group   to   review  modelling   of  activated   sludge   systems   incorporating   COD   removal,   nitrification   and   denitrification.   In   1987   the  Activated  Sludge  Model  No.  1  (ASM1)  was  introduced.  A  drawback  of  this  model  was  that  it  did  not  include   excess   biological   phosphorous   removal   (EBPR).   Some   microorganisms,   present   in   the  activated   sludge,   have   the   ability   to   take   up   phosphorus   in   excess   of   that   required   for   growth  (Melcer  et  al.,  2003).  Therefore  in  1995  a  new  model  ASM2  was  introduced  that  included  a  new  type  of   microorganisms,   namely   phosphorous   accumulating   organisms   (PAOs).   ASM2d   is   a   minor  extension  of  ASM2  and  takes  into  account  that  PAOs  can  use  cell   internal  organic  storage  products  for  denitirification  while  ASM2  assumes  that  PAOs  only  grow  under  aerobic  conditions  (Henze  et  al.,  1999).   In   1999   a   new   model   of   the   ASM   family   was   developed,   namely   ASM3.   It   modifies   the  conceptual   model   of   ASM1   and   introduces   storage   of   organic   substrates   as   a   new   process.  Additionally,  the  death-­‐decay  process  for  heterotrophic  organisms  is  substituted  by  an  endogenous  respiration  process  whereby  hydrolysis  is  independent  of  the  electron  donor  (Melcer  et  al.,  2003).      

1.2.1.1 The  carbonaceous  fraction    

Carbonaceous  material  measured  by  BOD  or  COD  analyses  is  critical  to  the  activated-­‐sludge  process  design.  Higher  concentrations  of  degradable  COD  or  BOD  cause  (1)  a   larger  aeration  basin  volume,  (2)  more  oxygen  transfer  needs,  and   (3)  greater  sludge  production   (Metcalf  and  Eddy,  2003).  COD  was  chosen  as   the  most   suitable  model  component   for  defining   the  carbonaceous  substrates  as   it  provides  a   link  between  electron  equivalents   in   the  organic   substrate,   the  active  biomass  and   the  oxygen   utilized   (Cokgör   et   al.,   1998).   In   ASM2   and   ASM2d  models,   the   total   influent   COD   of   the  wastewater   is   divided   into   nine   fractions.   Figure   1-­‐4   shows   the   most   important   influent   COD  fractions,  which  are  used  as  component  variables  in  activated  sludge  models  (Pasztor  et  al.,  2008).  

Page 22: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  10  

(i) In   the   model,   the   total   influent   COD   is   divided   into   soluble   (S)   and   particulate   (X)  components.   All   particulate  model   components  must   be   electrically   neutral,  while   soluble  components  can  have  an  ionic  charge.  

(ii) The   COD   is   further   subdivided   into   biodegradable   organic   matter   and   non-­‐biodegradable  matter.   The   inert,   non-­‐biodegradable   soluble   organics   (SI)   and   particulate   organics   (XI)  cannot   be   degraded   within   the   treatment   plants   considered.   They   are   either   part   of   the  influent  or  may  be  produced  by  hydrolysis  of  particulate   substrates   (Xs)  or  during  biomass  decay  (XI),  respectively.    

(iii) The  biodegradable  matter  is  further  divided  into  soluble  readily  biodegradable  substrate  (Ss)  and  slowly  biodegradable  substrate  (Xs).  The  readily  biodegradable  substrate  was  introduced  as  a  component  in  ASM1  but  is,   in  ASM2d,  substituted  by  the  sum  of  readily  (fermentable)  biodegradable   organic   substrate   (SF)   and   Volatile   Fatty   Acids   (VFA)   (SA).   The   readily  (fermentable)   biodegradable   organic   substrate   is   directly   available   for   biodegradation   by  heterotrophic   organisms.   The   volatile   acids   are   fermentation   products,   considered   to   be  acetate   for   all   stoichiometric   computations   where   in   reality   an   entire   range   of   other  fermentation   products   are   possible.   The   slowly   biodegradable   substrate   has   a   high  molecular   weight,   is   colloidal   or   particulate   and   can   only   be   degraded   after   external  hydrolysis.  

(iv) Finally,   the   heterogeneity   of   the   biomass   is   expressed   by   three   kinds   of   organisms:   the  nitrifying,   autotrophic   biomass   (XAUT),   the   heterotrophic   biomass   (XH)   and   the   phosphorus  accumulating   organisms   (XPAO).   The   nitrifiers   are   responsible   for   nitrification   by   oxidizing  ammonia-­‐   and   ammonium   nitrogen   (SNH4)   directly   to   nitrate   (SNO3).   The   heterotrophs  hydrolyse  particulate  substrates  Xs  and  can  use  all  degradable  organic   substrates  under  all  relevant  environmental  conditions.  The  phosphorus  accumulating  organisms  stands  for  the  ‘true’  biomass  and  do  not  include  the  cell  internal  storage  products  polyphosphate  (XPP)  and  poly-­‐hydroxy-­‐alkanoate  (XPHA).  It  is  assumed  that  these  organisms  grow  in  anoxic  and  aerobic  conditions.    

 Summarising,   The   total   COD   balance   in   the   model   ASM2d   consists   of   the   following   components  (Henze  et  al.,  1995,  1999):  

𝐶𝑂𝐷  !"! = 𝑆! + 𝑆! +  𝑆! +  𝑋! +  𝑋! +  𝑋! +  𝑋!"# +  𝑋!"# +  𝑋!"#   (1-­‐5)    

Page 23: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  11  

 Figure  1-­‐4:  Influent  COD  fractions  in  ASM  models  (Henze  et  al.,  1999;  Pasztor  et  al.,  2008)    

 

1.2.1.2 The  Nitrogenous  fraction  

In  ASM2  it  is  stated  that  there  is  in  general  no  need  to  characterize  the  nitrogen  fractions  in  as  much  detail  as  for  organic  matter.  One  reason  for  this  is  that  the  major  part  of  the  nitrogen  in  wastewater  is  present  as  ammonia,  which  has  no  coupling  to  the  organic  components.  For  the  organic  part  of  the  nitrogen,  it  is  sufficient  to  use  fixed  nitrogen  fractions  for  the  various  COD  components  (Henze  et  al.,  1995).  The  autotrophic  oxygen  demand  and  the  required  denitrification  capacity  are  determined  by  the  amount  of  nitrogen  available  for  oxidation  (Roeleveld  and  van  Loosdrecht,  2002).    The   total   nitrogen   concentration   (CTN)   in   municipal   wastewater   is   the   sum   of   the   total   Kjeldahl  nitrogen  (CTKN)  and  nitrate-­‐  and  nitrite-­‐nitrogen  (SNO3):    

𝐶!" =  𝐶!"# + 𝑆!"! =  𝑋!"# + 𝑆!"#   +  𝑆!"!   (1-­‐6)  The  influent  TKN  consists  of  ammonia  and  organic  nitrogen  (Metcalf  and  Eddy,  2003).  Equation  1-­‐6  shows  that  the  total  Kjeldahl  nitrogen  can  be  written  as  the  sum  of  the  particulate  Kjeldahl  nitrogen  (XTKN)   and   the   soluble   Kjeldahl   nitrogen   (STKN).   The   particulate   Kjeldahl   nitrogen   is   all   the   nitrogen  bound  to  the  organic  particulate  fractions,  except  for  XPHA  (Henze  et  al.,  1995).  The  soluble  Kjeldahl  nitrogen  is  dominated  by  ammonium-­‐nitrogen,  SNH4,  which  is  readily  available  for  bacterial  synthesis  and  nitrification  (Metcalf  and  Eddy,  2003).    1.2.1.3 The  phosphorus  fraction    

As   for   the   nitrogen   fraction,   there   is   no   need   to   characterize   the   phosphorus   fraction   in   as  much  detail  as  for  organic  matter.  It  is  often  sufficient  to  couple  a  fixed  phosphorus  fraction  to  the  various  COD  fractions.  The  total  phosphorus  concentration  (CTP)  in  raw  municipal  wastewater  is  the  sum  of  the  particulate  phosphorus  (XTP)  and  the  soluble  phosphorus  (STP):    

𝐶!" =    𝑋!" + 𝑆!"   (1-­‐7)  

Soluble  non-­‐  biodegradable    

SI  

Particulate  non-­‐  biodegradable    

XI    

Readily  Biodegradable  

Ss  

Slowly  Biodegradable  

Xs  

Total  influent  COD  

Biodegradable  COD   Biomass  COD   Non-­‐  biodegradable  COD  

Autotrophic    XAUT

 Heterotrophic    

XHET

 P-­‐accumulating  

XPAO

 

Non  VFA  SF  

VFA  SA  

    =  In  all  ASM  models  

    =  In  ASM2d    

Page 24: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  12  

The   particulate   phosphorus   includes   inorganic   metal   phosphorus   (XMeP)   and   organic   phosphorus  (Henze   et   al.,   1995).   The  metal-­‐phosphate,  MePO4   (XMeP)   results   from   binding   phosphorus   to   the  metal-­‐hydroxides.   It   is   assumed   that   this   component   is   composed   of   FePO4,   for   all   stoichiometric  computations  (Henze  et  al.,  1999).  The  soluble  phosphorus  consists  of  soluble  inorganic  phosphorus  (SPO4)  and  soluble  organic  phosphorus.      

1.2.2 Processes  in  ASM2d    

1.2.2.1 Hydrolysis  processes    

Slowly   biodegradable   substrates   (XS)   cannot   be   utilized   directly   by   microorganisms   and   must   be  converted   to   fermentable,   readily   biodegradable   matter   (SF).   This   occurs   by   means   of   external  enzymatic   reactions,   which   are   called   hydrolysis   processes   and   can   only   be   catalysed   by  heterotrophic   organisms.   It   is   assumed   that   due   to   hydrolysis   a   small   fraction   of   inert   organic  material  SI   is  released.  Typically  hydrolysis  processes  occur  at  the  surface  in  close  contact  between  the   organisms,   which   provide   the   hydrolytic   enzymes,   and   the   slowly   biodegradable   substrates.  There   is   experimental   evidence   that   ‘hydrolysis’   reactions   depend   on   the   available   electron  acceptors.  Three  hydrolysis  processes  are  considered  in  ASM2d:    

(i) Aerobic  hydrolysis  of  slowly  biodegradable  substrate  when  there  is  enough  dissolved  oxygen  present    

(ii) Anoxic  hydrolysis  of  slowly  biodegradable  substrate  under  anoxic  conditions  when  there   is  little   dissolved   oxygen   and   enough   nitrate   present.   This   process   is   typically   slower   than  aerobic  hydrolysis.    

(iii) Anaerobic   hydrolysis   of   slowly   biodegradable   substrate   under   anaerobic   conditions   when  there   is  no  dissolved  oxygen  and   little  nitrate  present.   This  process   is   slower   than  aerobic  hydrolysis.    

Because   of   the   assumption   that   the   fraction   of   nitrogen   in   the   slowly   biodegradable   matter   is  constant,   there   is   no   need   to   include   a   separate   hydrolysis   process   for   the   particulate   organic  nitrogen  as  was  the  case  in  ASM1  (Henze  et  al.,  1999).      

1.2.2.2 Processes  of  facultative  heterotrophic  organisms    

Heterotrophic  organisms  XH  are  responsible  for  the  hydrolysis  of  slowly  biodegradable  substrate  (XS),  the   aerobic   degradation  of   fermentable  organic   substrates   (SF)   and  of   fermentation  products   (SA),  anoxic   oxidation   of   SF   and   SA,   denitrification   and   anaerobic   fermentation   of   SF   to   SA.   Finally,   the  heterotrophic  organisms  undergo  decay  and  lysis.  The  aerobic  growth  of  heterotrophic  organisms  on  SF  and  on  SA  requires  oxygen,  nutrients;  SNH4  and  SPO4,  and  possibly  alkalinity;  SALK.  During  the  aerobic  growth,  the  heterotrophs  produce  suspended  solids;  XTSS.  The  anoxic  growth  of  the  heterotrophs  on  SF  and  SA  require  nitrate,  SNO3,  as  the  electron  acceptor.  It  is  assumed  that  all  nitrate,  SNO3,  is  reduced  to  dinitrogen,  SN2.  During  the  fermentation  process  readily  fermentable  biodegradable  substrates,  SF  are   transformed   into  negatively   charged   fermentation  products   SA,   and   therefore  alkalinity,   SALK   is  used  to  keep  the  electrical  continuity.  Finally  the  lysis  of  the  heterotrophic  organisms  is  the  sum  of  all   decay   and   loss   processes,   like   endogenous   respiration,   lysis,   predation,   etc..   The   electron  acceptor  determines  its  rate  (Henze  et  al.,  1999).      

Page 25: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  13  

1.2.2.3 Processes  of  phosphate  accumulating  organisms    

The   phosphate   accumulating   organisms   (PAO)   accumulate   phosphorus   in   the   form   of   poly-­‐phosphate  XPP.  In  ASM2,  it  was  assumed  that  PAO  could  not  denitrify  but  experimental  evidence  has  shown   that   some   of   them   can   denitrify.   This   denitrification   capacity   of   the   PAO   had   been  implemented  in  the  ASM2d  model  but  there  is  not  any  consideration  of  the  importance  of  glycogen  as  cell  internal  organic  storage  material.    The  PAO  can  grow  under  aerobic  (SO2  >  0)  as  well  as  anoxic  (S02  ≈  0,  SNO3  >  0)  conditions.  It  is  assumed  that   the  PAO  only  grow  on  cell   internal   stored  organic  materials,  XPHA.  These  XPHA  are  stored  using  the   energy,   which   becomes   available   from   the   hydrolysis   of   poly-­‐phosphate,   XPP.   This   process  proceeds   under   anaerobic   conditions,   but   has   also   been   reported   under   aerobic   and   anoxic  conditions.  Therefore  the  model  does  not  contain  inhibition  terms  for  SO2  and  SNO3.    The  PAO  gain  energy  from  the  aerobic  or  anoxic  respiration  of  XPHA  to  store  ortho-­‐phosphate,  SPO4,  in  the   form  of  cell   internal  poly-­‐phosphates,  XPP.  When  the  phosphorus  content  of   the  PAO  becomes  too  high,  the  storage  of  XPP  stops.  This  is  modelled  by  using  an  inhibition  term  of  XPP  storage,  which  becomes  active  as  the  ratio  XPP/XPAO  comes  close  to  the  maximum  allowable  value  of  KMAX.    It   is  assumed  that  PAO  grow   in  aerobic  and  anoxic  conditions  only  on  cell   internal  organic  storage  products  XPHA.  Moreover  it  is  considered  that  these  organisms  consume  ortho-­‐phosphate,  SPO4,  as  a  nutrient  for  the  production  of  biomass  since  phosphorus  is  continuously  released  by  the  lysis  of  XPP.  It   is   known   that   PAO   may   also   grow   on   soluble   substrates   (e.g.   SA),   but   it   is   unlikely   that   these  substrates   become   available   under   aerobic   or   anoxic   conditions   in   a   biological   nutrient   removal  plant.  That  is  why  in  the  model  this  possibility  is  neglected.    Lysis  of  PAO  entails  death,  endogenous  respiration  and  maintenance  and  results  in  the  loss  or  decay  of  all  fractions  of  PAO;  the  organisms  itself  XPAO,  the  poly-­‐phosphate,  XPP  and  the  cell  internal  organic  storage  products,  XPHA.  These  three   lysis  processes  are  modelled  as   first-­‐order  reactions  relative  to  the   component,   which   is   lost.   The   cell   internal   storage   products   are   assumed   to   decay   to   ortho-­‐phosphate,  SPO4  and  fermentation  products  SA  (Henze  et  al.,  1999).      

1.2.2.4 Nitrification  processes    

Nitrification   is  modelled   as   a   one-­‐step   process,   from   ammonium   SNH4   directly   to   nitrate   SNO3.   The  intermediate  component,  nitrite,  is  not  included  in  the  ASM2d  model.  The  nitrifying  organisms  only  grow   under   aerobic   conditions.   Because   of   the   production   of   nitrate,   the   alkalinity   reduces.   The  autotrophic  organisms  can  also  take  up  phosphorus  into  the  biomass.    Lysis   of   nitrifying   organisms   is   the   sum   of   all   decay   processes   and   is   modelled   in   analogy   to   the  process   of   lysis   of   heterotrophic   organisms.   The   decay   products   of   lysis   (XS   and   ultimately   SF)   are  only   available   for   heterotrophic   organisms.   Therefore,   the   endogenous   respiration   of   nitrifiers  becomes  manifest  as  an   increased  growth  and  oxygen  consumption  of  heterotrophs   (Henze  et  al.,  1999).      

1.2.2.5 Chemical  precipitation  of  phosphates  

Chemical   precipitation   of   phosphorus   can   be   caused   by   the   reaction   between  metals,   which   are  naturally   present   in   wastewater,   and   soluble   ortho-­‐phosphate,   SPO4.   A   very   common   process   for  phosphorus   removal   is   the   simultaneous   precipitation   of   phosphorus   via   the   addition   of   iron   or  aluminium  salts,  sometimes  in  combination  with  biological  phosphorus  removal  in  cases  where  the  

Page 26: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  14  

carbon  to  phosphorus  ratio  is  unfavourably  small.  It  is  assumed  that  precipitation  and  redissolution  are  reverse  processes,  which  are  in  equilibrium  at  steady  state  according  to:    

𝑋!"#$   +  𝑆!"!  ↔ 𝑋!"#  The  assumption  is  made  that  XMeOH  and  XMeP  are  composed  of  ferric  hydroxide,  Fe(OH)3,  and  ferric-­‐phosphate,  FePO4,  respectively  (Henze  et  al.,  1999).      

1.3 Wastewater  characterisation    

Due  to  the  development  of  activated  sludge  models  (ASMs),  there  is  a  much  better  understanding  of  different   treatment   processes   but   it   requires   a   more   intensive   wastewater   characterisation  (Roeleveld   and   van   Loosdrecht,   2002).   These   ASMs   incorporate   mathematical   expressions   that  represent   the   biological   interactions,   based   on   hypotheses   proposed   for   the   biological   processes  occurring  within  the  system  (Melcer  et  al.,  2003).  The  wastewater  COD  is  divided  into  biodegradable  and  non-­‐biodegradable  fractions  and  further  subdivided  according  to  their  solubility  or  degradation  rate   (S   and   X).   A   great   variety   of   characterisation   methods   were   developed   since   the   division  between  the  different  fractions  is  somehow  arbitrary  (Roeleveld  and  van  Loosdrecht,  2002).  The  two  most   commonly   used   processes   are   the   biological   and   physical-­‐chemical  methods   (Pasztor   et   al.,  2008).  In  practice,  often  a  combined  approach  is  used  to  get  an  estimation  of  the  concentrations  of  all  components.  In  this  thesis,  the  focus  is  on  biological  characterisation  of  the  wastewater,  so  only  biological  methods  will  be  discussed.      

1.3.1 Biological  characterisation    In  the  biological  methods,  the  fractionation  of  the  organic  matter  is  based  on  its  rate  of  degradation  (Henze,  1992).  These  biological  methods  can  mainly  characterise  the  biodegradable  components  and  the  microbial  biomass  in  the  wastewater.  The  non-­‐biodegradable  components  can  be  determined  by  a   combination   of   physical-­‐chemical   and   biological   tests   (Petersen,   2000).   The   biological  characterisation  method  measures   the  biomass   response   during   substrate  degradation   in   either   a  continuous   flow   or   batch   type   experiment   (Pasztor   et   al.,   2008).   The   biomass   response   can   be  monitored   by   recording   the   utilization   rate   of   the   dissolved   oxygen   or   nitrate,   which   is   closely  related  to  the  quality  and  quantity  of  available  substrate  in  the  system  (Spanjers,  1993).  A  method  that   is   often   used   is   respirometry   and   is   defined   as   the   measurement   and   interpretation   of   the  respiration  rate  of  activated  sludge  under  well-­‐defined  experimental  conditions.  The  respiration  rate  is   expressed   as   the   amount   of   oxygen   per   unit   of   volume   and   time   that   is   consumed   by   the  microorganisms.  A  WWTP  has  to  control  two  important  biochemical  processes:  biomass  growth  and  substrate  consumption.  The   fact   that   respiration   rate   is  associated   to   these   two  processes,  makes  respirometry   a   valuable   method   for   controlling,   modelling   and   monitoring   the   activated   sludge  process  (Spanjers,  1996).  Respirometry  can  provide  information  about  the  specific  activity  of  (certain  fractions   of)   the   biomass,   the   composition   of   the   wastewater   (concentration,   fractionation   and  toxicity)   and   interactions   of   the   biomass   with   the   wastewater   components   (Copp   et   al.,   2002).  Therefore  different  experimental  protocols  have  been  developed  to  obtain  information  about  these  parameters.  For  the  characterisation  of  the  biodegradable  COD  fraction  in  wastewater,  respirometry  is  considered  as  the  reference  method  (Fall  et  al.,  2011).    Respirometers   are   devices   that   measure   the   ‘respiration’   of   living   organisms   (Young   and   Cowan,  2004)  and  are  used  to  measure  and  interpret  the  oxygen  uptake  rate  of  activated  sludge  (Gernaey  et  

Page 27: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  15  

al.,  2001).  All  types  of  respirometers  consist  of  a  reactor  in  which  activated  sludge  from  the  WWTP  and,  optionally,  wastewater  or  a  specific  substrate  are  brought  together  and  a  device  measuring  the  biomass   response   during   substrate   degradation.   The   biomass   response   can   be   monitored   by  measuring  the  uptake  of  oxygen,  ammonium  and  nitrate  or  the  formation  of  nitrate,  carbon  dioxide,  methane,  etc..  This   thesis  will   focus  on  measuring   the  rate  at  which  the  biomass   takes  up  oxygen.  Respirometers  can  be  classified   into  eight  basic  principles  according   to   the  phase  where  oxygen   is  measured   (gas   or   liquid)   and   whether   or   not   there   is   an   exchange   of   these   phases   with   the  environment   (flowing   or   static).   The   liquid   phase   contains   biomass   and   dissolved   oxygen   that   is  transported  to  the  microorganisms,  while  the  gas  phase  contains  oxygen,  which  is  transferred  to  the  liquid  phase.  Mostly  the  oxygen  is  measured  in  the  liquid  phase  with  an  electrochemical  DO  sensor  (Barnett   et   al.,   1998).   In   literature,   a   lot   of   batch   and   flow-­‐through   respirometric   protocols   have  been  proposed  (Chudoba  et  al.,  1992;  Ekama  et  al.,  1986;  Kappeler  and  Gujer,  1992;  Spanjers  and  Vanrolleghem,  1995;  Spérandio  and  Etienne,  2000;  Wentzel  et  al.,  1995).  The  research  of  Dold  et  al.  (1980)  provided  the  first  information  that  directed  to  the  discrimination  between  readily  and  slowly  biodegradable  COD.  One  of  the  first  methods,  proposed  by  Ekama  et  al.  (1986),  is  the  flow-­‐through  activated  sludge  method.  The  principle   is  based  on  the  evaluation  of   the  oxygen  uptake  rate   in  an  activated  sludge  process  operated  under  a  daily  cyclic  square-­‐wave  load  pattern.  Drawbacks  of  this  method  are  the  cost  and  difficulty  of  operation.  For  procedures  using  batch  experiments,  activated  sludge  acclimatised  to  the  wastewater  has  to  be  used.  Ekama  et  al.  (1986)  recommended  two  batch  methods   for  determining   the   readily  biodegradable  COD   (SS)   in   the   influent:   (1)   the  aerobic  batch  reactor  method  and  (2)  the  anoxic  batch  reactor  method.  A  lot  of  other  batch  experiment  protocols  have  been  recommended  where  a  certain  amount  of  activated  sludge  is  mixed  with  a  known  volume  of   substrate   and   the   oxygen   uptake   rate   is   analysed.   Figure   1-­‐5   shows   the   typical   set-­‐up   and  principle  of  a  respirometer  using  an  aerated  batch  reactor.      

 Figure  1-­‐5  illustration  of  the  (a)  set-­‐up  (Kappeler  and  Gujer,  1992)  and  (b)  principle  of  a  respirometer  (Nopens,  2010)  using  an  aerated  batch  reactor  

 These  methods  monitor  the  oxygen  uptake  rate  versus  time  and  allow  the  calculation  of  some  model  parameters,   such   as   maximum   respiration   rates,   saturation   coefficients,   concentrations   of   the  components  in  the  added  sample,  yield  coefficients,  etc..  (Brouwer  et  al.,  1998;  Cokgör  et  al.,  1998;  Kappeler   and   Gujer,   1992;   Spanjers   et   al.,   1999;  Wentzel   et   al.,   1995).   A   difficulty   for   the   batch  experiments   is  that  the  quality  and  the  kind  of  kinetic   information  is   influenced  by  the  ratio  of  the  

(a)   (b)  

DO  

Time  

Mixer  

DO  sensor  Temperature  sensor  

Aeration  stone   Water  bath  

Page 28: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  16  

initial  substrate  concentration  to  initial  biomass  concentration  (S0/X0).  This  ratio  determines  whether  or  not  cell  multiplication  will  take  place  during  exogenous  substrate  removal.  At  a  low  S0/X0  ratio,  a  relatively   high   amount   of   biomass   is   supplied   with   a   low   quantity   of   substrate.   Then   the   initial  energy   level   is   low  as  well,  and  thus   insufficient   for  different  synthetic   reactions,  which  take  place  during   cell   replication   (e.g.   enzyme,   protein   and  nucleic   acids   syntheses).  Under   these   conditions,  the  biomass  increases  mostly  due  to  the  synthesis  of  storage  polymers.  Consequently,  the  increase  in  cell  mass  reflects  only  the  increase  in  molecular  polymer  content  (Chudoba  et  al.,  1992;  Ekama  et  al.,  1986;  Kappeler  and  Gujer,  1992).  A  low  S0/X0  ratio  leads  to  short-­‐term  experiments.  A  high  S0/X0  ratio   allows   the   growth   of   microorganisms   leading   to   a   difficult   interpretation   of   the  multicomponent   kinetics   (Chudoba   et   al.,   1992).   By   a   trial   and  error   procedure,   the  optimal   S0/X0  ratio   can   be   determined   and   depends   on   the   origin   and   characteristics   of   the   wastewater   and  biomass   (Chudoba   et   al.,   1992;   Ekama   et   al.,   1986;   Kappeler   and   Gujer,   1992;   Xu   and   Hultman,  1996).      This   thesis   concentrates   on   getting   more   insight   into   the   effect   of   primary   settling   tanks   on   the  different  wastewater  fractions.  Table  1-­‐1  and  Table  1-­‐2  give  an  overview  of  the  COD  fractions  of  raw  and   primary   (settled)   wastewater   determined   by   respirometric   methods   found   in   literature.  According   to   the   data,   the   ratio   of   readily   biodegradable   substrate   to   the   total   wastewater   COD  ranges  between  5.0  -­‐  27.0%  in  raw  wastewater  and  7.0  -­‐  31.8%  in  primary  wastewater.  The  ratio  of  slowly   biodegradable   substrate   to   the   total  wastewater  COD   ranges  between  13.0   -­‐   58.0%   in   raw  wastewater  and  4.0  -­‐  43.0%  in  primary  wastewater.  The  data  show  much  variability  and  from  this  it  can  be  concluded  that  a  further  investigation  into  the  impact  of  primary  settling  on  the  wastewater  COD  fractions  is  needed.    Table   1-­‐1:   Overview   of   readily   biodegradable   COD   fractions   (SS)   and   slowly   biodegradable   COD   fractions   (XS)   in   raw  wastewater.    

Country,  region  

Type  of  wastewater  

Treatment  capacity  (m3/d)  

SS/CODTOT  (%)  

XS/CODTOT  (%)   Reference  

Pinedo,  Spain   Domestic  and  industrial   119,264   27.0   N.A.   Gatti  et  al.  

(2010)  

Abaran,  Spain   Domestic  and  industrial   2694     17.0   N.A.   Gatti  et  al.  

(2010)  Monterrey,  Mexico  

Domestic  and  industrial   432,000   5.0   N.A.   Fall  et  al.  

(2011)  Istanbul,  Turkey     Domestic   319,680   9.0   N.A.   Cokgör  et  al.  

(1998)  

Switzerland   Domestic  and  industrial   Pilot  plant   9.0   58.0   Kappeler  and  

Gujer  (1992)  Lundtofte,  Denmark   N.A.   N.A.   20.0   40.0   Henze  (1992)  

Quyang,  China   Domestic   75,000   6.9  −  10.3   23.9  -­‐  37.0   Zhou  et  al.  (2008)  

Bailonggang,  China  

Domestic  and  industrial   2,000,000   9.0  -­‐  13.8   16.1  -­‐  37.3     Zhou  et  al.  

(2008)  The  

Netherlands  Industrial  and  domestic   N.A.   26.0   28.0   Roeleveld  and  

van  

Page 29: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  17  

Loosdrecht  (2002)  

Hungary   Industrial  and  domestic     N.A.   21.9   49.8   Pasztor  et  al.  

(2008)  

Sweden   N.A.   Pilot  plant     27.0   33.0  Xu  and  Hultman  (1996)  

South  Africa   N.A.   N.A.   20.0   13.0   Ekama  et  al.  (1986)  

Istanbul     Domestic     N.A.     10.0   20.0   Orhon  et  al.  (2002)  

 Table   1-­‐2  Overview   of   readily   biodegradable   COD   fractions   (SS)   and   slowly   biodegradable   COD   fractions   (XS)   in   primary  wastewater  

WWTP   Type  of  wastewater  

Treatment  capacity  (m3/day)  

SS/CODTOT  (%)  

XS/CODTOT  (%)   Reference  

Monterrey,  Mexico  

Domestic  and  industrial     432,000   7.0   N.A.   Fall  et  al.  

(2011)  

Denmark   N.A.   N.A.   24.3   N.A.   Pasztor  et  al.  (2008)  

Switzerland     N.A.   N.A.   31.8     N.A.   Pasztor  et  al.  (2008)  

Hungary     N.A.   N.A.   28.6   N.A.   Pasztor  et  al.  (2008)  

Lundtofte,  Denmark   N.A.   N.A.   29.0   43.0   Henze  (1992)  

South-­‐Africa   N.A.   N.A.   28.0     4.0   Ekama  et  al.  (1986)  

Istanbul   Domestic   N.A.   19.0   38.0   Orhon  et  al.  (2002)  

               

Page 30: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  18  

2 MATERIAL  AND  METHODS  

2.1 Measurement  campaigns  at  full-­‐scale  WWTPs  

2.1.1 WWTP  of  Roeselare  (Belgium)  The  WWTP   of   Roeselare   was   established   in   1996   and   has   a   treatment   capacity   of   65,700   PE.   As  shown   in   Figure   2-­‐1,   the   incoming   wastewater   first   passes   through   screens   to   remove   the   large  objects  like,  plastics,  cans,  etc..  Subsequently,  the  water  is  treated  in  an  aerated  sand  trap  to  remove  sand  and  gravel  by  sedimentation.  The  effluent  of  the  sand  trap  is  divided  over  two  parallel  primary  sedimentation  tanks,  to  partly  remove  suspended  solids.  After  this  treatment  step  the  water  flows  to   a   contact   tank,   after   which   it   continues   to   two   activated   sludge   tanks   where   nitrification   and  denitrification   occurs.   Thereafter   the  mixed   liquor   is   distributed   to   four   secondary   sedimentation  tanks  where  sedimentation  of  the  sludge  happens.  The  sludge  is  withdrawn  for  dewatering  to  reach  a   dry   matter   content   of   25%.   Finally   the   dewatered   sludge   is   either   burned   in   an   incinerator   in  Bruges  or  is  further  dried.      

 Figure  2-­‐1:  Layout  of  the  WWTP  of  Roeselare,  Belgium    

 Every  week  on  Monday  morning,  samples  of  wastewater  were  taken  at   the   inlet  and  outlet  of   the  primary   sedimentation   tank   and   sludge   samples  were  obtained   from   the   biological   compartment.  On   March   12th,   2014   a   one-­‐day   measuring   campaign   was   carried   out.   For   this,   two   automatic  samplers  with   built-­‐in   refrigerator   (4°C)  were   used   on-­‐site   the   treatment   plant.   One   sampler  was  placed   before   the   PST   and   the   other   after   the   PST.   Composite   time   samples  were   taken.   Every   2  minutes  100  ml  wastewater  was  sampled  during  4  hours.  These  samples  were  taken  to  the  lab  and  stored  at  4°C.      

2.1.2 WWTP  of  Eindhoven  (The  Netherlands)  The   WWTP   of   Eindhoven   was   built   in   1960   and   has   become   the   largest   treatment   plant   of  Waterboard   De   Dommel   and   the   third   largest   in   The   Netherlands.   It   has   a   treatment   capacity   of  

1. Screw  pumps    2. Screens  3. Sand  traps  4. Equalization  tanks  5. Primary  

sedimentation  tanks    6. Contact  tank  7. Aeration  tanks  8. Secondary  

sedimentation  tanks  9. Flow  meter  10. Sludge  recycle  

screw  pumps  11. Sludge  thickeners  12. Sludge  buffer  tanks  13. Sludge  treatment                Water          Recirculation                          Primary  excess  sludge                    Secondary  excess  sludge    

Page 31: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  19  

750,000   PE   and   treats   each   day   on   average   170,000   m3,   corresponding   with   6,000   m3/h.   The  incoming   wastewater   is   treated   in   three   parallel   lines,   each   consisting   of   a   primary   settler,   an  activated  sludge  tank  and  four  secondary  settlers.  Each  line  has  a  maximum  hydraulic  load  of  26,250  m3/h.   In   case  of  heavy   rainfall,   an  extra   load  of  8,750  m3/h  can  be   treated  mechanically  by  a  pre-­‐settling  tank  before  it  is  discharged  in  the  River  Dommel.  The  WWTP  has  a  modified  UCT  (University  of  Capetown)  configuration  for  biological  removal  of  COD,  N  and  P,  containing  biological  tanks  of  7  meter  deep.  Figure  2-­‐2  illustrates  the  layout  of  one  activated  sludge  tank,  consisting  of  an  inner  ring,  a  middle  ring  and  an  outer  ring  corresponding  respectively  to  an  anaerobic  tank,  an  anoxic  tank  and  a  partially  aerated  tank  (Amerlinck  et  al.,  2013).  First,  the  mixed  liquor  passes  through  the  anaerobic  tank,  which  is  a  plug  flow  reactor  with  four  compartments  in  series.  Then  the  mixed  liquor  enters  the  anoxic  middle  ring  and  finally  it  passes  through  the  partially  aerated  tank.  Membrane  plate  aerators  in  certain  locations  provide  the  aeration,  which  divide  the  tank  in  a  facultative  aerobic/anoxic  ring.  There   exist   two  different   aeration  packages:   the   ‘summer  package’   and   the   ‘winter   package’.   The  ‘summer   package’   provides   the   aeration   under   normal   dry   weather   conditions   and   is   constantly  active.   The   ‘winter   package’   can   be   switched   on   during   winter   time   and   wet   weather   conditions  when  the  first  package  is  not  sufficient  (Amerlinck  et  al.,  2013;  Cierkens  et  al.,  2012).      Samples  of   activated   sludge   from   the  biological   compartment,   samples  of  wastewater   at   the   inlet  and   outlet   of   the   PST   and   samples   of   the   effluent   were   taken   at   the   WWTP   of   Eindhoven.   The  wastewater  samples  were  stored  in  the  lab  at  4°C  and  the  activated  sludge  was  aerated  overnight  to  reach  endogenous  conditions.      

Page 32: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  20  

 Figure  2-­‐2:  Schematic  of  a  biological  tank  of  the  WWTP  of  Eindhoven  (Amerlinck  et  al.,  2013)    

 

2.2 Respirometer    

2.2.1 Introduction    Respirometers   are   devices   that   measure   the   ‘respiration’   of   living   organisms   (Young   and   Cowan,  2004)  and  are  used  to  measure  and  interpret  the  oxygen  uptake  rate  of  activated  sludge  (Gernaey  et  al.,  2001).  All  types  of  respirometers  consist  of  a  reactor  in  which  activated  sludge  from  the  WWTP  and,  optionally,  wastewater  or  a  specific  substrate  are  brought  together  and  a  device  measuring  the  rate  at  which  the  biomass  takes  up  oxygen.  Mostly  the  oxygen  is  measured  in  the  liquid  phase  with  an  electrochemical  DO  sensor   (Barnett   et  al.,   1998).   The  oxygen  uptake   rate   is   then  calculated  by  making  a  general  mass  balance  for  oxygen  over  the  liquid  phase  (Gernaey  et  al.,  2001)  and  consists  of  two  components:  the  endogenous  oxygen  uptake  rate  (OURend)  and  the  exogenous  oxygen  uptake  rate   (OURex).   OURend   is   the   oxygen   uptake   rate   related   to   maintenance   in   absence   of   readily  biodegradable   substrate  while   the  exogenous  oxygen  uptake   rate   is   the  oxygen  uptake  needed   to  degrade  a  substrate  (Petersen,  2000).      

Influent  

Winter  Aeration  Package  

Inner  ring  

Middle  ring  

Outer  ring  

Summer  Aeration  Package  

Page 33: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  21  

2.2.2 Experimental  setup  The   respirometric   analysis   focuses   on   measuring   the   dissolved   oxygen   concentration   and  determination  of  the  oxygen  uptake  rate  (OUR)  by  preliminary  establishment  of  the  respirometer  kla  value.  The  respirometer   is  made  up  of  a   titrimetric  and  a   respirometric  unit.  Figure  2-­‐3  shows  the  general  flow  scheme  of  a  respirometer.    

 Figure  2-­‐3:  Respirometer  setup  

 The  respirometric  unit  consists  of  a  2L  double-­‐glass  vessel,  kept  at  a  constant  temperature  of  20°C  by  a   cooling   system   (Lauda  Alpha  RA8;  VWR)   that  pumps  water   through   the  heat-­‐jacked   reactors.  Different   results  would  be  obtained  at  different   temperatures,  because  biochemical   reaction   rates  are  temperature-­‐dependent  (Metcalf  and  Eddy,  2003).  With  the  aid  of  a  Led  dissolved  oxygen  (LDO)  probe   (LnPro68701/12/220;   Mettler   Toledo,   Elscolab)   and   pH   probe   (GA405-­‐DXK-­‐S8/120   PN:  104054287;  Mettler   Toledo,   Elscolab)   the  oxygen   concentration   and  pH   can  be  measured  on-­‐line.  The  sludge  is  constantly  mixed  at  a  speed  of  100  rpm  and  aerated  with  the  aid  of  an  aeration  stone  at  a  constant  airflow  rate.  The   titrimetric  unit   is   composed  of  one  1L  Acid  mariotte  bottle,  one  2L  base  mariotte  bottle,  one  Gilson  pump   (Minipuls  3;  Analis)   and   two   solenoid  valves   that  dose   the  titrimetric  solution  to  the  reactor.  The  Gilson  pump  recycles  around  the  acid  solution  of  1M  HCl  and  the  base  solution  of  1M  NaOH.  The  solenoid  valve  is  open  when  the  pH  in  the  reactor  deviates  more  then  0.1  units   from  the  pH  set  point  of  7.5.  Then,  base  or  acid   is  dosed   to   the   reactor.  When   the  valves  are  closed,  the  titrimetric  solution  is  recycled  back  to  the  corresponding  mariotte  bottle.      

2.2.3 Experimental  protocol  for  respirometric  analysis    The   software   used   for  monitoring   and   control   of   the   data   acquisition   of   the   biological   processes  occurring  in  the  reactor  is  LabView  (National  Instruments,  USA).  First  the  respirometer  was  set  up  as  described  above  (2.2.2  Setup).  Thereafter  the  pH  probe  and  LDO  probe  were  calibrated.  These  are  

Page 34: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  22  

connected   respectively   to  a  pH   transmitter   (Knick  Stratos  2401)  and  an  oxygen   transmitter   (M400  Type   2).   These   transmitters   are   communicating   4-­‐20  mA   signals   to   the   software   program   on   the  computer.  Subsequently  the  acid  and  base  dosage  system  was  calibrated  by  collecting  the  volume  of  acid  and  base  dosed  during  35  subsequent  pulses.    

2.2.3.1 Flowing  gas  –  static  liquid  

During  this  type  of  respirometric  analyses  the  batch  reactor  is  continuously  aerated.  Mixed  liquor  of  the   biological   tank   from   the   WWTP   of   Eindhoven   (operated   by   ‘Waterboard   de   Dommel’)   or  Roeselare  (operated  by  Aquafin  NV)  was  aerated  overnight  until  the  endogenous  respiration  phase  was  reached.  Then  the  reactor  was  filled  with  1.9l  of  mixed  liquor.  The  next  step  was  to  calculate  the  OUR  online  according  to  the  following  equation:      

𝑑𝑆!𝑑𝑡

=  𝑘!𝑎  ×   𝑆!,!" − 𝑆! −  𝑂𝑈𝑅   (2-­‐1)  

This  equation   includes  an  aeration  term  and  a  term  representing  the  oxygen  uptake  rate  (OUR)  by  the  microorganisms.  The  OUR  is  the  sum  of  the  OURend  and  OURex,  SO,eq  is  the  equilibrium  dissolved  oxygen  concentration,  SO  the  measured  dissolved  oxygen  concentration  and  kLa  the  oxygen  transfer  coefficient.  When  substrate  is  lacking,  OURex  becomes  zero  and  only  endogenous  OUR  is  present.  In  this   case  continuous  aeration  allows   the  oxygen  concentration   in   the   reactor   to   reach  a   saturated  steady  oxygen   level   (SO,eq),   representing  the  equilibrium  between  oxygen  transfer  and  endogenous  respiration.  Therefore  equation  2-­‐1  becomes:    

𝑂𝑈𝑅!"# =  𝑘!𝑎  ×   𝑆!,!" − 𝑆!   (2-­‐2)  S0,eq  is  determined  by  aerating  the  mixed  liquor  in  the  reactor  for  approximately  30  min  until  a  stable  equilibrium  concentration  is  reached.  The  kLa  value  is  determined  by  a  dynamic  gassing  out  method.  First,   the   aeration   is   stopped   until   a   dissolved   oxygen   concentration   of   1.5-­‐2   mg/L   is   reached  (Bandyopadhyay   and   Humphrey,   2009).   Then   the   aeration   is   started   again   and   equation   2-­‐1  becomes:    

𝑑𝑆!𝑑𝑡

=  𝑘!𝑎  ×   𝑆!,!" − 𝑆!   (2-­‐3)  

After  integrating  equation  2-­‐3,  the  following  equation  is  obtained:    ln 𝑆!,!" − 𝑆!,!" − ln  (𝑆!,!" − 𝑆!,!!)

𝑡!=  −𝑘!𝑎     (2-­‐4)  

where  SO,  t0  represents  the  DO  concentration  of  the  oxygen  depleted  solution  before  the  aeration  is  restarted.  By  plotting   ln(SO,eq   -­‐   SO,tx)   versus   time,   kLa   can  be  deduced  as   the  negative   slope  of   this  curve.   This   parameter   is   very   import   for   the   evaluation   of   respirometric   parameters.   Different  factors,   such   as   gas   flow,   bubble   size,   reactor   dimensions,   stirring   of   mixed   liquor   (turbulence),  temperature   of  mixed   liquor,   and   air   pressure,   etc.   have   a  major   influence   on   kLa.   Therefore   the  following  conditions  must  be  ensured  during  the  determination  of  this  parameter  (Ros  et  al.,  1988):    

a. A  constant  airflow  through  the  whole  experiment    b. A  reactor  with  known  volume  and  shape  has  to  be  used  for  all  measurements  c. Constant  stirring  must  be  provided    d. Constant  temperature  of  mixed  liquor  during  the  measurements  

The  kLa  measurement   is  performed  three  times  and  then  the  average  kLa  value   is  used   for   further  calculations.   Nitrification   was   inhibited   by   adding   allylthiourea   (ATU)   to   the   reactor   in   a  concentration  of  10  mg/L.  The  ATU  solution  was  prepared  by  dissolving  2.0  g  ATU  in  1L  of  distilled  

Page 35: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  23  

water  and  stored  at  4°C.  The  solution  was  prepared  every   two  weeks  because   it   is  only   stable   for  two  weeks.  Finally,  a  specific  volume  of  substrate  was  added  to  the  mixed  liquor  and  the  dissolved  oxygen  concentrations  were  measured.      Evaluation  of  the  respirogram  Figure  2-­‐4  illustrates  the  typical  respiration  rate  profile,  called  a  respirogram,  obtained  after  addition  of   wastewater   to   endogenous   sludge   during   a   respirometric   batch   test.   During   this   procedure   a  known  volume  of  raw  wastewater  is  added  to  a  known  amount  of  endogenous  sludge  (Ekama  et  al.,  1986;  Spanjers  and  Vanrolleghem,  1995).  The  initial  peak  is  brought  about  by  the  oxidation  of  readily  biodegradable  matter  (SS),  followed  by  one  shoulder  due  to  the  utilisation  of  slowly  degradable  COD  (XS).    

 Figure  2-­‐4  OUR-­‐curve  obtained  after  addition  of  0.25  l  of  wastewater  taken  before  the  PST  into  1.9  l  of  mixed  liquor  of  the  WWTP  of  Roeselare  

 Readily  Biodegradable  substrate  SS  The   readily   biodegradable   fraction   is   composed   of   small   molecules,   such   as   volatile   fatty   acids,  carbohydrates,  alcohols,  peptones  and  amino  acids  that  can  be  directly  metabolized  (Henze,  1992).  The   readily  biodegradable   substrate   is  degraded   rapidly,   resulting   in  a   fast   respirometric   response  (Vanrolleghem   et   al.,   1999).  Upon   addition  of  wastewater,   the  microorganisms  will   start   oxidizing  the  SS,  thereby  using  dissolved  oxygen,  which  results  in  an  increase  in  the  oxygen  uptake  rate  (OUR).  Once   SS   becomes   depleted,   the   oxygen   demand   for   aerobic   respiration   decreases   and   reaeration  becomes   important  again.  This   results   in  an   increase   in  DO  and  simultaneously  a  decrease   in  OUR  until   the  original  endogenous   level   is   reached  because  all  external   substrate   is  degraded   (Nopens,  2010;  Orhon  and  Okutman,  2003;  Vanrolleghem  et  al.,  1999).      As   shown   in  Figure  2-­‐4,   integrating   the   surface  under   the  OUR  curve  and  above   the   first   shoulder  gives   the   total   amount   of   oxygen   consumed   at   the   expense   of   all   available   readily   biodegradable  substrate.   Only   a   fraction   of   the   SS   is   oxidized   and   the   remainder   (the   heterotrophic   yield,   YH)   is  reorganized   in   new   cell   material.   The   yield   indicates   the   COD   fraction   that   is   converted   to   cell  biomass  and  the  fraction  that  is  used  to  provide  the  energy  needed  for  different  synthesis  reaction.  This   energy   is   released   by   oxidative   phosphorylation   and   is   proportional   to   the   mass   of   oxygen  

(1-­‐YH)SS  

(1-­‐YH)XS  

OUR

(mg/

l.h)

0

5

10

15

20

25

Time (min)0 10 20 30 40 50

Page 36: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  24  

utilised,  which   in   turn   is  proportional   to   the  COD  consumed.  Therefore,   in  order   to  obtain  SS   from  respirometric  measurements,   knowledge   of   YH   is   necessary   (Barnett   et   al.,   1998;   Petersen,   2000;  Vanrolleghem   et   al.,   1999).   The   yield   YH   is   assumed   to   be   0.67   gCOD/gCOD   (Fall   et   al.,   2011;  Kappeler   and   Gujer,   1992)   in   the   performed   respirometric   tests.   The   concentration   of   SS   initially  present  in  the  mixture  of  biomass  and  wastewater  (CSR)  can  be  calculated  as  follows:    

𝐶!" =1

(1 − 𝑌!)𝑂𝑈𝑅  𝑑𝑡

!!"#$%

!=  

∆0!1 − 𝑌!

  (2-­‐5)  

where  YH  is  the  heterotrophic  biomass  yield.  The  endpoint  tfinal  of  the  integration  interval  is  the  time  instant  where  SS   is  completely  depleted  and  where   the  exogenous  respiration  rate   for  SS  becomes  zero.  The  concentration  of   SS   in   the  wastewater   (CS)   can   then  easily  be  determined  by   taking   into  account  a  dilution  factor:    

𝐶! = 𝐶!"𝑉!𝑉!!

  (2-­‐6)  

where  VR  is  the  volume  of  the  wastewater  and  sludge  in  the  batch  reactor  and  VWW  is  the  volume  of  wastewater  added  to  the  batch  reactor  (Gatti  et  al.,  2010;  Orhon  and  Okutman,  2003;  Vanrolleghem  et  al.,  1999).      Slowly  biodegradable  substrate  XS  This  fraction  is  composed  of  high-­‐molecular  compounds  made  up  of  soluble,  colloidal  and  particulate  COD   fractions   (Henze,   1992).   These   compounds   need   to   be   hydrolysed   to   low-­‐   molecular  compounds   (SS)   by   extracellular   enzymes  of   bacteria   prior   to  utilization  because   they   cannot  pass  the  cell  membrane  as  such  (Pasztor  et  al.,  2008).  The  degradation  of  these  compounds  results   in  a  slower   respirometric   response   than   for   SS   because   the  hydrolysis   rate   is   lower   than   the  oxidation  rate  of  SS  (Petersen,  2000).      Figure  2-­‐4  shows  a  typical  respirogram  for  raw  wastewater.  As  explained  above,  the  first  initial  peak  is   associated   with   the   degradation   of   readily   biodegradable   matter.   This   peak   is   followed   by   a  decreasing  ‘tail’  due  to  the  utilisation  of  slowly  degradable  COD.  After  the  depletion  of  this  fraction,  the  OUR   returns   to   its   original   endogenous   level   (Nopens,   2010;  Orhon  and  Okutman,   2003).   The  concentration  of   XS   in   the  wastewater   can  be  determined   in   a   similar  way   as   for   SS,   equation  2-­‐6  (Kappeler  and  Gujer,  1992;  Sollfrank  and  Gujer,  1991).      Oxidation  processes  such  as  nitrification  can  occur  at  the  same  time  as  oxidation  of  organic  matter.  In   that  case,   it   is  quite   impossible   to  discriminate  between  an  XS   tail  and   the  oxygen  consumption  related   to   nitrification.   Therefore,   a   nitrification   inhibitor   (ATU)   is   added   to   facilitate   the  determination  of  XS  (Spanjers  and  Vanrolleghem,  1995).      

2.2.3.2 Static  gas  –  static  liquid  

This   type   of   test   is   performed  without   aeration.   The  mixed   liquor   of   the   biological   tank   from   the  WWTP   of   Eindhoven   (operated   by   ‘Waterboard   de   Dommel’)   or   Roeselare   (operated   by   ‘Aquafin  NV’)  was  aerated  overnight  until  the  endogenous  respiration  phase  was  reached.  1.9   l  of  activated  sludge  in  the  endogenous  phase  was  transferred  to  the  batch  reactor  and  aerated  until  a  dissolved  oxygen  concentration  of  6  -­‐  8  mg/l  was  reached.  ATU  in  a  concentration  of  10  mg/l  was  added  to  the  batch   reactor   to   inhibit   nitrification.   After   the   aeration   was   stopped,   the   decline   in   oxygen  

Page 37: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  25  

concentration  with  time  due  to  respiration  was  monitored.  During  this  type  of  experiment  the  mass  balance  of  equation  2-­‐1  becomes  (Drtil  et  al.,  1993;  Gernaey  et  al.,  2001):    

𝑑𝑆!𝑑𝑡

=  −  𝑂𝑈𝑅   (2-­‐7)  

This   is  a  very  simple  equation  since   the  aeration  terms  can  be  omitted.  Figure  2-­‐5  shows  a   typical  respirogram  obtained  with  this  type  of  experiment.  During  phase  I,  oxygen  is  utilized  at  a  constant  rate  (OURI)  when  the  microorganisms  in  the  activated  sludge  are  in  endogenous  state.  At  a  certain  time   point,   a   known   volume   of   substrate   is   added   to   the   batch   reactor   resulting   in   a   temporary  increase   in   respiration   rate   (OURII)   due   to   substrate   degradation   (phase   II).   If   the   substrate   is  completely   degraded   and   removed,   the   respiration   returns   to   a   value   equal   (OURIII),   or   slightly  different   from   the  original   endogenous   respiration   rate   (phase   III).  After   the  measurement  of  one  concentration  of  substrate,  the  batch  vessel  is  aerated  again  and  the  protocol  is  repeated  with  a  new  dose  of  substrate.      

 Figure  2-­‐5:  DO-­‐profile  obtained  after  addition  of  13.6  mg  of  sodium  acetate  trihydrate  to  1.9  l  of  mixed  liquor  of  the  WWTP  of  Roeselare  

 Evaluation  of  the  respirogram  The  differential  term  in  equation  2-­‐7  can  be  approximated  with  a  finite  difference  term  and  equation  2-­‐7  becomes  (Vanrolleghem,  2002):    

∆𝑆!∆𝑡

=  −  𝑂𝑈𝑅!"! = −𝑂𝑈𝑅! − 𝑂𝑈𝑅!!   (2-­‐8)  

The  concentration  of  biodegradable  matter  in  the  substrate  (CSR)  can  be  calculated  as  follows:    

𝐶!" =  (𝑂𝑈𝑅!! − 𝑂𝑈𝑅!)∆𝑡!

1 − 𝑌!𝑉!𝑉!!

  (2-­‐9)  

Where   OURII   represents   the   total   respiration   rate   and   is   equal   to   the   sum   of   the   endogenous  respiration  rate  (OURI)  and  the  exogenous  respiration  rate  due  to  substrate  degradation.  The  time  needed  to  degrade  the  biodegradable  matter  present  in  the  substrate  is  represented  by  ΔtS.  VR  and  VWW  represent  respectively  the  total  volume  in  the  reactor  and  the  volume  of  the  added  wastewater  sample.  The  heterotrophic  biomass  yield  (YH)  is  assumed  to  be  0.67  g  COD/g  COD  (Fall  et  al.,  2011;  Kappeler  and  Gujer,  1992)  in  the  performed  respirometric  tests.    

ΔtS  

Substrate  

ΔS0  

I  

II  

III  

DO (m

g/l)

4

6

8

10

Time (s)0 500 1000 1500

DO-profile

Page 38: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  26  

2.3 Simulation  software:  WEST  

The  software  program  used  for  the  simulation  of  the  performed  respirometric  experiments  is  WEST.  WEST  stands  for  World-­‐wide  Engine  for  Simulation,  Training  and  automation  and  is  developed  by  the  company  MOSTforWATER  (Kortrijk,  Belgium)  in  collaboration  with  BIOMATH  (Ghent  University).    For   the   simulation   experiments,   the   ASM1   model   was   selected.   To   fit   this   model   with   the  experimental   data   sets,   parameter   estimation   experiments   are   performed.   During   parameter  estimation  the  set  of  model  parameters,  that  fit  the  experimental  data  best,  is  searched  for.  This  is  achieved  by  minimization  of  an  objective  function.   In  WEST,  two  different  algorithms  can  be  used,  namely   the   simplex  method   (Nelder   and  Mead,   1965)   or   the   Praxis  method   (Brent,   1973).   These  algorithms   minimise   the   distance   between   a   simulated   trajectory   and   a   measured   trajectory  (Meirlaen,   2002).   The   objective   function   determines   the   distance   measure   between   the  experimental   and   simulated   values   and   is   typically   a   sum   of   squared   errors.   Considering   p  dimensions,  the  simplex  minimization  method  uses  a  geometrical  figure  (simplex)  consisting  of  p+1  points   interconnected   by   line   segments   forming   polygonal   faces.   Each   point   of   the   simplex  corresponds   to   a   set   of   optimization   variable   values   and   represents   one   objective   function   value.  The   simplex   method   always   starts   with   an   initial   arbitrary   vertex   (i.e.   corner   point).   Then   by  performing  elementary  operations  (such  as  reflection,  expansion,  etc.),  it  tries  to  improve  the  initial  solution  by  finding  an  adjacent  vertex  with  a  better  objective  function  value.  If  the  average  value  of  the  whole  simplex  and  the  relative  difference  between  the  objective  function  values  of  the  vertices  are  below  a   certain   threshold,   the  algorithm   stops.   The  Praxis   algorithm   stands   for  PRincipal  AXIS  and   is   a   derivative-­‐free   optimization   solver.   Through   repeated   combination   of   one-­‐dimensional  searches   along   a   set   of   various   directions,   the   method   aims   to   find   the   numerical   minimum   of  functions  consisting  of  several  variables  (Claeys,  2008).    

Page 39: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  27  

3 RESULTS  AND  DISCUSSION  

3.1 Analysis  of  the  respirogram    

Direct   parameter   abstraction   from   respirograms   for  wastewater   characterisation   is   proposed   as   a  simple  and  straightforward  evaluation  method.  This  method  is  ascribed  above  in  chapter  2  ‘Material  and  methods’  (2.2.3.1.  Flowing  gas–static  liquid).  A  few  problems  have  arisen  during  the  application  of  this  evaluation  method.  First  of  all,  there  were  some  difficulties  during  the  determination  of  the  area  under  the  OUR-­‐curve.  In  some  respirograms,  it  was  observed  that  the  endogenous  respiration  rate   changes   after   addition   of   the   sample.   Spanjers   and   Vanrolleghem   (1995)   and   Lagarde   et   al.  (2005)   experienced   the   same   phenomenon.   Both   authors   had   two   different   approaches   for  determining   the   surface   area   under   the   OUR-­‐curve.   Lagarde   et   al.   (2005)   used   the   endogenous  respiration   rate   after   the   addition   of   the   sample   for   their   calculations,   as   shown   in   Figure   3-­‐1(b).  Spanjers   and   Vanrolleghem   (1995)   determined   the   endogenous   rate   by   performing   a   linear  interpolation  between  the  rate  measured  before  the  addition  of  the  sample  and  the  rate  at  the  end  of   the   respirogram   (Figure   3-­‐1(a)).   Figure   3-­‐1   illustrates   the   differences   between   the   two  approaches.   The   respirogram   in   Figure  3-­‐1   is  obtained  after   addition  of  250.0  ml  of   a  wastewater  solution   with   a   concentration   of   125.3   mg   COD/l   to   1.9   l   diluted   activated   sludge.   Applying   the  method   of   Lagarde   et   al.   (2005)   results   in   a   biodegradable   substrate   concentration   of   13.2   mg/l  while  the  approach  of  Spanjers  and  Vanrolleghem  (1995)  yields  9.3  mg/l.  It  is  important  that  there  is  a   standardized   way   to   evaluate   the   respirograms   because   the   two   different   approaches   give  different  results.  During  this  work  the  method  of  Spanjers  and  Vanrolleghem  (1995)  was  applied  to  analyze  the  results.    

 Figure   3-­‐1:   Determination   of   the   surface   under   the   OUR-­‐curve   according   to   (a)   Spanjers   and   Vanrolleghem   (1995)   and  Lagarde   et   al.   (2005)   obtained   after   addition   of   250.0  ml   of   a   125.3  mg   COD/l  wastewater   solution   to   a   batch   reactor  containing  1.9  l  diluted  activated  sludge  (with  10  mg/l  ATU  to  block  nitrification)    

Furthermore,  there  also  exist  different  approaches  for  the  determination  of  the  SS  fraction.  Kappeler  and  Gujer  (1992)  determine  the  SS  concentration  as  illustrated  in  Figure  3-­‐2(a),  while  Vanrolleghem  et  al.   (2003)  and  Ekama  et  al.   (1986)  determine  the  area  under   the  OUR-­‐curve  as  shown   in  Figure  3-­‐2(b).  The  respirogram  is  obtained  after  dosing  250.0  ml  of  influent  of  the  PST  (276.7  mg  COD/l)  to  1.9   l   activated   sludge.   Following   the  approach  of  Kappeler   and  Gujer   (1992)   a   SS   concentration  of  

(a)   (b)  

OUR

(mg/

l.h)

−8

−4

0

4

8

Time (s)0 200 400 600 800

OUR-profile

OUR

(mg/

l.h)

−8

−4

0

4

8

Time (s)0 200 400 600 800

OUR-profile

Page 40: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  28  

39.2   mg/l   is   obtained,   while   the   other   method   yields   47.4   mg/l.   Subsequently   another   XS  concentration   is   obtained   for   the   two   different   approaches.   During   this   work,   the   method   of  Vanrolleghem  et  al.  (2003)  and  Ekama  et  al.  (1986)  was  used  for  the  determination  of  the  SS  fraction.    

 Figure  3-­‐2:  Determination  of  the  SS  concentration  according  to  (a)  Kappeler  and  Gujer  (1992)  and  (b)  Vanrolleghem  et  al.  (2003)  and  Ekama  et  al.  (1986)  of  a  OUR-­‐profile  obtained  after  addition  of  250.0  ml  of  influent  of  a  PST  to  a  batch  reactor  containing  1.9  l  activated  sludge  (with  10  mg/l  ATU  to  block  nitrification)  

 Finally,   one   of   the   most   important   limitations   is   that   this   method   can   only   be   used   when   the  individual  components  in  the  sample  are  dominant.  Thus  a  change  in  shape  of  the  respirogram  has  to  be  visible  when  the  particular  components  are  degraded  and  almost  exhausted  (Spanjers  et  al.,  1999).  This  was  not  always  the  case  during  the  analysis  of  the  wastewater  samples.  Moreover,  it  was  often  difficult   to  determine  the   inflection  point   in  the  curve   indicating  the  depletion  of   the  readily  biodegradable  substrate  and  further  degradation  of  the  slowly  biodegradable  fraction  in  the  sample.  This  was  especially  the  case  with  noisy  respirograms,  even  after  filtering  of  the  raw  data.    

3.2 Acetate  as  substrate  

Experiments  with   the   readily  biodegradable  substrate  acetate  were  performed  to  verify   if   the   two  different  respirometers  in  the  lab  reproduce  the  same  OUR  profile  and  subsequently  give  the  same  substrate   concentration.   Activated   sludge   of   the   WWTP   of   Eindhoven   was   used.   250.0   ml   of   a  solution   of   sodium   acetate   trihydrate   with   a   concentration   of   92.0   mg   COD/l   was   dosed   to   the  sludge.  The  experimental  set-­‐up  of  the  two  respirometers  was  identical.  ‘Flowing  gas  -­‐  static’  liquid  respirometric  analysis  was  performed  in  triplicate  for  the  two  respirometers  each.  After  calculating  the  SS  fraction,  a  concentration  of  52.9  mg/l  (std  =  8.6%)  for  the  first  respirometer  and  61.2  mg/l  (std  =  8.3%)  for  the  second  respirometer  is  obtained  (Figure  3-­‐3).    

(a)   (b)  O

UR (m

g/l.h

)

0

5

10

15

20

Time (s)0 1000 2000 3000 4000 5000 6000

OUR-profile

OUR

(mg/

l.h)

0

5

10

15

20

Time (s)0 1000 2000 3000 4000 5000 6000

OUR-profile

Page 41: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  29  

 Figure  3-­‐3:  Readily  biodegradable  substrate  concentration  (SS)  obtained  with  respirometric  measurements  after  addition  of  250.0  ml  of  acetate  solution  (92.0  mg  COD/l)  to  1.9  l  of  activated  sludge  of  the  WWTP  of  Eindhoven.    

 There   exists   a   small   difference   between   the   obtained   results   for   the   two   respirometers.   The  experimental  set-­‐up  of  the  respirometers  was  identical,  but  it  was  noticed  that  the  DO  sensor  of  one  respirometer   showed   more   measurement   noise   than   the   other   one.   Measurement   noise   has   an  influence   on   the   OUR-­‐values   since   during   the   OUR   calculations   derivatives   are   taken,   which  enhances   the  effect  of  noise   (Sin,  2004).  However  considering   the  standard  deviations,   these  data  show  that  the  two  respirometers  give  similar  results.  Both  respirometers  can  be  used  simultaneously  for  wastewater  characterisation,  thus  allowing  a  higher  measuring  frequency.  Secondly  the  amount  of  SS  seems  to  be  underestimated.  Only  a  value  of  52.9  mg  COD/l  and  61.2  mg  COD/l  was  obtained  with  the  two  respirometers,  while  the  added  acetate  concentration  was  92.0  mg  COD/l.  Apparently,  not  all  the  biodegradable  COD  added  to  the  batch  reactor  can  be  recovered  from  the  respirogram.  There  are  different  hypothesises  possible  to  explain  these  results.      First   of   all,   the   default   value   of   0.67   g   COD/g   COD   is   used   for   YH   during   the   calculation   of   the  biodegradable   substrate   concentration.   However   when   this   value   is   used   in   equation   2-­‐5,   the  amount  of  SS  seems  to  be  underestimated  since  only  a  value  of  52.9  mg  COD/l  and  61.2  mg  COD/l  was   obtained  while   the   added   acetate   concentration   was   92.0  mg   COD/l.   A   possible   explanation  might  be  that  the  value  of  YH  differs  from  the  default  value.  Based  on  these  experimental  data,  the  yield  can  be  calculated  as  follows  (Majone  et  al.,  1999;  Strotmann  et  al.,  1999)  :    

𝑌!"# = 1 −∆0!

𝐶𝑂𝐷!"#   (3-­‐1)  

where  Δ02  is  the  change  in  oxygen  concentration  (mg/l)  due  to  substrate  degradation  and  CODdeg  the  amount  of  readily  biodegradable  COD  (mg/l)  added  to  the  batch  reactor.  According  to  equation  3-­‐1,  a   yield  of   0.795   g  COD/g  COD   (std   =   2.9  %)   is   obtained.   In   literature,   high   yield   values  have  been  attributed  to  the  occurrence  of  a  storage  phenomenon  because  less  oxygen  is  consumed  while  the  majority  of  the  substrate  is  incorporated  into  the  biomass.  High  yield  values  have  been  reported  by  Dircks  et  al.  (1999)  (0.72  g  COD/g  COD),  Guisasola  et  al.  (2005)  (0.79  g  COD/g  COD)  and  Karahan-­‐Gül  et   al.   (2002)   (0.78   g   COD/g   COD).   These   authors   state   that   high   yield   values   are   typical   for  heterotrophic  bacteria  with  much  available  substrate  and  extensive  storage.  Conventional  activated  sludge  processes  are  often  subjected  to  highly  variable  conditions  of  external  substrate  availability.  The  storage  of  polymers   (usually,  polysaccharides  and   lipids)   can  be  caused  by  a   feast  and   famine  regime.   At   high   concentration   of   substrate   (feast   phase),   microorganisms   accumulate   storage  

Ss (m

g/l)

0

20

40

60

Resp 1 Resp 2

Page 42: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  30  

polymers   that   are   used   for   growth   when   the   extracellular   substrate   is   depleted   (famine   phase).  Acetate   is   known   to   be   stored   as   poly-­‐hydroxybutyrate   (PHB)   (Karahan-­‐Gül   et   al.,   2002).   The  experiments   with   acetate   as   substrate   were   performed   using   activated   sludge   of   the   WWTP   of  Eindhoven  where  nitrification  and  denitrification  take  place.  Subsequently  the  biomass  is  subjected  to  alternating  anoxic  and  aerobic  conditions  and  variable  influent  wastewater  patterns.  Under  these  dynamic   conditions,   microorganisms   capable   of   quickly   accumulating   substrate   during   the   feast  phase  have  a  competitive  advantage  over  organisms  without  storage  capacity  and  can  balance  their  growth  rate   in  dynamic  processes   (Carucci  et  al.,  2001;  Majone  et  al.,  1999;  van  Loosdrecht  et  al.,  1997).  If  the  storage  phenomenon  occurs,  it  is  advised  to  increase  the  YH  to  a  higher  value  (e.g.  0.75)  than  the  standard  value  of  0.67  mg  COD/mg  COD.  The  best  solution  is  however  to  perform  a  model-­‐  based  interpretation  of  the  experimental  data.  The  interpretation  and  evaluation  of  the  OUR-­‐profile  becomes  more  complicated  if  substrate  adsorption  and  accumulation  or  storage  phenomena  occur.  It  makes  the  estimation  of  the  SS  and  XS  fraction  in  the  wastewater  more  difficult  because  it  is  quite  impossible   to   separate   the   degradation   of   the   slowly   biodegradable   substrate   from   the   oxygen  consumption  related  with  the  degradation  of  internal  storage  polymers  (Sin,  2004).    Figure   3-­‐4(a)   shows   the   OUR-­‐profile   obtained   after   dosing   250.0  ml   of   acetate   solution   (92.0  mg  COD/l).  Upon  addition  of   the  sample,   the  respiration  rate  gradually   increases   to  a  maximum   level.  Thereafter  the  OUR-­‐curve  gradually  decreases  back  to  the  endogenous  respiration  rate.  Normally  if  the   storage   phenomenon   occurs   a   typical   storage   tail   is   observed,   as   shown   in   Figure   3-­‐4(b)).  Apparently   in   Figure   3-­‐4(a)   there   is   no   such   a   storage   tail.   Moreover,   in   Figure   3-­‐4(b)   an  instantaneous   increase   in   respiration   rate   after   dosing   of   the   sample   is   observed   followed   by   a  plateau  phase.  Additionally,  the  drop  in  respiration  rate  is  steeper  than  in  Figure  3-­‐4(a).  Guisasola  et  al.   (2005)   observed   the   same  phenomenon,   namely  no  observable   storage   tail   and   a  high   growth  yield   (0.73   g   COD/g   COD).   This   yield   is   also   higher   than   the   default   value   of   0.67   g   COD/g   COD.  Guisasola   et   al.   (2005)   concluded   that   this   observation   suggests   the   presence   of   storage  phenomenon   as   such   and   believe   that   both   growth   and   storage   processes   occur   simultaneously.  Thus  part  of  the  acetate  is  consumed  for  growth  and  the  rest  is  stored.  The  data  obtained  during  this  work  confirm  these  findings.      

 Figure   3-­‐4:   OUR-­‐profile   obtained   after   addition   of   (a)   250.0  ml   of   acetate   solution   (92.0  mg   COD/l)   to   a   batch   reactor  containing   1.9   l   activated   sludge   (with   10   mg/l   ATU   to   block   nitrification)   and   (b)   OUR-­‐curve   with   a   storage   tail   after  addition  of  50  mg  COD/l  acetate  to  sludge  of  the  WWTP  of  Granollers  (Catalonia,  Spain)  (Guisasola  et  al.,  2005)  

(a)  Time  (min)  (b)  

OUR

(mg/

l.h)

0

5

10

15

20

Time (s)0 1000 2000 3000 4000 5000

OUR-profile

Page 43: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  31  

In   addition,   the   lower   substrate   concentration   could   also   be   caused   by   the   presence   of   certain  compounds  in  the  mixed  liquor  making  the  substrate  unavailable  for  the  biomass  and  subsequently  inhibiting   the  uptake  of  acetate.  The  acetate   ion  has  a  negative  charge  and  could  possibly  bind   to  compounds  with  a  positive  charge.  This  makes  the  substrate  unavailable  for  the  microorganisms  in  the  activated  sludge  (Deweerdt,  2010).      

3.3 Glucose  as  substrate  

Additionally,   experiments   with   glucose   were   performed.   Glucose   is   a   readily   biodegradable  substrate  and  is  tested  to  verify  if  similar  findings  as  with  acetate  are  observed.  Glucose  is  known  to  be  stored  as  glycogen  through  a  metabolic  pathway  completely  different  from  that  of  PHB  storage.  The  readily  biodegradable  substrate  present  in  wastewater  is  likely  to  be  stored  as  PHA  and  glycogen  (Karahan-­‐Gül  et  al.,  2002).  For  this  experiment,  activated  sludge  of  the  WWTP  of  Roeselare  was  used  and   250.0  ml   of   a   solution   of   glucose  with   a   concentration   of   213.5  mg   COD/l  was   added   to   the  activated   sludge   (WWTP   of   Roeselare).   This   was   repeated   four   times.   Figure   3−5   illustrates   the  respirometric  profile  obtained  after  addition  of  glucose.      

 Figure  3-­‐5:  OUR-­‐profile   obtained   after   addition  of   (a)   250.0  ml   of   glucose   solution   (213.5  mg  COD/l)   to   a   batch   reactor  containing  1.9  l  activated  sludge  (with  10  mg/l  ATU  to  block  nitrification)    

 After  calculation  of  the  concentration  of  biodegradable  substrate  with  the  default  value  0.67  g  COD/  g  COD,  a  concentration  of  only  59.6  mg  COD/l  (std  =  7.7%)  is  obtained.  This  is  much  lower  than  the  COD  concentration  added  to  the  batch  reactor,  namely  213.5  mg  COD/l.  COD  measurements  of  the  glucose   solution   were   performed   to   verify   the   COD   concentration   and   a   value   of   220   mg/l   was  obtained.      To  exclude  the  fact  that  the  error  (time  lag)  introduced  by  the  DO  probe  dynamics  lead  to  errors  in  the  calculated  OUR-­‐values,  all   the  measured  DO  data  were  corrected   for   the  dynamic   response  of  the  DO  sensor   (Vanrolleghem  et  al.,  1998).  The  applied  respirometric  method  relies  on  the  rate  of  change  of  dissolved  oxygen  but  the  DO  measuring  probe  has  a  certain  time  lag.  The  area  under  the  OUR-­‐curve  was   calculated   using   the  DO   concentration  measured   by   the  DO  probe   and   the   actual  DO-­‐concentration  corrected  for  the  response  of  the  sensor.  Correction  of  the  DO  data  did  not  yield  different   values   for   the   area   under   the   OUR-­‐curve,   excluding   the   possibility   that   the   DO   probe  dynamics  lead  to  errors  in  the  OUR-­‐values.  

OUR

(mg/

l.h)

0

5

10

15

20

Time (s)0 1000 2000 3000

OUR-profile

Page 44: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  32  

Thus,   after   the   addition   of   glucose,   the   same   findings   as   with   acetate   are   observed.   After  recalculating   the   yield   according   to   equation   3-­‐1,   a   value   of   0.91   g   COD/g   COD   (std   =   0.8%)   is  obtained.  High   yield   values   for   glucose  have  been   reported  by  Dircks   et   al.   (1999)   (0.91  g  COD/  g  COD),   Goel   et   al.   (1999)   (0.9   g   COD/   g   COD)   and   Karahan-­‐Gül   et   al.   (2002)   (0.87   g   COD/   g   COD).  According  to  these  authors,  high  yield  values  are  caused  by  the  occurrence  of  storage.      Comparing  the  yield  values  obtained  for  acetate  and  glucose,   leads  to  the  conclusion  that  a  higher  yield  is  obtained  for  glucose  (0.91  g  COD/g  COD)  than  for  acetate  (0.80  g  COD/g  COD).  However,  one  should  be  careful  to  compare  these  two  experiments  since  they  were  not  performed  with  the  same  activated  sludge  of  the  same  WWTP.  Dircks  et  al.   (1999),  Goel  et  al.   (1999)  and  Karahan-­‐Gül  et  al.  (2002)   observed   the   same   findings,   namely   a   higher   yield   for   glucose   than   for   acetate.   They  explained   this   by   the   fact   that   the   formation   of   glycogen   from   glucose   requires   less   energy   as  compared   to   PHB   accumulation   from   acetate.   According   to   Dircks   et   al.   (2001)   the   storage   of  glycogen  is  energetically  more  efficient  than  the  storage  of  PHB.  Because  of  this  the  maximum  yield  of  glycogen  from  glucose  is  46%  higher  than  the  yield  of  PHB  from  acetate  (Karahan-­‐Gül  et  al.,  2002).  However,   as   was   the   case   with   acetate,   despite   the   high   yield   value,   no   typical   storage   tail   is  observed.      In   addition,   the   lower   substrate   concentration   could   be   caused   by   the   presence   of   certain  compounds   in   the  activated  sludge   inhibiting   the  uptake  of   the  substrate.  However   this  possibility  seems  unlikely  for  both  acetate  and  glucose.  The  experiments  with  acetate  and  glucose  as  substrate  were   carried  out  with   activated   sludge  of   two  different  WWTPs   (Roeselare   and  Eindhoven).   Thus,  inhibiting  components  should  have  been  present  in  both  types  of  activated  sludge.  The  experiments  with  acetate  and  glucose  could  be  repeated  with  activated  sludge  of  the  same  WWTP  to  see  if  the  same  results  would  be  obtained.      

3.4 PST  influent  and  effluent  as  substrate    

3.4.1 Evaluation  respirogram    

3.4.1.1 Direct  evaluation  method    

Figure   3-­‐6   illustrates   the   typical   respirogram   obtained   after   addition   of   250.0   ml   of   wastewater.  Typically,  the  DO  concentration  decreases  immediately  upon  addition  of  the  sample,  followed  by  a  large  increase.  This  increase  in  DO  concentration  was  not  expected.  Therefore,  250.0  ml  of  distilled  wastewater  was  added  to  the  reactor,  to  check  if  the  same  profile  would  be  obtained.  Upon  addition  of   the   sample,   the   same   immediate   increase   in   DO   concentration   is   observed   (Figure   3-­‐7).   This  increase   in   oxygen   concentration   is   probably   caused   by   the   addition   of   the   sample.   Due   to   the  relatively   large  sample  volume  that   is  added,   temporary  swirls  are  created   in   the  reactor,  creating  air-­‐bubbles   and   a   temporary   higher   oxygen   transfer.   Because   there   is   no  biodegradable   substrate  present   in   the   distilled   water,   the   DO   concentration   goes   slowly   back   to   the   saturated   DO  concentration,   while   a   faster   decrease   in   DO   concentration   is   observed   in   Figure   3-­‐6   due   to   the  degradation  of  biodegradable  matter  present  in  the  wastewater  sample.  

Page 45: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  33  

 Figure  3-­‐6:  DO-­‐profile   (a)  and  OUR-­‐profile   (b)  obtained  after  addition  of  250.0  ml  of  PST   influent   (266.0  mg  COD/l)   to  a  batch  reactor  containing  1.9  l  activated  sludge  (with  10  mg/l  ATU  to  block  nitrification)    

 

 Figure  3-­‐7:  DO-­‐profile  obtained  after  addition  of  250.0  ml  of  distilled  water  to  a  batch  reactor  containing  1.9   l  activated  sludge  (with  10  mg/l  ATU  to  block  nitrification)      

Moreover   Figure   3-­‐6   shows   that   after   the   addition   of   the   wastewater   sample,   the   endogenous  respiration  rate  is  lower  than  before  addition  of  the  sample.  Lagarde  et  al.  (2005)  observed  the  same  finding.  This  is  also  observed  after  the  addition  of  distilled  water,  namely  the  DO  concentration  does  not   go   back   to   the   original   DO   concentration   before   addition   of   the   sample.   The   higher   DO  concentration  and  subsequently  lower  endogenous  respiration  rate  after  sample  addition  is  possibly  caused  by   the  dilution  of   the  activated   sludge   resulting   in  a  higher  endogenous  DO  concentration  and  subsequently  lower  endogenous  OUR.      

3.4.1.2 WEST  

The   software  programme  West  was  used   to   simulate   the  experimental  DO-­‐profiles  obtained  after  the  addition  of  a  wastewater  sample.  Figure  3−8  illustrates  the  configuration  used  for  simulating  the  respirometric   experiments   in  WEST.   The   configuration   consists   of   a   buffer   tank,   2   timers   and   an  activated   sludge   tank.   The   buffer   tank   represents   the   sample   that   is   added   to   the   batch   reactor,  while   the   activated   sludge   tank   represents   the   respirometric   batch   reactor.   The   first   timer   is  connected  with  the  buffer  tank  and  regulates  at  which  time  point  250.0  ml  of  sample  is  dosed  to  the  

DO (m

g/l)

8.0

8.2

8.4

8.6

8.8

9.0

Time (s)0 1000 2000 3000

DO-profile

(a)   (b)  

DO (m

g/l)

8.0

8.2

8.4

8.6

8.8

9.0

Time (s)0 1000 2000 3000 4000 5000

DO-profile

OUR

(mg/

l.h)

−10

−5

0

5

10

Time (s)0 1000 2000 3000 4000 5000

OUR-profile

Page 46: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  34  

activated   sludge   tank.   The   second   timer   is   connected   to   the   activated   sludge   tank   to   mimic   the  possible  change  in  kLa  value  due  to  the  addition  of  the  sample.      

 Figure  3-­‐8:  configuration  of  the  respirometer  in  WEST  

 A   steady   state   simulation   is   performed.   In   WEST,   the   respirometer   needs   to   be   translated   as  realistically  as  possible.  The  biological  parameters   in   the  buffer   tank  and  activated  sludge  tank  are  set   to   the   values   that   occur   in   respectively   wastewater   and   the   respirometric   batch   reactor.   A  parameter  estimation  experiment  was  not  performed  due  to  lack  of  time.  However,  a  simulation  to  check   if   the  obtained  DO-­‐profiles  could  be  mimicked  with  WEST  was  performed.  Figure  3-­‐9  shows  the  result  of  the  simulation  experiment.  The  immediate  increase  in  DO  concentration  upon  addition  of  250.0  ml  of  wastewater  sample  can  be  mimicked  in  WEST  by  increasing  the  DO  concentration  of  the  sample  added  to  the  batch  reactor  or  by  temporarily   increasing  the  kLa  value  upon  addition  of  the  sample.  Both  approaches  are  model  simplifications  to  mimic  the  extra  aeration  caused  by  dosing  the   sample.   Moreover,   a   higher   equilibrium   DO   concentration   is   obtained   after   addition   of   the  sample,  as  was  observed  in  the  real  respirometric  profiles.  It  can  be  concluded  that  simulation  of  the  experimental  data  is  possible.      

 Figure  3-­‐9:  Simulated  DO-­‐profile  in  WEST  

 

Timer  1   Timer  2  

Respirometer  Sample  container  

DO-­‐profile  

Time  (d)  

DO  (m

g/l)  

Page 47: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  35  

3.4.2 Dry  weather  conditions  

3.4.2.1 One-­‐day  measurement  campaign    

A   one-­‐day   measurement   campaign   was   performed   on   March   12th.   One-­‐hour   time   weighted  composite  samples  were  taken  for  the   influent  and  effluent  of  the  PST.   ‘Flowing  gas  -­‐  static   liquid’  respirometric   analysis   was   performed   in   triplicate   on   the   influent   and   effluent   of   the   PST.   These  samples  were  taken  during  dry  weather  conditions  and  the  detention  time  of  the  wastewater  in  the  PST  was  approximately  1h40min.  Despite  the  large  standard  deviations,  the  data  in  Table  3-­‐1  show  a  trend,   namely   that   the   PST   effluent   contains   a   lower   biodegradable   substrate   fraction   than   the  influent.  This  shows  that   the  PST   in  Roeselare  reduces   the  BOD   load   for   the  subsequent  biological  treatment,  as  expected.    Table  3-­‐1:  Average  percentages  of  biodegradable  COD  (CS),  SS  and  XS  with  respect  to  total  COD  of  influent  and  effluent  of  the  PST  of  the  WWTP  of  Roeselare  

Sample  time   Sample  CS/CODTOT  

(%)  Std*  (%)  

SS/  CODTOT  (%)  

Std*  (%)  

XS/  CODTOT    (%)  

Std*  (%)  

10u55-­‐11u55   Before  PST   26.5   22.2   12.6   38.2   13.9   54.7  12u05-­‐13u05   After  PST   17.6   28.6   7.5   13.3   10.1   59.9  11u55-­‐12u55   Before  PST   35.7   28.4   15.6   8.6   20.1   49.4  13u05-­‐14u05   After  PST   26.4   32.4   11.3   76.9   15.0   88.9  12u55-­‐13u55   Before  PST   30.2   41.8   14.8   50.5   15.4   33.6  14u05-­‐15u05   After  PST   22.1   5.7   11.1   31.8   11.0   35.1  

*  Standard  deviation  in  %  

 Table   3-­‐2   and   Figure  3-­‐10   give   an  overview  of   the   removal   efficiencies  of   the   total   biodegradable  substrate   concentration   (CS),   readily   biodegradable   substrate   concentration   (SS)   and   slowly  biodegradable   substrate   concentration   (XS)   in   the  wastewater   samples.   During   the   sedimentation  process,   larger  more  slowly  biodegradable  suspended  solids  settle   first,  while   the  soluble   fractions  remain  in  the  primary  tank  effluent.  Therefore  it  is  expected  that  the  overall  (CS)  removal  efficiency  follows  the  same  trend  as  the  XS  removal  efficiency.  But  apparently,  the  PST  of  Roeselare  has  also  a  great  influence  on  the  removal  of  soluble  readily  biodegradable  substrate.  Because  there  are  not  a  lot   of   data   points,   it   is   difficult   to   establish   a   trend   in   the   removal   efficiencies   and   to   draw  conclusions.   However,   these   results   show   that   primary   treatment   has   an   impact   on   the   different  wastewater  COD  fractions  but  further  investigation  is  required.      Table  3-­‐2:  Biodegradable  COD  (CS),  SS  and  XS  concentrations  and  corresponding  removal  efficiencies    

Sample  time   Number  CS  

(mg/l)  Std*  (%)  

ECs  (%)  

SS  (mg/l)  

Std*  (%)  

ESs  (%)  

XS  (mg/l)  

Std*  (%)  

EXs  (%)  

10u55-­‐11u55  1  

70.4   22.2  44.5  

33.5   38.2  50.1  

37.0   54.7  39.4  

12u05-­‐13u05   39.1   28.6   16.7   13.3   22.4   59.9  11u55-­‐12u55  

2  98.8   28.4  

52.9  43.1   8.6  

53.6  55.7   49.4  

52.3  13u05-­‐14u05   46.6   32.4   20.0   76.9   26.6   88.9  12u55-­‐13u55  

3  83.8   41.8  

29.2  41.1   50.5  

27.7  42.8   33.6  

30.6  14u05-­‐15u05   59.4   5.7   29.7   31.8   29.7   35.1  

*  Standard  deviation  in  %  

Page 48: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  36  

 Figure  3-­‐10:  removal  efficiencies  (%)  of  CS,  SS  and  XS    

 3.4.2.2 Weekly  measurements  

Table  3-­‐3  summarizes  the  results  of  the  PST   influent  and  effluent  wastewater  samples  taken  every  week  on  monday  morning   in  the  WWTP  of  Roeselare.  All   the  samples  were  analysed  the  next  two  days  in  the  lab.  The  wastewater  samples  of  March  24th  obtained  at  the  outlet  of  the  PST  could  not  be  analysed  because  the  biodegradable  substrate  concentration  was  too  low,  despite  the  dry  weather  conditions   during   sampling.   The   ratio   of   readily   biodegradable   substrate   to   the   total   wastewater  COD  ranges  between  5.9   -­‐  8.5%   in  the  PST   influent  and  10.2%  -­‐  12.9%   in  the  PST  effluent.  For   the  slowly  biodegradable  substrate,  this  ratio  ranges  between  2.2  -­‐  20.3%  in  the  PST  influent  and  7.2  -­‐  20.1%   in   the   PST   effluent.   For   the   samples   of   April   7th   and   14th   the   biodegradable   substrate  concentration   in   the  wastewater   is   greater   at   the   outlet   then   at   the   inlet   of   the   PST,   resulting   in  negative   removal   efficiencies   (Table   3-­‐4).   COD   measurements   and   a   10-­‐day   BOD   test   of   these  samples,   performed   within   the   scope   of   another   thesis,   confirm   the   results   obtained   with   the  respirometer  (Versluys,  2014).  This   is  contradictory  with  normal  expectations  because  the  purpose  of   the   PST   is   to   remove   the   suspended   solids   and   to   lower   the   BOD   load   of   the   wastewater.  Moreover  the  detention  time  of  the  wastewater  in  the  PST  on  April  14th  is  the  longest.  The  detention  time   is   calculated   by   dividing   the   incoming   wastewater   flow   rate   by   the   volume   of   the   primary  sedimentation  basin.  Longer  detention  periods  normally   lead  to  more  removal  of  suspended  solids  and  BOD  load.  There  are  a  few  possible  explanations  for  the  observed  phenomenon.  First  of  all  an  improper  sludge  withdrawal  in  the  PST  may  allow  the  sludge  to  remain  too  long  in  the  tank  leading  to  the  production  of  gasses.  Due  to  these  gasses,  sludge  may  rise  to  the  water  surface   in   the  PST.  Therefore   less  biodegradable  matter  or   suspended  solids   can   settle  out  and  be   removed.  Another  possibility   is   the   occurrence   of   short-­‐circuiting   leading   to   very   short   detention   times.   Therefore,  setteable  material   does   not   have   enough   time   to   settle   out   of   the  water.   Short-­‐circuiting   can   be  caused   by   a   variety   of   factors,   such   as   temperature   differences   between   the   influent   and   the  wastewater   in   the   sedimentation   basin   leading   to   the   formation   of   density   currents   or   inlet   and  outlet  structure  design,  unclean  weirs  and  insufficient  removal  of  scum,  etc..  All  these  factors  result  in  carry-­‐over  and  discharge  of  floating  material  in  the  effluent.  There  is  a  need  to  collect  and  analyse  more  data  in  order  to  establish  if  the  PST  of  the  WWTP  in  Roeselare  is  dealing  with  one  or  more  of  the  above-­‐mentioned  operational  problems.      

Page 49: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  37  

Table  3-­‐3:  Average  percentages  of  biodegradable  COD,  SS  and  XS  with  respect  to  total  COD  of  influent  and  effluent  of  the    PST  of  the  WWTP  of  Roeselare  obtained  with  respirometric  batch  experiments.  

*  Standard  deviation  in  %    Table  3-­‐4:  Biodegradable  COD  (CS),  SS  and  XS  concentrations  and  corresponding  removal  efficiencies  

*  Standard  deviation  in  %  

 

3.4.3 Wet  weather  conditions  Wastewater  samples  obtained  on  February  25th  and  March  3th  at  the  WWTP  of  Roeselare  were  taken  during   wet   weather   conditions.   Overnight,   2.0   l   of   mixed   liquor   from   the   biological   tank   of   the  WWTP   of   Roeselare   was   well   aerated   in   the   reactor   in   order   to   remove   residual   readily  biodegradable   substrate.   ATU   was   added   with   a   concentration   of   10.0   mg/l   to   ensure   that   the  respirogram  is  not  affected  by  nitrification.  After  determination  of  the  kLa,  250.0  ml  of  wastewater  sample  was  added.  Figure  3-­‐11  shows  the  DO-­‐profile  and  OUR-­‐profile  obtained  upon  addition  of  the  wastewater   sample.   This   profile   is   similar   to   the   profile   obtained   after   addition   of   distilled  wastewaster  (Figure  3-­‐7).        

Date  Detention  time  (h)  

Sample  CS/CODTOT  

(%)  Std*  

(%)  SS/  CODTOT  

(%)  Std*  

(%)  XS/  CODTOT    

(%)  Std*  

(%)  

24/03/14   1.4  Before  PST   11.4   21.0   5.9   22.1   5.5   19.8  After  PST   N.A.   N.A.   N.A.   N.A.   N.A.   N.A.  

07/04/14   1.9  Before  PST   9.4   12.0   7.1   13.4   2.2   43.7  After  PST   20.1   1.6   12.9   24.3   7.2   46.1  

14/04/14   2.0  Before  PST   28.9   16.0   8.5   12.7   20.3   17.4  After  PST   30.2   27.5   10.2   23.8   20.1   29.3  

Date   Sample  CS  

(mg/l)  Std*  (%)  

ECs  (%)  SS  

(mg/l)  Std*  (%)  

ESs  (%)  XS  

(mg/l)  Std*  (%)  

EXs  (%)  

24/03/14  Before  PST   22.4   21.0  

N.A.  11.6   22.1  

N.A.  10.8   19.8  

N.A.  After  PST   N.A.   N.A.   N.A.   N.A.   N.A.   N.A.  

07/04/14  Before  PST   19.3   12.0  

-­‐156.0  14.7   13.4  

-­‐116.3  4.6   43.7  

-­‐283.0  After  PST   49.3   1.6   31.7   24.3   17.6   46.1  

14/04/14  Before  PST   63.7   16.0  

-­‐30.1  18.8   12.7  

-­‐48.3  44.9   17.4  

-­‐22.4  After  PST   82.9   27.5   27.9   23.8   54.9   29.3  

Page 50: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  38  

 Figure  3-­‐11:  DO-­‐profile  (a)  and  OUR-­‐profile  (b)  after  addition  of  250.0  ml  of  PST  influent  to  a  batch  reactor  containing  2.0  l  activated  sludge  (with  10  mg/l  ATU  to  block  nitrification)    

To  eliminate  the  possibility  that  the  organisms  in  the  activated  sludge  did  not  have  enough  essential  nutrients,  limiting  the  degradation  of  the  biodegradable  substrate,  sodium  phosphate  and  ammonia  sulphate   were   added   to   the   activated   sludge.   However,   after   adding   these   nutrients   the   same  respirometric  response  was  observed  upon  addition  of  the  wastewater  samples.  Thus,  no  essential  nutrients  were  limiting  for  the  activated  sludge  organisms.        Since  no  essential  nutrients  were  lacking,  the  wastewater  samples  of  the  WWTP  of  Roeselare  were  probably   very   dilute   because   of   rainfall   conditions   before   and   during   sampling.   To   validate   this  reasoning,  acetate  and  diluted  synthetic  wastewater  were  dosed  to  the  batch  reactor.  This  resulted  in  a  fast  respirometric  response  for  both  substrates,  confirming  that  the  wastewater  samples  were  very   dilute.   COD  measurements   of   the  wastewater   samples   taken   during  wet  weather   conditions  yielded  a  COD  concentration   ranging  between  31.2  mg/l  and  179.0  mg/l.   In  addition   five-­‐day  BOD  measurements  were  performed,  resulting  in  a  BOD5  value  ranging  between  30.3  mg/l  and  43.7  mg/l  (Versluys,  2014)  indicating  the  presence  of  biodegradable  substrate  in  these  wastewater  samples.  In  comparison,   samples   obtained   during   dry  weather   conditions   had   a   BOD5   value   ranging   between  58.5   mg/l   and   145   mg/l.   These   samples   could   all   be   analysed   with   the   respirometric   method.  Possibly  the  dilute  wastewater  samples  contain  mainly  slowly  biodegradable  substrate  that  cannot  be  degraded  during  the  short-­‐term  respirometric  experiments.      On   the   other   hand   there   could   be   degradation   of   the   biodegradable   substrate   by   the  microorganisms  in  the  activated  sludge.  But  due  to  the  low  CS  in  the  dilute  wastewater,  the  rate  of  oxygen  consumption  of  the  microorganisms  in  the  activated  sludge  during  substrate  degradation  did  not  exceed  the  oxygen  supply,  resulting  in  DO  and  OUR-­‐profiles  as  shown  in  Figure  3-­‐11.  Therefore,  the   aeration   was   lowered   to   the  minimal   aeration   rate   (0.5   l/min)   to   reduce   the   oxygen   supply.  Furthermore,  the  aeration  stone  was  removed  to  create  larger  air  bubble  sizes  for  a  given  aeration  power.   This   results   in   a   lower   specific   area   for  mass   transfer,   thus   less   efficient   oxygen   transfer.  After  the  addition  of  250.0  ml  of  wastewater,  the  same  respirometric  profile  as   in  Figure  3-­‐11  was  observed.   Decreasing   the   aeration   rate   and   increasing   the   air   bubble   sizes   did   not   decrease   the  oxygen  supply  sufficiently.      

(a)   (b)  

DO (m

g/l)

7.0

7.5

8.0

8.5

9.0

Time (s)0 200 400 600 800 1000

DO-profile

OUR

(mg/

l.h)

0

5

10

15

20

Time (s)0 200 400 600 800 1000

OUR-profile

Page 51: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  39  

3.4.3.1 Batch  test  with  diluted  sludge    

Since   the   respirometric  protocol  did  not   yield   good   results   for  dilute  wastewater   samples,   several  attempts  were  made   to   improve   the   respirometric   response  upon   addition  of   the  water   samples.  First  of  all,   the   initial  substrate  concentration  to   initial  biomass  concentration  (S0/X0)  was  adapted.  For  the  same  wastewater  volume,  the  magnitude  of  the  area  under  the  OUR-­‐curve  is  not  influenced  by   the   S0/X0.   This   area   is   only   dependent   of   the   mass   of   biodegradable   COD   in   the   wastewater  sample.  Changing  the  S0/X0  has  only  an  effect  on  the  shape  of  the  OUR-­‐curve.  A  low  S0/X0  results  in  a  tall  and  narrow  curve  due  the  fast  utilization  of  the  biodegradable  substrate,  while  a  high  S0/X0  gives  a  low  and  wide  OUR-­‐curve  (Ekama  et  al.,  1986).  Therefore  a  batch  test  was  performed  with  diluted  sludge  to  create  a  higher  S0/X0  ratio  and  to  slow  down  the  oxygen  uptake.  1.0  l  of  activated  sludge  was   diluted   with   1.0   l   of   distilled   water.   The   wastewater   samples   obtained   during   wet   weather  conditions   had   a   COD   concentration   ranging   between   31.2   mg/l   -­‐   179.0   mg/l.   To   mimic   these  samples,   influent  of  the  PST  was  diluted  with  effluent  of  the  WWTP  to  create  samples  with  a  COD  concentration   in  this   region.  The  experimental  protocol  was   followed  as  mentioned  above  (2.2.3.1  Flowing   gas–static   liquid).   Figure   3-­‐12   illustrates   the   DO-­‐profile   and   exogenous   uptake   rate  when  250.0  ml  wastewater  (125.3  mg  COD/l)  is  dosed  to  the  batch  reactor  containing  diluted  sludge.        

 Figure   3-­‐12:   DO-­‐profile   (a)   and   OUR-­‐profile   (b)   obtained   after   addition   of   250.0   ml   of   a   125.3   mg   COD/l   wastewater  solution  to  a  batch  reactor  containing  1.9  l  diluted  activated  sludge  (with  10  mg/l  ATU  to  block  nitrification)  

 After   addition   of   the   sample,   the   readily   biodegradable   matter   in   the   sample   is   degraded   after  approximately  4  minutes  and   subsequently   the   slowly  biodegradable   substrate   is  degraded  as   the  OUR-­‐curve   is   decreasing   to   a   lower   endogenous   OUR.   After   approximately   9   minutes,   all   the  biodegradable  matter   in   the  wastewater   sample   is  degraded.  After   calculation  of   the   surface  area  under   the   OUR-­‐curve   a   total   biodegradable   substrate   concentration   of   13.2   mg/l   is   obtained,  consisting  of  9.7  mg/l  readily  biodegradable  substrate  and  3.5  mg/l  slowly  biodegradable  substrate.      After  degradation  of  the  first  sample  when  the  endogenous  respiration  rate  was  reached  again  and  constant  for  approximately  15  minutes  a  new  sample  of  250.0  ml  was  added  to  the  batch  reactor.  A  respirometric   response   as   shown   in   Figure   3-­‐13   was   observed.   A   much   smaller   decrease   in   DO  concentration  than  after  the  first  spike  is  observed.  The  total  volume  in  the  reactor  (VR)  amounts  2.4  l,  while  after   the   first   spike   the  VR  was  2.15   l.  A  possible  explanation   for   the  smaller   respirometric  response  is  that  due  the  higher  volume  in  the  batch  reactor,  the  air  bubbles  stay  longer  in  the  mixed  

(a)   (b)  

DO (m

g/l)

8.0

8.2

8.4

8.6

8.8

9.0

Time (s)0 200 400 600 800

DO-profile

OUR

(mg/

l.h)

−10

−5

0

5

10

Time (s)0 200 400 600 800

OUR-profile

Page 52: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  40  

liquor,   so   increasing   the   oxygen   transfer   capacity,   leading   to   a   higher   dissolved   oxygen  concentration.  Moreover  due  to  the  higher  volume  it   is  possible  that  a  bigger  mixing  vortex   in  the  reactor   is   created,   resulting   in   a   better   aeration   and   higher   kLa   value.   Furthermore   due   to   the  addition   of   the   sample   there   is   a   dilution   effect,   so   less   biomass   is   present   per   unit   of   volume  resulting   in   higher   dissolved   oxygen   concentration.   It   can   be   concluded   that   there   is   no  straightforward   explanation   for   the   observed   phenomenon   and   that   there   are   a   lot   of   different  effects   that   can   be   responsible   for   the   observed   respirometric   profile.   After   calculation   of   the  surface   under   the   OUR-­‐curve   a   total   biodegradable   substrate   concentration   of   only   5.3   mg/l   is  obtained.   This   is   much   smaller   than   the   total   biodegradable   concentration   of   the   first   sample.   A  solution  for  this  observation  could  be  to  let  the  sludge  decant  to  maintain  approximately  the  same  activated  sludge  concentration  and  to  remove  250.0  ml  of  the  supernatant  so  that  the  start  volume  of  1.9l  activated  sludge  is  reached  again.      

 Figure  3-­‐13:  DO-­‐profile   (a)  and  OUR-­‐profile   (b)  after  addition  of  250.0  ml  of  a  125.3  mg  COD/l  wastewater  solution   to  a  batch  reactor  containing  2.15  l  diluted  activated  sludge  (with  10  mg/l  ATU  to  block  nitrification)  

 A   drawback   of   performing   experiments   with   diluted   sludge   is   the   long   time   necessary   for  determining  the  kLa  value.  Since  the  kLa  value  is  obtained  by  a  dynamic  gassing  out  method,  i.e.  the  aeration   is   stopped  until   a   dissolved  oxygen   concentration  of   1.5-­‐2  mg/L   is   reached.   Then   the   kLa  value   is   calculated   from   the   re-­‐aeration   curve   (2.2.3.1   Flowing  gas–static   liquid).  Normally   it   takes  approximately  40  minutes  to  determine  one  kLa  value,  but  with  diluted  sludge  it  takes  1h40  minutes.  Since   the  kLa-­‐value  has   to  be  determined  3   times,   it   takes  approximately  5h   to  determine   the  kLa.  Thus  this  method  does  not  allow  a  high-­‐measuring  frequency.      

3.4.3.2 Batch  test  with  concentrated  sludge  

The   same   type  of  experiment  was  performed  with   concentrated   sludge.   The  activated   sludge  was  concentrated  by  decanting  5.0  l  mixed  liquor  and  removing  3.0  l  of  the  supernatant  liquid.  A  dilute  wastewater  sample  was  made  with  a  COD  concentration  of  103.7  mg/l.  Figure  3-­‐14  shows  the  DO-­‐profile   and   exogenous   uptake   rate   when   250.0  ml   wastewater   (103.7  mg   COD/l)   is   dosed   to   the  batch   reactor   containing   1.9   l   of   concentrated   sludge.   The   total   biodegradable   matter   of   the  wastewater   sample   is   completely   degraded   in   6   minutes.   According   to   the   respirogram,   a   total  biodegradable  substrate  concentration  of  9.4  mg/l  is  present  in  the  wastewater  sample.  The  readily  biodegradable   substrate   concentration   amounts   5.9  mg/l   and   the   slowly   biodegradable   substrate  

(a)   (b)  

DO (m

g/l)

8.0

8.2

8.4

8.6

8.8

9.0

Time (s)0 500 1000

DO-profile

OUR

(mg/

l.h)

−10

−5

0

5

10

Time (s)0 500 1000

OUR-profile

Page 53: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  41  

concentration   is   3.5   mg/l.   Just   as   in   the   experiments   with   diluted   sludge,   a   lower   endogenous  respiration  rate  is  reached  after  addition  of  the  wastewater  sample.  One  kLa  value  is  determined  in  approximately  20  minutes,  so  this  experiment  does  not  last  as  long  as  the  experiment  with  diluted  sludge.    

 Figure   3-­‐14:   DO-­‐profile   (a)   and   OUR-­‐profile   (b)   obtained   after   addition   of   250.0   ml   of   a   103.7   mg   COD/l   wastewater  solution  to  a  batch  reactor  containing  1.9  l  concentrated  activated  sludge  (with  10  mg/l  ATU  to  block  nitrification)  

 After  degradation  of  the  first  sample  when  the  endogenous  respiration  rate  was  reached  again  and  constant  for  approximately  15  minutes  a  new  sample  of  250.0  ml  was  added  to  the  batch  reactor.  A  respirometric   response   as   shown   in   Figure   3-­‐15  was   observed.   As   in   the   experiment  with   diluted  sludge,   a  much   smaller   decrease   in   DO   concentration   than   after   the   first   spike   is   observed.   After  calculation  of  the  surface  under  the  OUR-­‐curve  a  total  biodegradable  substrate  concentration  of  8.6  mg/l   is   obtained.   This   concentration   is   close   to   the   value  obtained  after   the   first   spike   (9.4  mg/l).  Despite  the  very  small  decrease  in  DO-­‐concentration,  the  area  under  the  OUR-­‐curve  is  close  to  that  of  the  first  spike.  This  is  because  the  endogenous  respiration  rate  after  the  addition  of  the  sample  is  used  for  the  calculations  of  the  surface  area,  resulting  in  a  relatively  big  area  under  the  curve.      

 Figure   3-­‐15:   DO-­‐profile   (a)   and   OUR-­‐profile   (b)   obtained   after   addition   of   250.0   ml   of   a   125.3   mg   COD/l   wastewater  solution  to  a  batch  reactor  containing  2.15  l  concentrated  activated  sludge  (with  10  mg/l  ATU  to  block  nitrification)  

   

(a)   (b)  

DO (m

g/l)

7.5

8.0

8.5

Time (s)0 500 1000

DO-profile

OUR

(mg/

l.h)

−15

−10

−5

0

5

10

15

Time (s)0 500 1000

OUR-profile

(a)   (b)  

DO (m

g/l)

7.5

8.0

8.5

Time (s)0 500 1000 1500

DO-profile

OUR

(mg/

l.s)

−10

−5

0

5

10

Time (s)0 500 1000 1500

OUR-profile

Page 54: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  42  

3.4.3.3 Comparison  between  the  different  respirograms  

The   test   with   concentrated   sludge   resulted   in   a   higher   maximum   OURex,   namely   12.8   mg/l.h   in  comparison  with   the  maximum  OURex   (7.8  mg/l.h)  of   the  test  with  diluted  sludge,  despite   the   fact  that   the  COD-­‐content  of   the  wastewater   sample  dosed   to   the  concentrated   sludge  was  a   little  bit  lower   (125.3  mg  COD/l   versus   103.7  mg  COD/l).   This  meets   our   expectations   since   the   S0/X0  ratio  (0.0025  g  COD/g  VSS)   in   the   test  with   concentrated   sludge   is   4.4   times   lower   than   the   S0/X0   ratio  (0.011   g   COD/g   VSS)   of   the   test   with   diluted   sludge,   resulting   in   a   faster   utilization   of   the  biodegradable   substrate.   Moreover   the   biodegradable   substrate   is   completely   degraded   in   6  minutes  in  the  test  with  concentrated  sludge,  while  the  test  with  diluted  sludge  lasted  9  minutes  to  reach  complete  degradation.  An  important  difference  between  the  experiment  with  diluted  sludge  and   concentrated   sludge   is   the   time   needed   to   determine   the   kLa.   It   takes   5   times  more   time   to  determine  the  kLa  value  with  diluted  sludge.  Finally,  for  both  methods  a  relatively  low  biodegradable  substrate  concentration  is  obtained  in  comparison  with  the  dosed  COD  value.      

3.4.3.4 Batch  test  with  larger  volume  of  wastewater  

Furthermore  a  test  was  performed  in  a  smaller  respirometer  consisting  of  a  1L  double-­‐glass  vessel.  A  higher  S0/X0  ratio  (0.038  g  C0D/g  VSS)  was  created  by  adding  0.40l  of  dilute  wastewater  to  the  batch  reactor  containing  0.50  l  of  activated  sludge.  The  DO-­‐profile  and  OUR-­‐profile  obtained  with  this  type  of  experiment  is  shown  in  Figure  3-­‐16.    

 Figure   3-­‐16:   DO-­‐profile   (a)   and   OUR-­‐profile   (b)   obtained   after   addition   of   400.0   ml   of   a   103.7   mg   COD/l   wastewater  solution  to  a  batch  reactor  containing  500.0  ml  concentrated  activated  sludge  (with  10  mg/l  ATU  to  block  nitrification)  

 After  addition  of  the  wastewater  sample,  the  exogenous  respiration  rate  reaches  a  maximum  of  40.4  mg/l.h  and  then  decreases  to  a  value  lower  than  the  endogenous  respiration  rate.  Thereafter  OURex  increases  again  to  OURend.  This  profile  does  not  allow  the  calculation  of  CS,  since  the  area  under  the  OUR-­‐curve   is  probably  not   representative   for   the  oxygen   consumed  during   substrate  degradation.  Due  to  the  addition  of  400.0  ml  to  500.0  ml  of  sludge,  the  total  reactor  volume  almost  doubles  upon  addition   of   the   sample.   The   air   bubbles   can   stay   longer   in   the   mixed   liquor   and   there   is   strong  dilution   of   the   activated   sludge.   These   factors   possibly   change   the   kLa   value   and   oxygen   transfer,  resulting   in   an   error   in   the   calculated  OUR   values.   A   better  OUR-­‐profile   could   be   obtained,   if   the  change  in  kLa  value  and  oxygen  transfer  would  be  accounted  for  in  the  calculation  of  the  OUR  value.      

(a)   (b)  

DO (m

g/l)

7.5

8.0

8.5

Time (s)0 1000 2000 3000 4000

DO-profile

OUR

(mg/

l.h)

−20

0

20

40

Time (s)0 1000 2000 3000 4000

OUR-profile

Page 55: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  43  

3.4.3.5 Static  gas  -­‐  static  liquid  respirometry    

3.4.3.5.1 Acetate  as  substrate    During  this  experiment  1.9l  of  activated  sludge  was  shortly  aerated  until  a  DO  concentration  of  8  -­‐  9  mg/l   was   reached.   Then   the   aeration   was   turned   off   and   the   decrease   in   dissolved   oxygen  concentration  due  to  respiration  was  followed.  To  validate  this  method,  a  known  amount  of  sodium  acetate  trihydrate  was  added  to  the  activated  sludge.  The  results  are  illustrated  in  Table  3-­‐5.  From  these  results  can  be  concluded  that  a  lower  biodegradable  substrate  concentration  is  obtained  than  was  originally  dosed  to  the  reactor.    Additionally,   simulation   and   parameter   estimation   experiments   were   performed   in   WEST.   Figure  3-­‐17   illustrates   the   configuration   of   the   respirometric   setup   in  WEST.   It   consists   of   a   buffer   tank  representing   the   acetate   sample   dosed   to   the   reactor.   This   buffer   tank   is   connected   with   an  activated   sludge   tank,   representing   the   respirometric   batch   reactor.   Moreover   there   is   a   timer  regulating  the  time  point  at  which  acetate  from  the  buffer  tank  is  dosed  to  the  activated  sludge  tank.      

 Figure  3-­‐17:  configuration  of  the  respirometer  in  WEST  

 For   the   determination   of   the   endogenous   state   of   the   activated   sludge   in   the   batch   reactor,   an  additional  experiment  was  performed,  during  which   the  activated  sludge  was  aerated   for  3  hours.  The   initial   biomass   concentration   of   the   heterotrophs   and   the   kLa   were   estimated,   so   that   the  simulated  conditions  of  endogenous  respiration  were  matching  to  the  real  experimental  conditions  of  endogenous  respiration.  The  conditions  of  the  activated  sludge  tank  at  the  end  of  this  simulation  were  used  as  the  initial  values  of  the  parameters  and  initial  values  of  the  derived  state  variables  of  the  activated  sludge  tank   in   the  second  simulation  without  aeration.  During  this  simulation,   the  SS  concentration  in  the  buffer  tank  is  chosen  as  the  parameter  to  be  estimated  since  acetate  is  a  readily  biodegradable  substrate.  The  simplex  method   is  chosen  as  the  optimization  algorithm.  Figure  3-­‐18  shows   the   simulation   results   for   the   experiment   in  which   13.6  mg   sodium  acetate   trihydrate  was  added  to  1.9  l  activated  sludge.    

 

Timer  

Sample  container    Respirometer    

Page 56: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  44  

 Figure  3-­‐18:  Simulated  and  measured  DO-­‐values  after  addition  of  13.6  mg/l  sodium  acetate  trihydrate  (6.4  mg  COD/l)  

 Table  3-­‐5  shows  the  simulation  results  obtained  for  CS.  These  data  show  that  a  better  estimation  of  the   real   COD   concentration   added   to   the   batch   reactor   is   obtained.   Estimating   CS  with   the  AMS1  model  gives  better  results  than  calculating  the  CS  according  to  equation  2-­‐9.  However,  the  estimated  results   still   underestimate   the   actual   dosed   COD   concentration.   This   could   possibly   indicate   the  occurrence  of  storage,  as  was  the  case  with  the  ‘flowing  gas-­‐  static  liquid’  experiment  (3.2  Acetate  as  substrate).  If  the  storage  phenomenon  occurs,  it  is  advised  to  increase  the  YH  to  a  higher  value  (Sin,  2004).      Table  3-­‐5:  concentration  of  biodegradable  substrate  CS  after  addition  of  sodium  acetate  trihydrate  determined  with  ‘static  gas-­‐static  liquid’  respirometry  

Sodiumacetate  Trihydrate  (mg/l)  

COD  of  sample  (mg/l)  Calculated  Cs  (mg/l)  

Estimated  Cs  (mg/l)  in  WEST  

13.6     6.4   4.2   5.0  21.7     10.2   6.6   7.8  

 3.4.3.5.2 Wastewater  as  substrate    Thereafter,  this  type  of  experiment  was  performed  with  250.0  ml  of  dilute  wastewater  sample  (52.7  mg   COD/l).   During   this   method,   there   is   no   aeration,   so   the   oxygen   decrease   due   to   substrate  degradation  should  be  visible  upon  addition  of  the  sample.  However,  no  increase  in  respiration  rate  due  to  substrate  degradation  was  observed  as  shown  in  Figure  3-­‐19(a).  Moreover  an  increase  in  DO  concentration  was   observed   after   sample   addition.   The   same   increase   in   DO   concentration   upon  addition  of  250.0  ml  of  distilled  water  is  observed,  as  shown  in  Figure  3-­‐19(b).  This  increase  in  DO-­‐concentration  could  be  caused  due   to   the  dilution  of   the  activated  sludge,   leading   to  a  higher  DO  concentration.  Moreover  due  to  the  sample  addition,  swirls  in  the  reactor  could  be  created,  leading  to  a  higher  DO  concentration  due  to  transfer  of  oxygen  from  the  headspace.  

Time  (d)  

DO  (m

g/l)  

DO-­‐profile  

Simulated  data  Experimental  data  

Page 57: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  45  

 Figure  3-­‐19:  DO-­‐profile  obtained  after  addition  of  (a)  250.0  ml  of  PST  influent  (57.3  mg  COD/l)  and  (b)  250.0  ml  of  distilled  water  to  1.9  l  activated  sludge  (arrow  indicating  the  addition  of  the  substrate)  

 To  evaluate  the  minimum  biodegradable  substrate  concentration  leading  to  an  increased  respiration  rate   after   sample   addition,   dilute   wastewater   samples   with   different   COD   concentrations   were  made.   Table   3-­‐6   shows   the   obtained   results.   For   the   dilute   wastewater   sample   with   a   COD  concentration  of  52.4  mg/l,  no   increased  respiration  rate  upon  addition  of   the  sample  was  visible.  For   the   other   samples,   with   a   higher   COD   concentration,   a   visible   respirometric   response   was  observed.   After   calculation   of   the   biodegradable   substrate   concentration,   a   very   low   value   is  obtained.  The  calculated  concentrations  of   the  biodegradable   substrate   in   the  wastewater   sample  are   probably   an   underestimation   of   the   real   biodegradable   substrate   concentrations,   as   was   the  case  with  acetate.      Table   3-­‐6:   concentration   of   biodegradable   substrate   CS   in   dilute   wastewater   sample   determined   with   ‘static   gas-­‐static  liquid’  respirometry  

COD  of  sample  (mg/l)  

Cs  (mg/l)   Std  (%)*   Cs/CODtot  (%)   Std  (%)*  

52.4   N.A.   N.A.   N.A.   N.A.  80.2   4.1   83.2   5.1   4.2  110.5   9.1   25.9   8.2   2.1  158.9   12.5   28.8   7.9   2.3  

*  Standard  deviation  in  %    Therefore,  a  parameter  estimation  experiment  was  performed  in  WEST.  The  same  configuration  was  used   as   described   for   acetate.   For   the   determination   of   the   endogenous   state   of   the   activated  sludge   in   the   batch   reactor,   an   additional   experiment  was   performed,   during  which   the   activated  sludge  was  aerated   for  3  hours.  The   initial  biomass  concentration  of   the  heterotrophs  and   the  kLa  were  estimated,  so  that  the  simulated  conditions  of  endogenous  respiration  were  matching  to  the  real   experimental   conditions   of   endogenous   respiration.   It   was   noticed   that   the   longer   the  experiment  continued  the  estimated  biomass  concentration  in  the  respirometer  increased  from  0.98  g/l  to  4.28  g/l.  Indeed,  the  longer  the  experiment  lasted,  the  lower  (more  negative)  the  slope  of  the  curves   were,   as   shown   in   Figure   3-­‐20.   At   the   beginning   of   the   experiment   the   endogenous  respiration   rate   is   0.0018  mg/l.s,  while   at   the  end  of   the  experiment   (approximately   4h   later)   the  

(a)   (b)  

DO (m

g/l)

5

6

7

8

9

Time (s)0 200 400 600 800 1000 1200

DO-profile

DO (m

g/l)

5

6

7

8

9

Time (s)0 200 400 600 800 1000

DO-profile

Page 58: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  46  

endogenous  respiration  rate  is  0.0079  mg/l.s.  This  increase  in  respiration  rate  cannot  only  be  caused  by  the  growth  of  biomass  due  to  substrate  addition.  Another  possible  explanation  is  the  presence  of  slowly  biodegradable  substrate  present  in  the  wastewater  samples,  which  could  not  be  degraded  in  the   short   time   frame.   This   means,   that   the   microorganisms   in   the   batch   reactor   are   not   in   the  endogenous   state   because   they   are   still   degrading   slowly   biodegradable   substrate.   However,  endogenous   conditions   of   activated   sludge   in   the   beginning   of   the   test   are   crucial   for   a   correct  determination  of   the  biodegradable   substrate  present   in  a  dosed   sample.  Waiting  until   the   slowly  biodegradable  substrate  is  degraded  before  the  aeration  is  turned  on  again  is  not  an  option  because  of  oxygen  limitations.  Alternatively,  oxygen  limitation  can  be  avoided  by  a  regular  reaeration  of  the  batch   reactor.   Moreover   it   was   not   possible   to   estimate   the   concentration   of   XS   and   SS   in   the  wastewater  sample  with  WEST  because  it  was  not  able  to  make  a  distinction  between  XS  and  SS.      

 Figure   3-­‐20:   DO-­‐profile   obtained   after   addition   of   250.0   ml   of   dilute   wastewater   sample   (110.5   mg   COD/l)   to   1.9   l   of  activated  sludge  (a)  at  the  beginning  of  the  experiment  and  (b)  at  the  end  of  the  experiment    

 Additionally,  the  same  test  was  performed  with  diluted  sludge  and  dilute  wastewater.  1.0  l  activated  sludge  was  diluted  with  1.0  l  distilled  water.  The  dilute  wastewater  sample  had  a  COD  concentration  of  50.98  mg/l.  Upon  addition  of  the  wastewater  sample,  no  difference   in  respiration  rate  could  be  observed.   Because   of   the   above   findings,   this   type   of   experiment   cannot   be   used   for   the  determination   of   the   biodegradable   substrate   concentration   of   wastewater   samples   due   to   the  presence   of   slowly   biodegradable   matter   that   cannot   be   degraded   in   a   short   period   of   time.  Moreover   for  very  dilute  wastewater   samples  no   increase   in   respiration   rate  upon  addition  of   the  sample  can  be  observed.      

(a)   (b)  

OURI  =  -­‐0.0079  mg/l.s  DO

(mg/

l)

3

4

5

6

7

8

9

Time (s)0 100 200 300 400

DO-profile

OURI  =  -­‐0.0018  mg/l.s  

DO (m

g/l)

3

4

5

6

7

8

9

Time (s)0 500 1000 1500

DO-profile

Page 59: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  47  

4 CONCLUSIONS  AND  PERSPECTIVES  

This   work   investigates   the   influence   of   the   primary   settling   tank   in   wastewater   treatment.  Respirometric  measurements   were   carried   out   to   characterize   the   different   COD   fractions   of   the  wastewater.  The  most  important  findings  and  conclusions  are  reported  here.    First   of   all,   ‘flowing   gas-­‐   static   liquid‘   respirometric   measurements   of   acetate   and   glucose   were  carried  out.  From  these  results  it  can  be  observed  that  the  biodegradable  COD  concentration  of  the  substrate  cannot  be  totally  recovered  from  the  area  under  the  OUR-­‐curve.  A  possible  explanation  for  this   phenomenon   is   that   the   value   of   YH   differs   from   the   default   value   (0.67   g   COD/g   COD).  Calculation   of   the   heterotrophic   yield   from   the   respirograms   for   acetate   and   glucose   yields  respectively  0.80  g  COD/g  COD  and  0.91  g  COD/g  COD.  Such  high  yield  values  have  been  reported  in  literature  and  have  been  attributed  to  the  storage  of  polymers  caused  by  a  feast  and  famine  regime.  However,  no  typical  storage  tail  was  observed  in  the  OUR-­‐profile.  This  observation  possibly  suggests  that   growth   and   storage   processes   occur   simultaneously.   A   model-­‐based   interpretation   of   the  experimental  data  should  be  performed.      Secondly,   respirometric  measurements  were  performed  with  wastewater  sampled  at   the   inlet  and  the  outlet  of  the  PST  during  dry  weather  conditions.  These  results  illustrate  that  the  primary  settler  changes   the  wastewater  COD   fractions.   The   results  of   the  one-­‐day  measurement   campaign  at   the  WWTP   of   Roeselare   show   that   the   PST   reduces   the   BOD   load   for   the   subsequent   biological  treatment.  This  is  in  contrast  with  the  weekly  respirometric  measurements.  These  results  show  that  the   biodegradable   substrate   concentration   in   the   PST   effluent   is   greater   than   in   the   PST   influent.  Improper   sludge   withdrawal   and   short-­‐circuiting   can   lead   to   carry-­‐over   and   discharge   of   floating  material  in  the  effluent.  There  is  a  need  to  collect  and  analyse  more  data  in  order  to  establish  if  the  PST  of  the  WWTP  in  Roeselare  is  dealing  with  operational  problems.  A  first  start  for  a  model-­‐based  interpretation   of   the   experimental   data   has   been   performed.   A   possible   suggestion   is   to   perform  model-­‐based  parameter  estimation  experiments   to  determine   the  SS  and  XS  fractions  of   the  dosed  wastewater  samples.      Additionally,   special   attention  was   given   to   the  wastewater   characterisation   of   dilute  wastewater  sampled  during  wet  weather  conditions.  Following  the  same  respirometric  protocol,  as  with  the  dry  weather   wastewater   samples   did   not   yield   good   results   for   the   dilute,   less   polluted   wastewater  samples.   Increasing   the   initial   substrate   to   biomass   ratio   (S0/X0)   by   diluting   the   sludge,   does   not  allow   a   high  measuring   frequency   because   the   determination   of   the   kLa   value   takes   a   long   time.  Moreover   after   the   second   spike,   a   much   smaller   respirometric   response   is   observed.   The   same  finding   was   observed   in   experiments   with   a   lower   S0/X0   ratio.   Letting   the   sludge   decant   and  subsequently  remove  a  certain  volume  of  the  supernatant  to  maintain  the  same  initial  total  volume  in   the   batch   reactor   could   solve   this   issue.   However,   both   methods   yielded   a   relatively   low  biodegradable   substrate   concentration   in   comparison   with   the   actual   dosed   COD   value.   Finally   a  ‘static   gas   -­‐   static   liquid’   respirometric   approach  was   applied.   Dosing   a   known   amount   of   readily  biodegradable   substrate,   namely   acetate,   validated   this  method.   A  model-­‐based   interpretation   of  the   experimental   data   approximates   the   actual   dosed   COD   concentration   the   best.   However,   the  estimated   value   underestimates   the   actual   concentration.   This   could   possibly   suggest   the  

Page 60: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  48  

occurrence   of   storage,   as   was   the   case   with   the   ‘flowing   gas   -­‐   static   liquid’   respirometric  measurements.   Thereafter,   experiments   with   dilute   wastewater   samples   were   performed.   It   was  observed  that  the  endogenous  respiration  rate  of  each  measurement  cycle  increased  the  longer  the  experiments  lasted.  This  is  probably  caused  by  the  presence  of  slowly  biodegradable  substrate  in  the  wastewater  samples.  Therefore  the  microorganisms  were  not  in  the  endogenous  state  because  they  were  still  degrading  slowly  biodegradable  substrate.  However,  endogenous  conditions  of  activated  sludge   in   the  beginning  of   each  measurement   cycle   are   crucial   for   a   correct   determination  of   the  biodegradable   substrate   present   in   a   dosed   sample.   This   leads   to   the   conclusion   that   this  respirometric  approach  cannot  be  used   for   the  characterisation  of  wastewater  samples.  Moreover  for  very  dilute  wastewater  samples  no  increase  in  respiration  rate  upon  addition  of  the  sample  can  be  observed.    A  possible  suggestion  for  further  investigation  is  to  apply  other  respirometric  principles,  like  hybrid  respirometry.   This   type   of   respirometer   consists   of   an   aerated   vessel   and   a   closed   non-­‐aerated  respiration   chamber.   Sludge   is   continuously   pumped   between   the   aeration   vessel   and   the  respiration  chamber.  An  advantage  of  this  approach  is  that  it  avoids  the  need  to  estimate  kLa  values,  thus  increasing  the  measuring  frequency.          In   short,   primary   settling   has   a   significant   influence   on   the   COD   fractions   and   BOD   load   of  wastewater.   However,   further   investigation   is   required   to   get  more   insight   on   the   impact   of   the  primary   settler.   ‘Flowing   gas   -­‐   static   liquid’   batch   respirometry,   has   been   useful   for   the  characterisation   of   polluted   wastewater.   Nevertheless,   this   method   is   less   suitable   for   the  determination  of  the  biodegradable  substrate  concentration  in  less  polluted  wastewaters.    

Page 61: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  49  

5 REFERENCES    

Amerlinck,   Y.,   Flameling,   T.,   Maere,   T.,  Weijers,   S.   and   Nopens,   I.   (2013).   Practical   application   of  dynamic   process   models   for   wastewater   treatment   plant   optimization:   work   in   progress.   Water  Environment  Federation,  86th  Annual  technical  exhibition  and  conference,  Papers.  Presented  at  the  86th   Annual  Water   Environment   Federation   Technical   Exhibition   and   Conference   (WEFTEC   2013),  Alexandria,  VA,  USA:  Water  Environment  Federation  (WEF).    Bachis,  G.,  Maruéjouls,  T.,  Tik,  S.,  Amerlinck,  Y.,  Meleer,  H.,  Nopens,  I.,  Lessard,  P.  and  Vanrolleghem,  P.   (2014).  Modelling   and   characterisation   of   primary   settlers   in   view  of  whole   plant   and   resource  recovery  modelling.  4th  IWA/WEF  Wastewater  Treatment  Modelling  Seminar  2014.  Spa,  Belgium.    Bandyopadhyay,   B.   and  Humphrey,   A.   E.   (2009).   Dynamic  measurement   of   the   volumetric   oxygen  transfer  coefficient  in  fermentation  systems.  Biotechnology  and  bioengineering,  104:  841-­‐853.    Barnett,  M.  W.,   Stenstrom,  M.   K.   and  Andrews,   J.   F.   (1998).   Dynamics   and   control   of  wastewater  systems.CRC,  Press,  Lancaster,  Pennyslvania,  U.S.A.:362.    Benedetti,  L.,  Langeveld,  J.,  de  Klein,  J.  J.  M.,  Nopens,  I.,  Van  Nieuwenhuijzen,  A.,  Flameling,  T.,  van  Zangen,  O.   and  Weijers,   S.   (2013).   Cost-­‐effective   solutions   for   river  water   quality   improvement   in  Eindhoven   supported   by   sewer-­‐WWTP-­‐river   integrated   modeling.   Water   Science   &   Technology,  68(5).    Brent,  R.  P.  (1973).  Algorithms  for  minimization  without  derivatives.Prentice-­‐Hall,  New  York,  USA.    Brouwer,   H.,   Klapwijk,   A.   and   Keesman,   K.   J.   (1998).   Identification   of   activated   sludge   and  wastewater   characteristic   using   respirometric   batch-­‐experiments.   Water   Research,   32(4):   1240-­‐1254.    Carucci,   A.,   Dionisi,   D.,  Majone,  M.,   Rolle,   E.   and   Smurra,   P.   (2001).   Aerobic   storage   by   activated  sludge  on  real  wastewater.  Water  Research,  35(16):  3833-­‐3844.    Chudoba,  P.,  Capdeville,  B.  and  Chudoba,  J.   (1992).  Explanation  of  biological  meaning  of  the  So/Xo  ratio  in  batch  cultivation  Water  Science  &  Technology,  26(3-­‐4):  743-­‐751.    Cierkens,  K.,  Nopens,  I.,  De  Keyser,  W.,  Van  Hulle,  S.,  Plano,  S.,  Torfs,  E.,  Amerlinck,  Y.,  Benedetti,  L.,  Van  Nieuwenhuijzen,  A.,  Weijers,  S.  and  De  jonge,  J.  (2012).  Integrated  model-­‐based  optimisation  at  the  WWTP  of  Eindhoven.  Water  Practice  &  Technology  7(2).    Claeys,   F.   (2008).   A   Generic   Software   Framework   for  Modelling   and   Virtual   Experimentation  with  Complex  Environmental  Systems.  PhD  Thesis,  Ghent  University,  Belgium.    Cokgör,  E.  U.,  Sözen,  S.,  Orhon,  D.  and  Henze,  M.  (1998).  Respirometric  analysis  of  activated  sludge  behaviour:  I.  Assessment  of  the  readily  biodegradable  substrate  Water  Research,  32:  461-­‐475.    Copp,  J.  B.,  Spanjers,  H.  and  Vanrolleghem,  P.  (2002).  Respirometry  in  control  of  the  activated  sludge  process:  benchmarking  control  strategies.  11.    Crittenden,   J.   C.,   Trussell,   R.   R.,   Hand,   D.  W.,   Howe,   K.   J.   and   Tchobanoglous,   G.   (2005).   MWH's  Water  Treatment:  Principles  and  Design.john  Wiley  &  Sons,  Inc.  ,  Hoboken,  New  Jersey:1948.    

Page 62: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  50  

Deweerdt,  M.  (2010).  Influent  characterization  and  calibration  for  activated  sludge  models  for  MBR.  PhD  Thesis,  Ghent  University,  Belgium.    Dircks,   K.,   Beun,   J.   J.,   van   Loosdrecht,   M.   C.   M.,   Heijnen,   J.   J.   and   Henze,   M.   (2001).   Glycogen  metabolism  in  aerobic  mixed  cultures.  Biotechnology  and  bioengineering,  73(2):  85-­‐94.    Dircks,  K.,  Pind,  P.,  Mosbaek,  H.  and  Mogens,  H.  (1999).  Yield  determination  by  respirometry   -­‐  The  possible  influence  of  storage  under  aerobic  conditions  in  activated  sludge.  Water  SA,  25(1):  69-­‐74.    Dold,   P.   L.,   Ekama,   G.   A.   and   Marais,   G.   v.   R.   (1980).   A   general   model   for   the   activated   sludge  process.  Progress  in  Water  Technology,  12(6):  47-­‐77.    Drtil,  M.,  Németh,  P.  and  Bodik,   I.   (1993).  Kinetic  constants  of  nitrification.  Water  Research,  27(1):  35-­‐39.    Ekama,   G.   A.,   Dold,   P.   L.   and   Marais,   G.   v.   R.   (1986).   Procedures   for   determining   influent   COD  fractions   and   the   maximum   specific   growoth   rate   of   heterotrophs   in   activated   sludge   systems.  Water  Science  &  Technology,  18(6):  91-­‐114.    Fall,   C.,   Flores,   N.   A.,   Espinoza,   M.   A.,   Vazquez,   G.,   Loaiza-­‐Návia,   J.,   van   Loosdrecht,   M.   C.   and  Hooijmans,   C.  M.   (2011).   Divergence   Between   Respirometry   and   Physicochemical  Methods   in   the  Fractionation   of   the   Chemical   Oxygen   Demand   in   Municipal   Wastewater.   Water   Environment  Research,  83(2):  162-­‐172.    Gatti,   M.   N.,   García-­‐Usach,   F.,   Seco,   A.   and   Ferrer,   J.   (2010).   Wastewater   COD   characterization:  analysis   of   respirometric   and   physical-­‐chemical   methods   for   determining   biodegradable   organic  matter  fractions.  Journal  of  Chemical  Technology  &  Biotechnology,  85(4):  536-­‐544.    Gernaey,  A.  K.,  Petersen,  B.,  Ottoy,   J.-­‐p.  and  Vanrolleghem,  P.   (2001).  Activated  sludge  monitoring  with  combined  respirometric–titrimetric  measurements.  Water  Research,  35(5):  1280-­‐1294.    Goel,   R.,   Mino,   T.,   Satoh,   H.   and   Matsuo,   T.   (1999).   MOdeling   hydrolysis   processes   considering  intracellular  storage.  Water  Science  and  Technology,  39(1):  97-­‐105.    Guisasola,  A.,  Sin,  G.,  Baeza,  J.  A.,  Carrera,  J.  and  Vanrolleghem,  P.  (2005).  Limitations  of  ASM1  and  ASM3:   a   comparison   based   on   batch   oxygen   uptake   rate   profiles   from   different   full-­‐scale  wastewater  treatment  plants.  Water  Science  and  Technology,  52(10-­‐11):  69-­‐77.    Henze,   M.   (1992).   Characterization   of   wastewater   for   modelling   of   activated   sludge   processes.  Water  Science  &  Technology,  25(6):  1-­‐15.    Henze,  M.,  Gujer,  W.,  Mino,  T.,  Matsuo,  T.,  Wentzel,  M.  C.  and  Marais,  G.  v.  R.  (1995).  Wastewater  and  biomass  characterization  for  the  activated  sludge  model  No.  2:  biological  phosphorous  removal.  Water  Science  Technology,  31(2):  13-­‐23.    Henze,  M.,  Gujer,  W.,  Mino,  T.,  Matsuo,  T.,  Wentzel,  M.  C.,  Marais,  G.  v.  R.  and  Van  Loosdrecht,  M.  C.  M.  (1999).  Activated  sludge  model  No.2D  ASM2D.  Water  Science  Technology,  39(1):  165-­‐182.    Heynderickx,   P.   M.   and   Defrancq,   J.   (2013).   Fysisch-­‐chemische   processen   van   de   milieusanering:  partim  lucht  en  water.  280.    

Page 63: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  51  

Kappeler,  J.  and  Gujer,  W.  (1992).  Estimation  of  kinetic  parameters  of  heterotrophic  biomass  under  aerobic  conditions  and  characterization  of  wastewater  for  activated  sludge  modelling.  Water  Science  &  Technology,  25(6):  125-­‐139.    Karahan-­‐Gül,  Ö.,  Artan,  N.,  Orhon,  D.,  Henze,  M.  and  van  Loosdrecht,  M.  C.  M.  (2002).  Respirometric  assessment   of   storage   yield   for   different   substrates.  Water   Science   and   Technology,   46(1-­‐2):   345-­‐352.    Lagarde,  F.,  Tusseau-­‐Vuillemin,  M.-­‐H.,  Lessard,  P.,  Héduit,  A.,  Dutrop,  F.  and  Mouchel,  J.-­‐M.  (2005).  Variability   estimation   of   urban   wastewater   biodegradable   fractions   by   respirometry.   Water  Research,  39(19):  4768-­‐4778.    Majone,  M.,  Dircks,  K.  and  Beun,  J.  J.  (1999).  Aerobic  storage  under  dynamic  conditions  in  activated  sludge  processes.  The  state  of  the  art.  Water  Science  &  Technology,  39(1).    Meirlaen,  J.   (2002).   Immission  based  real-­‐time  control  of  the   integrated  urban  wastewater  system.  PhD  Thesis,  Ghent  University,  Belgium.    Melcer,  H.,  Dold,  P.  L.,  Jones,  R.  M.,  Bye,  C.  M.,  Takacs,  I.,  Stensel,  D.  H.,  Wilson,  W.  A.,  Sun,  P.  and  Bury,   S.   (2003).   Methods   for   wastewater   characterization   in   activated   sludge   modeling.   IWA  publishing.    Metcalf  and  Eddy,  I.  (2003).  Wastewater  Engineering:  Treatment  and  Reuse.McGraw-­‐Hill,  New  York,  NY:1819.    Montgomery,  J.  M.  (1985).  Water  treatment:  principles  and  design.John  Wiley  &  Sons,  Inc.,  Canada.    Nelder,  J.  A.  and  Mead,  R.  (1965).  A  simplex  method  for  function  minization.  computer  journal  7(4):  308-­‐313.    Nopens,   I.   (2010).  Modelling  and  control  of  Wastewater   treatment  plants.(Course  note  of  1st/2nd  Mater   Bio-­‐Science   engineering),   Department   of   Applied   Mathematics,   Biometrics   and   Process  Control  Research  unit  BIOMATH,  UGent.    Orhon,   D.   and   Okutman,   D.   (2003).   Respirometric   assessment   of   residual   organic   matter   for  domestic  sewage.  Enzyme  and  Microbial  Technology,  32(5):  560-­‐566.    Orhon,   D.,   Okutman,   D.   and   Insel,   G.   (2002).   Characterisation   and   biodegradation   of   settleable  organic  matter  for  domestic  wastewater.  Water  SA,  28(3):  299-­‐206.    Pasztor,  I.,  Thury,  P.  and  Pulai,  J.  (2008).  Chemical  oxygen  demand  fractions  of  municipal  wastewater  for   modeling   of   wastewater   treatment.   International   Journal   of   Environmental   Science   &  Technology,  6(1):  51-­‐56.    Peavy,  H.  S.,  Rowe,  D.  R.  and  Tchobanoglous,  G.  (1985).  Environmental  engineering  McGraw-­‐Hill,  Inc.  ,  New  York.    Petersen,  B.  (2000).  Calibration,  identificability  and  optimal  experimental  design  of  activated  sludge  models.  PhD  Thesis,  Ghent  University,  Belgium:  362.    

Page 64: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  52  

Riffat,   R.   (2013).   Fundamentals   of   wastewater   treatment   and   engineering   CRC   Press,   Taylor   &  Francis  group.  IWA  publishing  United  states:333.    Roeleveld,   P.   J.   and   van   Loosdrecht,  M.   C.  M.   (2002).   Experience   with   guidelines   for   wastewater  characterisation  in  The  Netherlands.  Water  science  and  technology,  45(6):  77-­‐87.    Ros,  M.,  Dular,  M.  and  Farkas,  P.  A.   (1988).  Measurement  of  respiration  of  activated  sludge  Water  Research,  22(11):  1405-­‐1411.    Sin,   G.   (2004).   Systematic   calibration   of   activated   sludge   models.   PhD   Thesis,   Ghent   University,  Belgium.    Sollfrank,   U.   and   Gujer,   W.   (1991).   Characterisation   of   domestic   wastewater   for   mathematical  modelling  of  the  activated  sludge  process  Water  Science  &  Technology,  23(4-­‐6):  1057-­‐1066.    Spanjers,   H.   (1993).   Respirometry   in   Activated   Sludge.   PhD   Thesis,   Wageningen   Agricultural  University,  The  Netherlands:  199.    Spanjers,   H.   (1996).   Respirometry   in   control   of   the   activated   sludge   process.   Water   Science  Technology,  34(3):  117-­‐126.    Spanjers,   H.,   Takacs,   I.   and   Brouwer,   H.   (1999).   Direct   parameter   extration   from   respirograms   for  wastewater  and  biomass  characterisation.  Water  Science  &  Technology,  39(4):  137-­‐145.    Spanjers,   H.   and   Vanrolleghem,   P.   (1995).   Respirometry   as   a   tool   for   rapid   characterization   of  wastewater  and  activated  sludge.  Water  Science  &  Technology,  31(2):  105-­‐114.    Spérandio,   M.   and   Etienne,   P.   (2000).   Estimation   of   wastewater   biodegradable   COD   fractions   by  combining  respirometric  experiments  in  various  So/Xo  ratios.  Water  Research,  34(4):  1233-­‐1246.    Strotmann,  U.  J.,  Geldern,  A.,  Kuhn,  A.,  Gendig,  C.  and  Klein,  S.  (1999).  Evaluation  of  a  respirometric  test   method   to   determine   the   heterotrophic   yield   coefficient   of   activated   sludge   bacteria.  Chemosphere,  38(15):  3555-­‐3570.    van  Loosdrecht,  M.  C.  M.,  Pot,  M.  A.  and  Heijnen,   J.   J.   (1997).  The   importance  of  bacterial  storage  polymers  in  bioprocesses.  Water  Science  &  Technology,  35(1):  41-­‐47.    Vanrolleghem,   P.   (2002).   Principles   of   respirometry   in   activated   sludge   wastewater   treatment.  Proceedings   International   Workshop   on   Recent   Development   in   Respirometry   for   Wastewater  Treatment  Plant  Monitoring  and  Control.  Tawain:  Taipei.    Vanrolleghem,  P.,  Gernaey,  K.,  Petersen,  B.,  De  Clerq,  B.,  Coen,  F.  and  Ottoy,  J.-­‐P.  (1998).  Limitations  of  short-­‐term  experiments  designed  for  identification  of  activated  sludge  biodegradation  models  by  fast   dynamic   phenomena.   In   Proceedings   7th   IFAC   Conference   on   Computer   Applications   in  Biotechnology  CAB7.  Osaka,  Japan:  567-­‐572.    Vanrolleghem,  P.,  Insel,  G.,  Petersen,  B.,  Sin,  G.,  De  Pauw,  D.,  Nopens,  I.,  DOvermann,  H.,  Weijers,  S.  and  Gernaey,  K.  (2003).  A  comprehensive  model  calibration  procedure  for  activated  sludge  models.  Procedeeings  of  the  Water  Environment  Federation,  2003(9):  210-­‐237.    

Page 65: Influent fractionation using a respirometric method for ...lib.ugent.be/fulltxt/RUG01/002/166/767/RUG01-002166767_2014_000… · Influent fractionation using a respirometric method

  53  

Vanrolleghem,   P.,   Spanjers,   H.,   Petersen,   B.,   Ginestet,   P.   and   Takacs,   I.   (1999).   Estimating  (combinations   of)   activated   sludge   model   NO.   1   parameters   and   components   by   respirometry.  Water  Science  &  Technology,  39(1):  195-­‐214.    Versluys,  H.  (2014).  Primary  sedimentation  investigation  using  a  physical-­‐chemical  analysis  method.  Master  Thesis,  Ghent  University,  Belgium.    Wentzel,   M.   C.,   Mbewe,   A.   and   Ekama,   G.   A.   (1995).   Batch   test   for   measurement   of   readily  biodegradable  COD  and  active  organism  concentrations  in  municipal  waste  waters.  Water  SA,  21(2):  117-­‐124.    Xu,  S.  and  Hultman,  B.  (1996).  Experiences  in  wastewater  characterization  and  model  calibration  for  the  activated  sludge  process.  Water  Science  &  Technology,  33(12):  89-­‐98.    Young,   J.   C.   and  Cowan,  R.  M.   (2004).   Respirometry   for   environmental   science   and  engineering.SJ  enterprises,  Springdale,  Arkansas  USA.    Zhou,  Z.,  Wu,  Z.,  Wang,  Z.,  Tang,  S.  and  Gu,  G.  (2008).  COD  fractionation  and  parameter  estimation  for   combined   sewers   by   respirometric   tests.   Journal   of   Chemical   Technology   &   Biotechnology,  83(12):  1596-­‐1601.