Increasing complexity of engineering design requirements for bridge … · 2018. 5. 7. · •...

23
#FIDIC_GAMA2018 Increasing complexity of engineering design requirements for bridge hydraulic structures on constricted seasonal rivers. A case study of Kaabong Bridge in Karamoja, Uganda Presented by: Eng. Dr. Seith Mugume Managing Director, Centre for Infrastructure Consulting (CIC) Ltd & Lecturer, Department of Civil & Environmental Engineering, Makerere University, Kampala

Transcript of Increasing complexity of engineering design requirements for bridge … · 2018. 5. 7. · •...

  • #FIDIC_GAMA2018

    Increasing complexity of engineering design requirements for bridge hydraulic structures on constricted seasonal rivers. A case study of 

    Kaabong Bridge in Karamoja, Uganda

    Presented by: Eng. Dr. Seith MugumeManaging Director, Centre for Infrastructure Consulting (CIC) Ltd &

    Lecturer, Department of Civil & Environmental Engineering, Makerere University, Kampala

  • Presentation Outline

    • Introduction• Key changes in design requirements• Hydrological studies• Hydraulic modelling and design• Case study: Kaabong Bridge • Discussion & Conclusions

    #FIDIC_GAMA2018

  • Introduction

    • State-of-the art design of hydraulic structures such as bridges and drainage systems is changing! Climate change; Urbanization; Upstream Catchment Degradation; Emerging threats have limited guidance in existing design codes &

    guidelines• Presentation discusses the changes in complexity of hydrological

    studies and hydraulic design of a bridge structure constructed on constricted seasonal river in Karamoja, Uganda

    #FIDIC_GAMA2018

  • Introduction

    • The state of the art of design of hydraulic structures ischanging rapidly (North 2016)

    • Increasing need for specialization in planning, design,materials selection, construction & risk assessment

    • Emerging threats: Climate change => More frequent extreme rainfall , Urbanization => Increase in percentage imperviousness

    (PIMP), reclamation of urban wetlands Upstream Catchment Degradation => Sediments

    • Minimal or no guidance from existing design codes andguidelines

    #FIDIC_GAMA2018

  • Hydrological studies – key changes

    #FIDIC_GAMA2018

    - Use of hard copy topographic maps- Manual catchment delineation methods- Use of Rational Method for Estimation of Q

    - Digital Elevation Models & Satellite Imagery- ArcGIS based catchment delineation- Physically-based rainfall run-off models for Estimation of Q- Climate Change Impacts on rainfall extremes

    Previous approach

    State-of-the art

  • Hydraulic Design – key changes

    #FIDIC_GAMA2018

    - Use of the Continuity Equation, Q = AV and- Manning’s EquationV = (1/n) R2/3S1/2

    - Steady State Design in MS Excel for design of a typical section- Model build and Simulations in HECRAS Software- Consideration of Sediment Transport Aspects- Scour Computations - River Protection Works integrated in Bridge Design

    Previous approach

    State-of-the art

  • Advances in hydrological & hydraulic modelling

    #FIDIC_GAMA2018

    Main steps entailed in model build of an urban catchment in SWMM (Mugume 2015)

    1D Modelling 1D-2D Modelling 3D Modelling Multi Core/Parallel Computing

  • Case Study: Kaabong bridge, Uganda

    Existing bridge section

  • Case study: Kaabong Bridge

    #FIDIC_GAMA2018

    Key challenges considered in design Old and narrow existing bridge Frequent river flooding at the bridge site Flood duration: 3 – 4 hrsMaximum observed flood depths: 1 m above

    the bridge deck level Constricted cross section at bridge crossing point Heavily silted river bed River morphology Course shifting northwards

  • Design Scope

    #FIDIC_GAMA2018

    Geotechnical Investigations

    Topographic Surveys

    Hydrological Modelling & Hydraulic Design

    Structural Analysis & Design

  • Topographic Surveys

    #FIDIC_GAMA2018

    Detailed topographic plan layout and sections of the bridge site

    Geo referencing of natural and manmade features

    Installation of permanent beacons

    Surveying of river channel cross sections upstream and downstream of the existing bridge.

  • Geotechnical Investigations

    #FIDIC_GAMA2018

    Trial Pits & DCP

    tests => Access

    roads

    Drilling of boreholes

    => Proposed bridge

    site

    SPT tests

    Bearing Capacity

    Computations

    (Tezerghi & Peck

    1967)

  • Hydrological Studies ‐ Catchment

    #FIDIC_GAMA2018

    Un gauged Catchment, 296 km2

    Seasonal River, 31.9 km upstream ofbridges

    Predominant land uses Cultivated land (105.8 km2) Pastures and grassland (139 km2) Mountainous woodland (47.9 km2)

    Narrow bridge/hydraulic opening High rate of sediment deposition=> Shifting/widening of the river bed

    immediately upstream of theexisting bridge.

  • Hydrological Studies – Extreme Rainfall Analysis

    #FIDIC_GAMA2018

    Climate Change Factor of 1.2 applied to the 2 yr 24 hour rainfall

    Effects of spatial rainfall variations within the catchment => Areal reduction factor of 0.790 applied to the point rainfall.

    Rainfall Return Period, T 10 25 50 100 200

    Flood Factor 1.65 1.80 2.25 2.50 2.75

    Index ‘n’ 0.96 0.96 0.96 0.96 0.96

    24 hr Rainfall Depth (mm) 85.41 93.17 116.46 129.40 142.34

  • Hydrological Studies – Catchment Delineation

    #FIDIC_GAMA2018

  • Hydrological Studies – Flood Volume Estimation

    #FIDIC_GAMA2018

  • Hydrological Studies – Flood Volume Estimation

    #FIDIC_GAMA2018

    Method/Approach Q 100 yr(m3/s)

    Q 200 yr(m3/s)

    US Soil Conservation Service (SCS) Method

    443.0 516.0

    TRRL Method 378.0 418.0

  • Hydrological Studies – Hydraulic Modelling

    #FIDIC_GAMA2018

    Schematic Representation of old bridge location and corresponding River Channel in HECRAS Hydraulic Modelling System

  • Hydrological Studies – Hydraulic Modelling

    #FIDIC_GAMA2018

    Modelled water surface profile across upstream part of the old bridge

  • Hydrological Studies – Hydraulic Modelling

    #FIDIC_GAMA2018

    Modelled water surface profile – New bridgeAdopted bridge section => 2 x 20 m Span, 18o Skew, Free board = 1.5 m

  • Hydrological Studies – Bridge Scour Computations

    #FIDIC_GAMA2018

    • Contraction Scour• Live bed contraction Scour (3.4 m)• Clear water contraction Scour (4.2m)• Local (Pier) Scour (5.8 m)

    Adopted Foundation Depth=> 7.5 m

  • Conclusions

    #FIDIC_GAMA2018

    • Complexity of hydrological studies & hydraulic design for a case study bridge site described;

    • Consulting Engineer increasingly required to use of computer modelling software => to account emerging and complex design aspects such as climate change, sediment transport, scour, global structural analysis etc.

    • Performance of river & bridge sections designed using steady state conditions (manual calculations) should be evaluated under unsteady flow conditions using open source software.

    • Most software such as HEC-HMS, HECRAS etc. are freely available (Open Source)

  • Thank you for attending.

    #FIDIC_GAMA2018