IN SITU GEOTECHNICAL TESTS - UniTrentowebapps.unitn.it/Biblioteca/it/Web/EngibankFile/8384072.pdfIn...

8
Ferrucc io Cestari IN SITU GEOTECHNICAL TESTS PÀTRON EDITORE BOLOGNA 2012

Transcript of IN SITU GEOTECHNICAL TESTS - UniTrentowebapps.unitn.it/Biblioteca/it/Web/EngibankFile/8384072.pdfIn...

Page 1: IN SITU GEOTECHNICAL TESTS - UniTrentowebapps.unitn.it/Biblioteca/it/Web/EngibankFile/8384072.pdfIn situ geotechnical tests 8.3. The most common standards followed in ltaly 8.3.1.

Ferruccio Cestari

IN SITU GEOTECHNICAL TESTS

PÀTRON EDITORE BOLOGNA 2012

Page 2: IN SITU GEOTECHNICAL TESTS - UniTrentowebapps.unitn.it/Biblioteca/it/Web/EngibankFile/8384072.pdfIn situ geotechnical tests 8.3. The most common standards followed in ltaly 8.3.1.

IN DEX

CHAPTER 1 - Field Vane Test (FV) 1.1. Test Description 1.2. ASTM Standard (02573) 1.3. The Eurocode 1.4. Evaluation of the undrained shear strength and sensitivity values

1.4.1. Undrained shear strength (Su(FV)) 1.4.2. Sensitivity (St) 1.4.3. Over-consolidation

1.5. Pocket Vanes 1.5.1. The"Torvane" 1.5.2. Geonor H60 Vane 1.5.3 Pilcon Vane

1.6. Mechanical devices for tests in boreholes 1.6.1. lntroduction 1.6.2. Typologies and main characteristics 1.6.3. Limits of application 1.6.4. Operative instructions 1.6.5 Nilcon equipment (Sweden) 1.6.6. Geonor equipment (Vane Borer) 1.6. 7. Electronically instrumented va n es

1.7. Factors which influence test results 1.7.1. Factors linked to the equipment 1.7.2. Factors linked to test procedure

1.8. Test examples and data presentation

CHAPTER 2 - Flat dilatometer test (DMT - SDMT) 2.1. Generalities and test description 2.2. Test applicability 2.3. Working principle 2.4. Values A and B processing 2.5. The equipment

2.5.1. The assembly 2.5.2. Biade insertion equipment 2.5.3. The rods 2.5.4. Gas source 2.5.5. Measurement of the insertion resistance

2.6. Test procedure 2.6.1. Preliminaries 2.6.2. Test procedure 2.6.3. Activity at the end of the test

2.7. Specific precautions 2.8. The dissipation test

2.8.1. Scope 2.8.2. The procedure 2.8.3. Auxiliary measurements

2.9. lnterpretation of the results 2.9.1. Reproducibility of the results

p a g.

"

"

JJ

3 3 5 8 8 8 9 9 9

11 12 13 13 13 14 14 15 16 18 19 19 21 23

29 30 30 31 32 32 32 33 34 34 34 34 35 36 37 39 39 39 40 40 40

\1

Page 3: IN SITU GEOTECHNICAL TESTS - UniTrentowebapps.unitn.it/Biblioteca/it/Web/EngibankFile/8384072.pdfIn situ geotechnical tests 8.3. The most common standards followed in ltaly 8.3.1.

In situ geotechnical tests

2.9.2. Variations of the type of soil 2.9.3 . Unit weight and type of soil

pag.

2.9.4. The over consolidation ratio - OCR 2.9.5. Evaluatation of K0 ,Horizontal earth pressure coefficient 2.9.6. Relative density DR (sands) 2.9.7. Undrained shear strength- Cu 2.9.8. Friction angle <1> (sands) 2.9.9. Constrained modulus - M 2.9.1 O. Young's modulus - E' 2.9.11. Maximum shear modulus- G0 2.9.12. Consolidation coefficient - eh 2.9.13. Permeability coefficient- kh

2.1 O. The seismic dilatometer S-DMT

CHAPTER 3 - CONE, PIEZOCONE, SEISMIC PIEZOCONE STATIC PENETRATION TEST (CPT-CPTU-SCTPU)

3.1. Test description 3.2. Some of the test history 3.3. Applicability of CPT/CPTU 3.4. Standard references and test diffusion in ltaly 3.5. Definitions (Eurocode) 3.6. Equipment

3.6.1. Penetrometers fo onshore testing 3.6.2. Equipment for offshore tests 3.6.3. Measuring equipment - CPT, CPTU 3.6.4. Measurement accuracy classes

3.7. Test procedure (CPT-CPTU) 3.7.1. Calibration and checks 3.7.2. Saturation of the filter element and the space inside the tip 3.7.3. Penetration test 3.7.4. Dissipation test

3.8. Data correction, processing and presentation 3.8.1. Possible causes of error 3.8.2. Pore pressure effect on qc and f5 3.8.3. Correction of the pore pressure (zero setting at the hole bottom­

offshore tests) 3.9. Reporting CPT - CPTU results

3.9.1. Reporting on measured data 3.9.2. Derived values 3.9.3. Additional information

3.1 O. Quality contro l of the records 3.11. lnterpretation of CPT - CPTU data

3.11.1. lntroduction 3.11.2. Soil profile and classification 3.11 .3. UNIT weight 3.11.4. Over consolidation ratio (OCR) 3.11.5. Clays- Undrained Shear Strength Su 3.11.6. Clays - Consolidation and permeability 3.11 .7. Sands- Generalities

"

n

,

, ,

,

, ,

40 41 41 44 45 45 46 47 49 50 50 51 51

61 61 62 63 63 64 64 69 72 74 74 74 76 78 79 81 81 81

82 83 83 83 84 85 86 86 86 90 90 93 95 98

Page 4: IN SITU GEOTECHNICAL TESTS - UniTrentowebapps.unitn.it/Biblioteca/it/Web/EngibankFile/8384072.pdfIn situ geotechnical tests 8.3. The most common standards followed in ltaly 8.3.1.

3.11.8. Sands Relative density (DR) 3.11.9. Sands - State parameter ('V) 3.11.10. Sands- Effective peak friction angle (q>') 3.11.11. Sands- Drained constrained modulus M0 3.11.12. Sands - Liquefaction potential

3.12. The wireline memocone (WL-CPTU) 3.12.1. Generalities 3.12.2. lnstrumented wireline drilling method 3.12.3. WL-CPTU eone 3.12.4. Precautions, limits and applicability of the method

3.13. Seismic Piezocone (SCPTU) 3.13.1. Generalities 3.13.2. Test method 3.13.3. Equipment 3.13.4. Test procedure 3.13.5. Report of the results and interpretation procedure

CHAPTER 4 • SPT • STANDARD PENETRATION TEST 4.1. lntroduction 4.2. Test and Results Applicabil ity 4.3. Reference Procedure (EN ISO 22476-3: 2002)

4.3.1. Definitions 4.3.2. Drilling equipment 4.3.3. Sampler 4.3.4. Drive rods 4.3.5. Driving device 4.3.6. Optional devices 4.3.7. Test procedure 4.3.8. Safety standard 4.3.9. Tests results 4.3.1 O. Reporting of the results 4.3.11. Correction factors 4.3.12. Adviseable method to measure the real energy that enters

the drive rods 4.4. Comments on the EN ISO 22476-3-2003 Standard

4.4.1. Refusal 4.4.2. Drilling before the test 4.4.3. Cleaning of the hole bottom before the test 4.4.4. The rods connected to the sampler 4.4.5. Driving device and its energy 4.4.6 Sample description and sealing

4.5. LPT (Large SPT) and the effect of the gravel's size on NsPT values 4.5.1. Generalities 4.5.2. JLPT (Japanese LPT) 4.5.3. ILPT (ltalian LPT) 4.5.4. Relations between NsPT and NLPT

4.6. Use of data 4.6.1. lntroduction 4.6.2. Clays: Consistency evaluation

lndex

pag. 100 " 102 " 102 " 103 " 104 ,

105 " 105 " 106 " 106 " 107 " 109 " 109 " 110

111 " 112 " 115

" 123 " 124 " 124 " 124 " 125 " 125 " 126 " 126 " 126 " 126 '' 128 " 128 " 128 " 129

" 131 " 133 " 133 " 134 " 134 " 134 " 135 " 138 " 139 " 139 " 140 " 140 " 142 " 146 " 146 " 147

Page 5: IN SITU GEOTECHNICAL TESTS - UniTrentowebapps.unitn.it/Biblioteca/it/Web/EngibankFile/8384072.pdfIn situ geotechnical tests 8.3. The most common standards followed in ltaly 8.3.1.

In situ geotechnical tests

4.6.3. Sands: Classification and relative density (DR) 4.6.4. Sands: Peak friction angle (Q> ') 4.6.5. Sands: Deformation properties 4.6.6. Sands: Evaluation of liquefaction potenziai

Appendix 1 Downhole SPT Appendix 2 SPT -T (SPT with torque measurement)

CHAPTER 5 - DYNAMIC PROBING TEST (DP} 5.1 . lntroduction 5.2. Standard EN ISO "CENT!TC 341"

5.2.1. Purpose 5.2.2. Definition 5.2.3. Equipment 5.2.4. Test procedure 5.2.5. Test results 5.2.6. The report

Appendix A Summary of the information regarding a DP test Appendix B Tabulate of the measured values and dynamic probing

test results Appendix C Recommended method to measure the actual energy Appendix D Geotechnical and equipment factors that influence

the test results Appendix E Results interpretation using the point resistance

5.3. Comments on the EN ISO -CENT!TC 341 STANDARD 5.3.1. Penetrometers typologies and their characteristics 5.3.2. Torque measurement 5.3.3. Drilling mud in the space between soil and driving rods 5.3.4. The energy ratio of the driving device 5.3.5. DPSH in ltaly and DPSH-A, B, in the EN-ISO Standard

5.4. The measurement of the energy ratio of Pagani (Piacenza - ltaly) manufacturer

5.5. The dynamic penetrometer called 30-20 5.6. Examples of dynamic probing penetrometers 5.7. Super light penetrometers 5.8. The use of DP tests results

5.8.1. L'Eurocode ENV 1997 - 3 : 199 5.8.2. Correlations between Nop and Nspr

5.9. Conclusions on DP tests

CHAPTER 6 - PRESSUREMETER TEST (PMT) 6.1. lntroduction 6.2. Eurocode 7- part 3 - EN 1997-3: 1999

6.2.1. Types of pressuremeters 6.2.2. Definitions 6.2.3. Equipment 6.2.4. Test procedure 6.2.5. Data interpretation

VIli

pag. 147 " 148 " 150 .. 151

" 154 " 156

" 163 " 164 " 164 " 164 " 165 " 168 " 169 " 170

" 171

" 171 " 172

" 172 n 180

" 181 " 181 n 182 " 182 " 182 " 183

" 183 " 186 " 187 " 189 " 191 " 191 " 192 " 193

" 199 " 199 " 199 " 200 " 201 " 202 " 204

Page 6: IN SITU GEOTECHNICAL TESTS - UniTrentowebapps.unitn.it/Biblioteca/it/Web/EngibankFile/8384072.pdfIn situ geotechnical tests 8.3. The most common standards followed in ltaly 8.3.1.

6.2.6. Preliminary data 6.2.7. Derived values 6.2.8. Field and final reports

6.3. Menard pressuremeter test 6.3.1. The probe 6.3.2 Calibrations 6.3.3. lnstallation of the probe 6.3.4. lncrementalloading MPM test

6.4. Pre-bored Pressuremeter (PBP) 6.5. Self boring pressuremeter (SBP)

6.5.1. Generai 6.5.2. The self boring PAFSOR pressuremeter 6.5.3. The self boring pressuremeter "Camkometer''

6.6. Full Displacement Pressuremeter (FDP) 6.6.1. Generai 6.6.2. Test applicability 6.6.3. The equipment 6.6.4. The Building Research Establishment (BRE) Pressuremeter

6.7. lnterpretation and use of the pressuremeter test results 6.7.1. Generai 6.7.2. Pressuremeter Modulus (EM) and Limit Pressure (PLM) 6.7.3. Other elements that derive from the MPM pressuremeter

test curve 6.7.4. Clays- Shear modulus (G) evaluation 6.7.5. Clays - Site Horizontal Stress (ah0 )

6.7.6. Clays - Undrained Shear Strength (Su) 6.7.7. Sands 6. 7 .8. Soft rocks 6.7.9. Direct application of the results for the foundations design

CHAPTER 7- ROCK DILATOMETER TEST 7.1. lntroduction 7.2. Main types of Rock Dilatometers 7.3. Equipment 7.4. Test procedure 7.5. Data interpretation 7.6. Reporting of the resu lts 7.7. Examples of tests

CHAPTER 8 - PLA TE LOADING TEST (PL T) 8.1. lntroduction 8.2. Eurocode ENV 1997 - 3: 1999

8.2.1. Generai 8.2.2. Definitions 8.2.3. Equipment 8.2.4. Test procedure 8.2.5. lnterpretation of the results 8.2.6. Reporting of results

lndex

pag. 205 Il 205 Il 205

" 207 " 207 " 210 " 213 " 216 " 217 " 217 Il 217 Il 219 " 222 Il 227 " 227 Il 227 Il 227 " 228 " 229 Il 229 " 230

11 231 " 232 " 233 " 234 " 236 " 240 '·' 243

" 253 " 255 Il 258 " 260 Il 263 Il 263 Il 264

" 273 " 273 Il 273 Il 274 Il 274 Il 276 Il 277 Il 278

IX

Page 7: IN SITU GEOTECHNICAL TESTS - UniTrentowebapps.unitn.it/Biblioteca/it/Web/EngibankFile/8384072.pdfIn situ geotechnical tests 8.3. The most common standards followed in ltaly 8.3.1.

In situ geotechnical tests

8.3. The most common standards followed in ltaly 8.3.1. The Swiss Standard SNV 670317-670317a-670312a-

670318-670319 8.3.2.ASTM Standard 8.3.3. Comment on ASTM 0.1194 standard

8.4. Examples of traditional tests 8.4.1. Load and reaction schemes 8.4.2. Examples of tests in granular soils 8.4.3. Examples of tests in natura! soils (sub-base)

8.5. Deep plate loading test (in wells) 8.5.1. Method description 8.5.2. Examples of equipment 8.5.3. Example of a test

8.6. Borehole PLT tests 8.6.1. lntroduction 8.6.2. Procedure

8.7. Screw plate tests 8. 7 .1. l ntroduction 8.7.2. Equipment 8.7.3. Procedure

8.8. lnfluence factors o n the PL T results 8.9. lnterpretation of PLT tests results

8.9.1. Traditional tests 8.9.2. lnterpretation ot borehole test results 8.9.3. lnterpretation of screw plate test results

pag. 278

" 278 " 282 " 285 " 285 " 285 " 287 " 289 " 291 " 291 " 292 " 293 " 295 " 295 " 296 , 299 , 299 , 299 , 301 , 303 , 305 , 305

" 310 " 311

CHAPTER 9 - IN SITU DENSITY TESTS 9.1. lntroduction " 319

, 320 ,, 320

9.2. Reference maximum density (Maximum Unit Weight) 9.3. Compaction of coarse materials 9.4. Measurement of in situ density

9.4.1. lntroduction 9.4.2. Equipment to measure the in situ density

, 322 , 322 , 322

CHAPTER 10 - FIELD PERMEABILITY TEST

x

10.1. lntroduction " 329 10.2. Evaluation ot k from the grain size composition and density of a deposit" 330 10.3. Borehole permeability tests in soils " 331

10.3.1. lntroduction " 331 1 0.3.2. Test hole to measure the vertical permeability coefficient (kv) " 332 1 0.3.3. Test hole to measure the horizontal (kh) an d the average (kav )

permeability coefficient 1 0.3.4. Permeability tests (soils)

10.4. Permeability tests in rock (Lugeon) 1 0.4.1. lntroduction 1 0.4.2. Test preparation and performance 1 0.4.3 Test procedure 1 0.4.4. Test interpretation

" 333 " 336 " 342 " 342 " 343 " 347 " 347

Page 8: IN SITU GEOTECHNICAL TESTS - UniTrentowebapps.unitn.it/Biblioteca/it/Web/EngibankFile/8384072.pdfIn situ geotechnical tests 8.3. The most common standards followed in ltaly 8.3.1.

1 0.5. Evaluation of so il permeability in the helix flow meter 1 0.5.1. Method description an d its limits 1 0.5.2. Equ ipment description 1 0.5.3. Drilling the ho le and install the slotted pipe 1 0.5.4. Calibration of the sensor 1 0.5.5. Test procedure 1 0.5.6. Test interpretation

1 0.6. Permeability evaluation of shallow soils 1 0.6.1. lntroduction 10.6.2. Direct measurements ìnside trial pits 1 0.6.3. Boutwell permeameter 1 0.6.4. Guelph permeameter 10.6.5. SORI- Sealed Double Ring lnfiltrometer

10.7. Pumping tests for the permeability determinatìon 1 O. 7.1. lntroduction 10.7.2. Well drillìng and permanent Casing installation 10.7.3. Preliminary step-drawdown tests 10.7.4. Piezometers around the well 10.7.5. Permeability measurement- confined aquifer 10.7.6. Pumping test interpretation

1 0.8. Permeability tests in fine soils

lndex

pag. 348 " 348 " 348 " 349 " 349 " 350 " 351

" 352 " 352 " 353 , 354 , 355 , 357 , 360 " 360 , 361 " 364 " 367 " 368 , 372 , 375

Xl