Improved Iterative Methods for NAPL Transport Through Porous Media

50
Improved Iterative Methods for NAPL Transport Through Porous Media Victor Minden May 2, 2012

Transcript of Improved Iterative Methods for NAPL Transport Through Porous Media

Page 1: Improved Iterative Methods for NAPL Transport Through Porous Media

Improved Iterative Methods for NAPL Transport Through

Porous Media

Victor Minden May 2, 2012

Page 2: Improved Iterative Methods for NAPL Transport Through Porous Media

Background

•  Non-aqueous phase liquid (NAPL) – Gasoline – Pesticides – Mercury

2  

Page 3: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Aquifer – Water – Pores

Background (cont.)

3  

Image source: Geoff Ruth (File:High School Earth Science 1-13.pdf (page 493)) [CC-BY-SA-3.0 (www.creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

Page 4: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Spills •  Leakage •  Agricultural run-off

Can we model and simulate the flow of these contaminants?

The Problem

4  

Page 5: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Abriola et al. – VALOR •  Version 1.0: 2D model, 3-phase flow •  Now: 3D model, 2-phase flow

•  Well-established theory

Past Work

5  

L.  Abriola,  K.  Rathfelder,  M.  Maiza,  and  S.  Yadav,  VALOR  Code  Version  1.0:  A  PC  Code  for  SimulaGng  Immiscible  Contaminant  Transport  in  Subsurface  Systems,  Tech.  Rep.  EPRI  TR-­‐101018,  The  University  of  Michigan,  Ann  Arbor,  

Michigan,  September  1992.    

Page 6: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Explore changes to VALOR solution algorithm

This Work

6  

Goal: Improve runtime without sacrificing accuracy

Page 7: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Model •  Discretization •  IMPES •  Solution Scheme •  Simulation Results •  Conclusion

Outline

7  

Page 8: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Conservation of mass

•  Effective Mass Density

Model

8  

Effective mass density Volumetric flux

Page 9: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Modified Darcy’s Law

•  Transmissibility

Model (cont.)

9  

Volumetric flux

J.  Bear,  Dynamics  of  fluids  in  porous  media,  Dover,  1988.    

Page 10: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Final Equation

Model (cont.)

10  

Page 11: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Model •  Discretization •  IMPES •  Solution Scheme •  Simulation Results •  Conclusion

Outline

11  

Page 12: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Sample space and time on discrete grid

•  Round values to nearest floating-point number

Finite problem

Discretization

12  

Page 13: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Finite Differences – Approximate derivatives

Discretization (cont.)

13  

Page 14: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Model •  Discretization •  IMPES •  Solution Scheme •  Simulation Results •  Conclusion

Outline

14  

Page 15: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Explicit schemes –  – CFL conditions

•  Implicit schemes –  – Expensive

IMPES

15  

R.  LeVeque,  Finite  Difference  Methods  for  Ordinary  and  ParGal  DifferenGal  EquaGons:  Steady-­‐State  and  Time-­‐Dependent  Problems,  Classics  in  Applied  MathemaGcs,  Society  for  Industrial  and  Applied  MathemaGcs,  2007.    

Page 16: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Implicit-Pressure, Explicit-Saturation (IMPES)

•  Expand time-derivative with product-rule

•  Express NAPL pressure in terms of water pressure and capillary pressure

IMPES (cont.)

16  

Page 17: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Saturation Equations

IMPES (cont.)

17  

Page 18: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Pressure Equation

IMPES (cont.)

18  

Page 19: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Problems – Density is pressure-dependent – Capillary pressures and relative

permeabilities have saturation-dependent functional form

IMPES (cont.)

19  

Nonlinear system

J.  C.  Parker,  R.  J.  Lenhard,  and  T.  Kuppusamy,  A  parametric  model  for  consGtuGve  properGes  governing  mulGphase  flow  in  porous  media,  Water  Resour.  Res.,  23  (1987),  pp.  618–624.    

Page 20: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Model •  Discretization •  IMPES •  Solution Scheme •  Simulation Results •  Conclusion

Outline

20  

Page 21: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Picard Linearization – Solve a fixed point equation

–  Iteration

Solution Scheme

21  

Page 22: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Parallel Picard

Solution Scheme (cont.)

22  

Page 23: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Predictor-Corrector Picard

Solution Scheme (cont.)

23  

Page 24: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Generalized minimal residual method (GMRES) – Solve – Each step:

Solution Scheme (cont.)

24  

Y.  Saad  and  M.  H.  Schultz,  GMRES:  a  generalized  minimal  residual  algorithm  for  solving  nonsymmetric  linear  systems,  SIAM  Journal  on  ScienGfic  and  StaGsGcal  CompuGng,  7  (1986),  pp.  856–869    

Page 25: Improved Iterative Methods for NAPL Transport Through Porous Media

•  GMRES(k) – Restart GMRES – Minimize over only k vectors – Choice of k important

Solution Scheme (cont.)

25  Y.  Saad,  IteraGve  Methods  for  Sparse  Linear  Systems,  Society  for  Industrial  and  Applied  MathemaGcs,  2003.    

Page 26: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Preconditioning – New matrix, new spectrum – Right preconditioning:

Solution Scheme (cont.)

26  

Page 27: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Jacobi

•  Algebraic Multigrid (AMG)

Solution Scheme (cont.)

27  U.  Troeenberg,  C.  Oosterlee,  and  A.  Schüller,  MulGgrid,  Academic  Press,  2001.    

Page 28: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Terminating GMRES –  Iterations – Absolute residual norm – Relative residual norm – Stagnation

Solution Scheme (cont.)

28  

Page 29: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Model •  Discretization •  IMPES •  Solution Scheme •  Simulation Results •  Conclusion

Outline

29  

Page 30: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Test Problem Parameters – 2.8GHz Intel® Xeon, 16GB RAM –  –  – Medium properties generated in

T-PROGS – 5 days of simulation

Simulation Results

30  S.  F.  Carle,  T-­‐PROGS:  TransiGon  Probability  GeostaGsGcal  Sogware  and  User’s  Guide,  University  of  California,  1999.    

Page 31: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Original (Fortran) vs PETSc (C) – Left Jacobi – 30 GMRES iterations

Simulation Results (cont.)

31  

 S.  Balay,  J.  Brown,  ,  K.  Buschelman,  V.  Eijkhout,  W.  D.  Gropp,  D.  Kaushik,  M.  G.  Knepley,  L.  C.  McInnes,  B.  F.  Smith,  and  H.  Zhang,  PETSc  users  manual,  Tech.  Rep.  ANL-­‐  95/11  -­‐  Revision  3.2,  Argonne  NaGonal  Laboratory,  2011.    

 

Page 32: Improved Iterative Methods for NAPL Transport Through Porous Media

Simulation Results (cont.)

32  

Page 33: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Preliminary changes – Switch to right Jacobi – Enforce check of nonlinear

residual

Simulation Results (cont.)

33  

Page 34: Improved Iterative Methods for NAPL Transport Through Porous Media

Simulation Results (cont.)

34  

Page 35: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Varying GMRES Tolerances

Simulation Results (cont.)

35  

Page 36: Improved Iterative Methods for NAPL Transport Through Porous Media

Simulation Results (cont.)

36  

Page 37: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Varying Restart Parameter

Simulation Results (cont.)

37  

Page 38: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Jacobi vs AMG – “Amortize” construction – Experiment with strength

threshold

Simulation Results (cont.)

38  

Page 39: Improved Iterative Methods for NAPL Transport Through Porous Media

•  AMG convergence

Simulation Results (cont.)

39  

Page 40: Improved Iterative Methods for NAPL Transport Through Porous Media

Simulation Results (cont.)

40  

[20]    V.  E.  Henson  and  U.  M.  Yang,  Boomeramg:  a  parallel  algebraic  mulGgrid  solver  and  precondiGoner,  Applied  Numerical  MathemaGcs,  41  (2000),  pp.  155–177.    

Page 41: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Alternative Linearization

Simulation Results (cont.)

41  

Page 42: Improved Iterative Methods for NAPL Transport Through Porous Media

42  

Page 43: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Model •  IMPES •  Discretization •  Solution Scheme •  Simulation Results •  Conclusion

Outline

43  

Page 44: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Summary of Results – C, right Jacobi, stagnation, restart •  4.75x speed-up on one test

problem, 6.25x on another •  Stagnation tolerance single biggest

improvement – AMG, restructure •  Increased runtime •  Restructure: difference norm O(1e-2)

Conclusion

44  

Page 45: Improved Iterative Methods for NAPL Transport Through Porous Media

•  Future work – Validation –  Jacobi vs AMG •  Streamline saturation update?

Conclusion (cont.)

45  U.  Troeenberg,  C.  Oosterlee,  and  A.  Schüller,  MulGgrid,  Academic  Press,  2001.    

Page 46: Improved Iterative Methods for NAPL Transport Through Porous Media

Thank You!

•  Acknowledgements •  Questions?

46  

Page 47: Improved Iterative Methods for NAPL Transport Through Porous Media

(This slide intentionally left blank)

47  

Page 48: Improved Iterative Methods for NAPL Transport Through Porous Media

Extra Slides

•  Assumptions •  Variables

48  

Page 49: Improved Iterative Methods for NAPL Transport Through Porous Media

Assumptions

•  Isothermal system •  Viscosity independent of

pressure •  Pore space does not change

with time •  Fluid saturations account totally

for pore volume •  Liquid compressibility constant

49  

Page 50: Improved Iterative Methods for NAPL Transport Through Porous Media

Variables

•  Pressure – •  Saturation – •  Porosity - •  Density – •  Velocity – •  Source/Sink – •  Intrinsic soil permeability – •  Relative permeability - •  Viscosity -

50