Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching...

53
Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects The Fields Institute for Mathematical Sciences Sebastian Jaimungal [email protected] Yuri Lawryshyn [email protected] University of Toronto, Toronto, Canada November 26, 2014 1 / 53

Transcript of Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching...

Page 1: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Incorporating Managerial Cash-FlowEstimates and Risk Aversion to Value Real

Options Projects

The Fields Institute for Mathematical Sciences

Sebastian [email protected]

Yuri [email protected]

University of Toronto, Toronto, Canada

November 26, 20141 / 53

Page 2: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Agenda

Introduction

MotivationReal Options

Matching cash-flows

General approach (numerical solution)Normal distribution (analytical solution)

Indifference pricing

General approach (numerical solution)Normal distribution (analytical solution)

Results

Practical implementation

Conclusions

2 / 53

Page 3: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Motivation

To develop a theoretically consistent real options approach tovalue R&D type projects

Theoretical Approaches: Cash-flow determined by GBM

dft = µftdt + σftdWt

Practice: Managerial supplied cash-flow estimates consist oflow, medium and high values

3 / 53

Page 4: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Valuation of R&D Projects: Managerial Sales and CostEstimates

Managers provide sales and cost estimates

Table : Managerial Supplied Cash-Flow (Millions $).

3 4 5 6 7 8 9 10

Sales 10.00 30.00 50.00 100.00 100.00 80.00 50.00 30.00COGS 6.00 18.00 30.00 60.00 60.00 48.00 30.00 18.00

GM 4.00 12.00 20.00 40.00 40.00 32.00 20.00 12.00SG&A 0.50 1.50 2.50 5.00 5.00 4.00 2.50 1.50

EBITDA 3.50 10.50 17.50 35.00 35.00 28.00 17.50 10.50

CAPEX 1.00 3.00 5.00 10.00 10.00 8.00 5.00 3.00

Cash-Flow 2.50 7.50 12.50 25.00 25.00 20.00 12.50 7.50

4 / 53

Page 5: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Standard NPV Approach Using CAPM

Ryan and Ryan (2002) report that 83% of businesses applythe WACC to value discounted cash-flows (DCF)CAPM: E[rE ] = rf + βC (E[rM ]− rf )

Use of CAPM implies beta: βC =ρM,CσCσM

Some assumptions regarding β when using WACCMarket volatility, σM , is known . . . . . . . . . . . . . . . . . . . . . . . . . . . XCash-flow volatility: σproject = σC . . . . . . . . . . . . . . . . . . . . . . . . . . ?Correlation of the cash-flows: ρproject = ρC . . . . . . . . . . . . . . . . . ?

Some further assumptions regarding DCF:No managerial flexibility / optionality imbedded in the projectFinancial risk profile of the value of the cash-flows matchesthat of the average project of the company

Proper beta: βproject =ρM,projectσproject

σM

Matching method uses managerial supplied cash-flowestimates to determine σproject

5 / 53

Page 6: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Standard NPV Approach Using CAPM

Ryan and Ryan (2002) report that 83% of businesses applythe WACC to value discounted cash-flows (DCF)CAPM: E[rE ] = rf + βC (E[rM ]− rf )

Use of CAPM implies beta: βC =ρM,CσCσM

Some assumptions regarding β when using WACCMarket volatility, σM , is known . . . . . . . . . . . . . . . . . . . . . . . . . . . XCash-flow volatility: σproject = σC . . . . . . . . . . . . . . . . . . . . . . . . . . ?Correlation of the cash-flows: ρproject = ρC . . . . . . . . . . . . . . . . . ?

Some further assumptions regarding DCF:No managerial flexibility / optionality imbedded in the projectFinancial risk profile of the value of the cash-flows matchesthat of the average project of the company

Proper beta: βproject =ρM,projectσproject

σM

Matching method uses managerial supplied cash-flowestimates to determine σproject

6 / 53

Page 7: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Standard NPV Approach Using CAPM

Ryan and Ryan (2002) report that 83% of businesses applythe WACC to value discounted cash-flows (DCF)CAPM: E[rE ] = rf + βC (E[rM ]− rf )

Use of CAPM implies beta: βC =ρM,CσCσM

Some assumptions regarding β when using WACCMarket volatility, σM , is known . . . . . . . . . . . . . . . . . . . . . . . . . . . XCash-flow volatility: σproject = σC . . . . . . . . . . . . . . . . . . . . . . . . . . ?Correlation of the cash-flows: ρproject = ρC . . . . . . . . . . . . . . . . . ?

Some further assumptions regarding DCF:No managerial flexibility / optionality imbedded in the projectFinancial risk profile of the value of the cash-flows matchesthat of the average project of the company

Proper beta: βproject =ρM,projectσproject

σM

Matching method uses managerial supplied cash-flowestimates to determine σproject

7 / 53

Page 8: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Standard NPV Approach Using CAPM

Ryan and Ryan (2002) report that 83% of businesses applythe WACC to value discounted cash-flows (DCF)CAPM: E[rE ] = rf + βC (E[rM ]− rf )

Use of CAPM implies beta: βC =ρM,CσCσM

Some assumptions regarding β when using WACCMarket volatility, σM , is known . . . . . . . . . . . . . . . . . . . . . . . . . . . XCash-flow volatility: σproject = σC . . . . . . . . . . . . . . . . . . . . . . . . . . ?Correlation of the cash-flows: ρproject = ρC . . . . . . . . . . . . . . . . . ?

Some further assumptions regarding DCF:No managerial flexibility / optionality imbedded in the projectFinancial risk profile of the value of the cash-flows matchesthat of the average project of the company

Proper beta: βproject =ρM,projectσproject

σM

Matching method uses managerial supplied cash-flowestimates to determine σproject

8 / 53

Page 9: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Standard NPV Approach Using CAPM

Ryan and Ryan (2002) report that 83% of businesses applythe WACC to value discounted cash-flows (DCF)CAPM: E[rE ] = rf + βC (E[rM ]− rf )

Use of CAPM implies beta: βC =ρM,CσCσM

Some assumptions regarding β when using WACCMarket volatility, σM , is known . . . . . . . . . . . . . . . . . . . . . . . . . . . XCash-flow volatility: σproject = σC . . . . . . . . . . . . . . . . . . . . . . . . . . ?Correlation of the cash-flows: ρproject = ρC . . . . . . . . . . . . . . . . . ?

Some further assumptions regarding DCF:No managerial flexibility / optionality imbedded in the projectFinancial risk profile of the value of the cash-flows matchesthat of the average project of the company

Proper beta: βproject =ρM,projectσproject

σM

Matching method uses managerial supplied cash-flowestimates to determine σproject

9 / 53

Page 10: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Real Options

Why real options?

Superior to discounted cash flow (DCF) analysis for capitalbudgeting / project valuationAccounts for the inherent value of managerial flexibilityAdoption rate ∼12% in industry (Block (2007))

What is required?

Consistency with financial theoryIntuitively appealingPractical to implement

10 / 53

Page 11: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Introduction: Real Options Approaches

* As classified by Borison (2005)

11 / 53

Page 12: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Relevant Literature - Utility Based Models

Berk et al.1 developed a real options framework for valuingearly stage R&D projects

Accounts for: technical uncertainty, cash-flow uncertainty,obsolescence, cost uncertaintyValue of the project is a function of a GBM processrepresenting the cash-flowsMain issue: how to fit real managerial cash-flowestimates to a GBM process

Miao and Wang2, and Henderson3

Present incomplete market real options models that showstandard real options, which assume complete markets, canlead to contradictory results

1See Berk, Green, and Naik (2004).

2See Miao and Wang (2007).

3See Henderson (2007).

12 / 53

Page 13: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Matching Method Advantages

The approach utilizes managerial cash-flow estimates

The approach is theoretically consistent

Provides a mechanism to account for systematic versusidiosyncratic riskProvides a mechanism to properly correlate cash-flows fromperiod to period

The approach requires little subjectivity with respect toparameter estimation

The approach provides a missing link between practicalestimation and theoretical frameworks

13 / 53

Page 14: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

RO in R&D Applications: Managerial Cash-Flow Estimates

Managers provide cash flow estimates

14 / 53

Page 15: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

RO in R&D Type Applications: Two Approaches

Managers supply low, medium and high sales and costestimates (numerical solution)

Managers supply ± sales and cost estimates from which astandard deviation can be determined for a normaldistribution (analytical solution)

15 / 53

Page 16: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

RO in R&D Type Applications: Low, Medium and HighSales and Cost Estimates

Managers supply revenue and GM% estimates

Scenario End of Year Sales (Margin%)3 4 5 6 7 8 9

Optimistic 80 116 153 177 223 268 314(50%) (60%) (65%) (60%) (60%) (55%) (55%)

Most Likely 52 62 74 77 89 104 122(30%) (40%) (40%) (40%) (35%) (35%) (35%)

Pessimistic 20 23 24 18 20 20 22(20%) (20%) (20%) (20%) (15%) (10%) (10%)

SG&A* 10% 5% 5% 5% 5% 5% 5%Fixed Costs 30 25 20 20 20 20 20

* Sales / General and Administrative Costs

16 / 53

Page 17: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

RO in R&D Type Applications: ± Sales and CostEstimates

End of Year Sales (Margin)3 4 5 6

Sales 52 ± 10 62 ± 12 74 ± 15 77 ± 15COGS (31 ± 6) (37 ± 7) (44 ± 9) (46 ± 10)

SG&A 10% 5% 5% 5%CAPEX (30 ± 6) (25 ± 5) (20 ± 4) (20 ± 14)

3 4 5 6

σS (Sales) 5.20 6.20 7.40 7.70σC (COGS) 3.12 3.72 4.44 4.62σEX (CAPEX) 3.00 2.50 2.00 2.00

σCF (Cash-Flow) 4.61 4.94 5.55 5.75

σCF =√σ2S + σ2

C + σ2EX − 2ρS,CσSσC − 2ρS,EXσSσEX + 2ρS,CρS,EXσCσEX

17 / 53

Page 18: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Real Options in R&D Type Applications

Problem:

How should we value the cash flows?How should we account for managerial risk aversion?

Approach:

Apply “matching method” with MMM to value cash flowsApply indifference pricing to determine the value withmanager’s risk aversion

Why Account for Risk Aversion:

MMM assumes investors are fully diversifiedImpact of managerial risk aversion on the valuation of a realoptions project can enhance decision making

18 / 53

Page 19: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Market Stochastic Driver

Traded index / asset

dIt = µItdt + σItdWt

Assume there exists a Market Stochastic Driver / Indicatorcorrelated to the traded index

dSt = νStdt + ηSt(ρdWt +√

1− ρ2dW⊥t )

Market stochastic driverdoes not need to be tradedcould represent market size / revenuesis not constrained to a GBM process

Risk-neutral MMM

dIt = rItdt + σItdWt

dSt = νStdt + ρηSt

(dWt +

√1− ρ2dW⊥

t

)ν = ν − ρη

σ(µ− r)

19 / 53

Page 20: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Match Cash Flow Payoff

20 / 53

Page 21: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Match Cash Flow Payoff

Each cash flow is effectively an option on the marketstochastic driver, VT = ϕ(ST ), and so, we match probabilities

P(ϕ(ST ) < v) = F ∗(v)

P(ST < ϕ−1(v)) = F ∗(ϕ(S))

P(S0e(ν− η2

2)T+η

√TZ < S) = F ∗(ϕ(S)), Z ∼

PN(0, 1)

P

(Z <

ln SS0− (ν − η2

2 )T

η√

T

)= F ∗(ϕ(S))

Φ

(ln S

S0− (ν − η2

2 )T

η√

T

)= F ∗(ϕ(S))

21 / 53

Page 22: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Match Cash Flow Payoff

ϕ(S) = F ∗−1

Φ

(ln S

S0− (ν − η2

2 )T

η√

T

)

22 / 53

Page 23: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Information Distortion

23 / 53

Page 24: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Risk-Neutral Measure

Theorem

The GBM Risk-Neutral Distribution. The conditionaldistribution function Fvk |St (v) of vk conditional on St at t, for0 < t < Tk , under the measure Q is given by

Fvk |St(v) = Φ

(√Tk

Tk−t Φ−1 (F ∗k (v))− λk(t,St)

)where the pseudo-market-price-of-risk

λk(t,S) =1

η√

Tk − tln

S

S0+ν − 1

2η2

η

√Tk − t −

ν − 12η

2

η

Tk√Tk − t

.

Note that as t ↓ 0 and S ↓ S0 then λk(t, S) ↓ −ρµ−rσ√

Tk , i.e.the valuation is independent of ν and η.

24 / 53

Page 25: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Option Pricing

Value of the cash flows

Vt =n∑

i=1

e−r(ti−t)EQ [Vti | Ft ]

=n∑

i=1

e−r(ti−t)EQ [ϕi (Sti )| Ft ]

Value of the project with option

V = e−rtEQ [max (Vt − K , 0)]

= e−rtK∫ ∞−∞

(n∑

i=1

(e−r(ti−tK )

∫ ∞−∞

ϕi (Sti )e−

y2

2

√2π

dy

)− K

)+

e−x2

2

√2π

dx

Sti = S0e(ν− 12η

2)ti+η(√tK x+

√ti−tK y)

25 / 53

Page 26: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Matching Cash-Flows for Normally Distributed Estimates

Assume that the managers have provided cash-flow estimatesof the form N(µk , σ

2k)

Assume the Market Stochastic Driver to be a BrownianmotionAssume that there exists a cash-flow process: Ft

Introduce a collection of functions ϕk(St) such that at eachTk , FTk

= ϕk(STk)

Theorem

The Replicating Cash-Flow Payoff. The cash-flow payofffunction ϕk(s) which produces the managerial specified

distribution Φ(s−µkσk

)for the cash-flows at time Tk , when the

underlying driving uncertainty St is a BM, and S0 = 0, is given by

ϕk(s) =σk√Tk

s + µFk .

26 / 53

Page 27: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Value of the Cash-Flows for Normally DistributedEstimates

Theorem

Value of the Cash-Flows. For a given set of cash-flow estimates,normally distributed with mean µk and standard deviation σk ,given at times Tk , where k = 1, 2, ..., n, the value of thesecash-flows at time t < T1 is given by

Vt(St) =n∑

k=1

e−r(Tk−t)

(σk√Tk

(St + ν(Tk − t)) + µk

),

and for the case where t = 0,

V0 =n∑

k=1

e−rTk

(νσk

√Tk + µk

).

27 / 53

Page 28: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Option Pricing for Normally Distributed Estimates

Theorem

Real Option Value of Risky Cash-Flows Estimates. For agiven set of cash-flow estimates, normally distributed with meanµk and standard deviation σk , given at times Tk , wherek = 1, 2, ..., n, the value of the option at time t < T0 to invest theamount K at time T0 < Tk to receive these cash flows is given by

ROt(St) = e−r(T0−t)

[(ξ1(St)− K) Φ

(ξ1(St)− K

ξ2

)+ ξ2 φ

(ξ1(St)− K

ξ2

)]where Φ(•) and φ(•) are the standard normal distribution and densityfunctions, respectively, and

ξ1(St) =n∑

k=1

e−r(Tk−T0)

(σk√Tk

(St + ν(Tk − t)) + µk

),

ξ2 =√T0 − t

n∑k=1

e−r(Tk−T0) σk√Tk

.

28 / 53

Page 29: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Utility Maximization

Assume exponential utility

u(x) = −e−γx

γ

γ ≥ 0 represents managerial risk aversion

Manager has two options: 1) invest in the market, or 2) investin the real option

Goal is to maximize the terminal utility in each of the twooptions and determine the indifference price

29 / 53

Page 30: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Optimal Investment in the Traded Index (Merton Model)

Invest in market only, with πt invested in the risky asset

dXt = (rXt + πt(µ− r))dt + πtσdWt

And maximize expected terminal utility

V (t, x) = supπt

E [u(XT )|Xt = x ]

Applying standard arguments leads to the PDE

∂tV −1

2

(µ− r)2

σ2

(∂xV )2

∂xxV+ rx∂xV = 0

with V (T , x) = u(x), and the solution is given by

V (t, x) = −1

γe−

12 (µ−r

σ )2(T−t)−γer(T−t)x

.

30 / 53

Page 31: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Optimal Investment in the Real Option Project

Wealth dynamics are given as

dXt = (rXt + πt(µ− r)) dt + πtσdWt , t /∈ [T0,T1, ...,Tn]XT0 = XT−

0− K1A

XTj= XT−

j+ ϕ(Sj)1A, j ∈ [1, 2, ..., n]

where 1A represents the indicator function equal to 1 if thereal option is exercisedThe manager seeks to maximize his expected terminal utilityas

U(t, x , s) = supπt

E [u(XT )|Xt = x , St = s]

Applying standard arguments, it can be shown that thesolution to U(t, x , s) can be achieved by solving the followingPDE

∂tU+rx∂xU+νs∂sU+ 12∂ssUη2s2−1

2

((µ− r)∂xU + ρσηs∂sxU)2

σ2∂xxU= 0

31 / 53

Page 32: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Optimal Investment in the Real Option Project (con’t)

Boundary conditions

U(Tj , x , s) = U(T +j , x , s)e−γϕ(s), for j = 1, ..., n − 1

U(Tn, x , s) = u(x + ϕn(s))

Using the substitution U(t, x , s) = V (t, x)(H(t, s))1

1−ρ2

results in the simplified PDE

∂tH + νs∂sH + 12η

2s2∂ssH = 0

with H(Tn, s) = e−γ(1−ρ2)ϕn(STn ), and t ∈ (Tn−1,Tn]

Apply dynamic programming, where at each t = Tj ,

j = 1, 2, ..., n − 1, set H(Tj , s) = H(T +j , s)e

−γ(1−ρ2)ϕj (STj )

32 / 53

Page 33: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

The Indifference Price

At t = T0, we should invest in the real option if

(H(T +0 , s))

11−ρ2 eγKe

r(Tn−T+0

)

≤ 1

Defining f as the indifference price, i.e. the value of the realoption, and setting U(t, x − f , s) = V (t, x) leads to

f (t, s) = − 1γ(1−ρ2)

ln H(t, s)e−r(Tn−t)

33 / 53

Page 34: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

The Indifference Price for Normally Distributed Estimates

Theorem

Real Option Value of Risky Cash-Flows Accounting for RiskAversion. For a given set of cash-flow estimates, normallydistributed with mean µk and standard deviation σk , given attimes Tk , where k = 1, 2, ..., n, the value of the option at timet < T0 to invest the amount K at time T0 < Tk to receive thesecash flows accounting for risk aversion, where the utility of theinvestor is given by u(x) = − eγx

γ , is given by

f (t, s) = − 1γ(1−ρ2)

ln H(t, s)e−r(Tn−t)

where

H(t, s) = Φ(B(t, s)) + eξ2t2 C (t, s)Φ(ξt − B(t, s)).

34 / 53

Page 35: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

The Indifference Price for Normally Distributed Estimates

ξt = −γ(1− ρ2)a1

√T0 − t

aj =n∑

k=j

σk√Tk

er(Tn−Tk ), bj =n∑

k=j

µker(Tn−Tk )

Aj = aj

(γaj2 (1− ρ2)− ν

), A0 =

n∑j=1

Aj(Tj − Tj−1)

B(t, s) =

A0−b1+Ker(Tn−T0)

a1− s − ν(T0 − t)

√T0 − t

C (t, s) = eγ(1−ρ2)(A0−a1(s+ν(T0−t))−b1+Ker(Tn−T0))

35 / 53

Page 36: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Real Option Value (MMM)

(a) Market Stochastic Driver asGBM

(b) Market Stochastic Driver asGMR

Project value and real option value of the UAV project for varyingcorrelation (note that they are independent of S0, ν and η)

Correlation (ρ) 0.0 0.2 0.4 0.6 0.8 1.0Project Value (V0) 493.69 467.31 441.49 416.35 392.00 368.54

Option Value (RO0) 199.82 173.83 148.71 124.82 102.45 82.02

36 / 53

Page 37: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Sensitivity to Risk - Standard Approach

0 5 10 15 20 25 304

6

8

10

12

14

16

18

20

Risk ( V )

Rea

l Opt

ion

Val

ue (

MA

D M

etho

d)

K = 40K = 45K = 50K = 55

37 / 53

Page 38: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Sensitivity to Risk - MMM

Assumptions:

Single cash-flow at T1 = 3

Expected value of the cash-flow: µ1 = 50

Correlation to traded index: ρ = 0.5

Investment time: T0 = 2

38 / 53

Page 39: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Sensitivity to Risk - MMM (ρ = 0.5)

0 10 20 30 40 500

2

4

6

8

10

12

14

16

18

Risk ( )

Rea

l Opt

ion

Val

ue (R

O0)

K = 30K = 40K = 50K = 60

39 / 53

Page 40: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Sensitivity to Risk - MMM

For a single cash-flow, the real option value is given as

RO0 = e−rT0 EQ

e−r(T1−T0)

(µ1 + νσ1

√T1

)︸ ︷︷ ︸

Distorted Mean

+ e−r(T1−T0)

√T0

T1σ1Z︸ ︷︷ ︸

Standard Deviation

−K

+

Recall ν = −ρµ−r

σ

40 / 53

Page 41: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Sensitivity to Risk - MMM

-50 0 50 100 1500

0.02

0.04

0.06

0.08

0.1

0.12

Distorted CF

Freq

uenc

y

= 5

41 / 53

Page 42: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Sensitivity to Risk - MMM

-50 0 50 100 1500

0.02

0.04

0.06

0.08

0.1

0.12

Distorted CF

Freq

uenc

y

= 5 = 25

42 / 53

Page 43: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Sensitivity to Risk - MMM

-50 0 50 100 1500

0.02

0.04

0.06

0.08

0.1

0.12

Distorted CF

Freq

uenc

y

= 5 = 25 = 50

43 / 53

Page 44: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Real Option Value - Indifference Price

(c) Real option indifferenceprice as a function of St and tat γ = 0.01.

0 2 4 6 8 100

100

200

300

400

500

Time (t)

Pro

ject

Pric

e at

S=

S0

MMM ( = 0) = 0.500 = 0.100 = 0.010 = 0.001

(d) Real option indifferenceprice at St = S0 for varying lev-els of risk aversion.

44 / 53

Page 45: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Sensitivity to Risk - Indifference Price

0 10 20 3010

15

20

25

Risk ( V), =0.00

RO

Indi

ff. P

rice

0 10 20 3010

15

20

25

Risk ( V), =0.25

RO

Indi

ff. P

rice

0 10 20 3010

15

20

25

Risk ( V), =0.50

RO

Indi

ff. P

rice

0 10 20 3010

15

20

25

Risk ( V), =0.75

RO

Indi

ff. P

rice

0 10 20 3010

15

20

25

Risk ( V), =1.00

RO

Indi

ff. P

rice

45 / 53

Page 46: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Sensitivity to Risk - Indifference Price

0 10 20 3010

15

20

25

Risk ( V), =0.00

RO

Indi

ff. P

rice

0 10 20 3010

15

20

25

Risk ( V), =0.25

RO

Indi

ff. P

rice

0 10 20 3010

15

20

25

Risk ( V), =0.50

RO

Indi

ff. P

rice

0 10 20 3010

15

20

25

Risk ( V), =0.75R

O In

diff.

Pric

e

0 10 20 3010

15

20

25

Risk ( V), =1.00

RO

Indi

ff. P

rice

46 / 53

Page 47: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Practical Implementation of the Matching Method

Assume managers supply revenue and GM% estimates

Scenario End of Year Sales / Margin3 4 5 6 7 8 9

Optimistic 80 116 153 177 223 268 314(50%) (60%) (65%) (60%) (60%) (55%) (55%)

Most Likely 52 62 74 77 89 104 122(30%) (40%) (40%) (40%) (35%) (35%) (35%)

Pessimistic 20 23 24 18 20 20 22(20%) (20%) (20%) (20%) (15%) (10%) (10%)

SG&A* 10% 5% 5% 5% 5% 5% 5%Fixed Costs 30 25 20 20 20 20 20

* Sales / General and Administrative Costs

47 / 53

Page 48: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Sales and GM% Stochastic Drivers

Traded indexdIt = µItdt + σItdWt

Sales stochastic driver to drive revenues

dXt = ρSIdWt +√

1− ρ2SIdW S

t

GM% stochastic driver to drive GM%

dYt = ρSMdXt +√

1− ρ2SMdW M

t

Cash flow

Vk(t) = (1− κk)ϕSk (Xt)ϕ

Mk (Yt)− αk

48 / 53

Page 49: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Bivariate Density of Sales and GM%

Theorem

The Bivariate Density of Sales and GM%. The bivariateprobability density function between sales and GM% is given by

u(s,m) =φΩρSM

(Φ−1 (F ∗(s)) ,Φ−1 (G ∗(m))

)•

f ∗(s)

φ (Φ−1 (F ∗(s)))

g∗(m)

φ (Φ−1 (G ∗(m)))

where φΩρ represents the standard bivariate normal PDF withcorrelation ρ, and φ is the standard normal PDF.

49 / 53

Page 50: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Project and Real Option Value

Project value

VT0(XT0 ,YT0) =n∑

k=1

e−r(Tk−T0) EQ [vk(XTk,YTk

) | XT0 ,YT0 ]

Real option value

ROt(Xt ,Yt) = e−r(T0−t) EQ [(VT0(XT0 ,YT0)− K )+

∣∣Xt , Yt

]Risk-neutral measure

(ν = −ρSI µ−rσ and γ = −ρSIρSM µ−r

σ

)dItIt

= r dt + σ dWt ,

dXt = ν dt + ρSI dWt +√

1− ρ2SI dW S

t ,

dYt = γ dt + ρSIρSMdWt + ρSM

√1− ρ2

SI dW St +

√1− ρ2

SM dW Mt

50 / 53

Page 51: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Computing the Real Option

Resulting PDE

rH =∂H

∂t+ ν

∂H

∂x+ γ

∂H

∂y+

1

2

∂2H

∂x2+

1

2

∂2H

∂y 2+ ρSM

∂2H

∂x∂y

00.5

1 00.5

10

10

20

30

40

SM

SI

Rea

l Opt

ion

Val

ue (

$)

Value of the real option for varying ρSI and ρSM

51 / 53

Page 52: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

Matching Method Conclusions

The approach utilizes managerial cash-flow estimates

The approach is theoretically consistent

Provides a mechanism to account for systematic versusidiosyncratic riskProvides a mechanism to properly correlate cash-flows fromperiod to period

The approach requires little subjectivity with respect toparameter estimation

The approach provides a missing link between practicalestimation and theoretical frame-works

52 / 53

Page 53: Incorporating Managerial Cash-Flow Estimates and Risk … ·  · 2014-11-26IntroductionMatching Cash FlowsIndi erence PricingResultsPractical ImplementationConclusionsReferences

Introduction Matching Cash Flows Indifference Pricing Results Practical Implementation Conclusions References

References

Berk, J., R. Green, and V. Naik (2004).Valuation and return dynamics of new ventures.The Review of Financial Studies 17(1), 1–35.

Block, S. (2007).Are real options actually used in the real world?Engineering Economist 52(3), 255–267.

Borison, A. (2005).Real options analysis: Where are the emperor’s clothes?Journal of Applied Corporate Finance 17(2), 17–31.

Henderson, V. (2007).Valuing the option to invest in an incomplete market.Mathematics and Financial Economics 1, 103–128.

Miao, J. and N. Wang (2007, December).Investment, consumption, and hedging under incomplete markets.Journal of Financial Economics 86(3), 608–42.

53 / 53