Image Reconstruction in Low-Field MRI - A Super-Resolution...

71
Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 1 / 36 Image Reconstruction in Low-Field MRI A Super-Resolution Approach Delft University of Technology Merel de Leeuw den Bouter June 14, 2017

Transcript of Image Reconstruction in Low-Field MRI - A Super-Resolution...

  • Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 1 / 36

    Image Reconstruction in Low-Field MRIA Super-Resolution ApproachDelft University of Technology

    Merel de Leeuw den Bouter

    June 14, 2017

  • MRI scanners

    • Big• Very expensive• Problematic in developing

    countries

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 2 / 36

  • MRI scanners

    • Big• Very expensive• Problematic in developing

    countries

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 2 / 36

  • Hydrocephalus in the developing world

    • Hydrocephalus• 400.000 newborns per year• 79% in developing countries• Limited or no access to required healthcare

    • Goal: develop low-cost, portable MRI scanner

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 3 / 36

  • Hydrocephalus in the developing world

    • Hydrocephalus• 400.000 newborns per year• 79% in developing countries• Limited or no access to required healthcare

    • Goal: develop low-cost, portable MRI scanner

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 3 / 36

  • Partners

    • LUMC• Pennsylvania State University• Mbarara University of Science and Technology• CURE Children’s Hospital of Uganda

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 4 / 36

  • Outline

    1 MRI

    2 Prototypes

    3 Super-resolution

    4 Minimization problem

    5 Conjugate gradient method

    6 Simulations

    7 Dataset

    8 Conclusion

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 5 / 36

  • How does MRI work?

    • Human body: ∼ 62%hydrogen atoms

    • H-density ⇒ intensity

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 6 / 36

  • How does MRI work?

    • Spin• Random directions• B0 ⇒ net magnetic moment• Radiofrequency pulse• Induces signal

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 7 / 36

  • Conventional vs low-field MRI

    Conventional MRI

    • Superconducting magnets• Strong, homogeneous magnetic field• High signal-to-noise ratio• Fourier Transform

    S(t) =

    ∫∫object

    I (x , y)e−i(γGx tx+γGyTpey) dx dy

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 8 / 36

  • Conventional vs low-field MRI

    Conventional MRI

    • Superconducting magnets• Strong, homogeneous

    magnetic field

    • High signal-to-noise ratio• Fourier Transform

    Low-field MRI

    • Permanent magnets• Weaker magnetic field with

    inhomogeneities

    • Low signal-to-noise ratio

    S(t) =

    ∫∫object

    I (x , y)ω(x , y)e−t/T∗2 (x ,y)e−iγ∆B(x ,y) dx dy

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 9 / 36

  • Low-field MRI

    S(t) =

    ∫∫object

    I (x , y)ω(x , y)e−t/T∗2 (x ,y)e−iγ∆B(x ,y) dx dy

    discretize======⇒s = W x

    + e

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 10 / 36

  • Low-field MRI

    S(t) =

    ∫∫object

    I (x , y)ω(x , y)e−t/T∗2 (x ,y)e−iγ∆B(x ,y) dx dy

    discretize======⇒

    s = W x

    + e

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 10 / 36

  • Low-field MRI

    S(t) =

    ∫∫object

    I (x , y)ω(x , y)e−t/T∗2 (x ,y)e−iγ∆B(x ,y) dx dy

    discretize======⇒s = W x

    + e

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 10 / 36

  • Low-field MRI

    S(t) =

    ∫∫object

    I (x , y)ω(x , y)e−t/T∗2 (x ,y)e−iγ∆B(x ,y) dx dy

    discretize======⇒s = W x + e

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 10 / 36

  • Prototype

    LUMC

    • Configuration of permanentmagnets

    • Inhomogeneities ⇒ spatialencoding

    PSU

    • Same components• Inverse Fourier Transform

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 11 / 36

  • PSU prototype

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 12 / 36

  • Super-resolution

    • Several low-resolutionimages

    I ShiftedI Rotated

    • ⇒ Obtain high-resolutionimage

    Figure: Using LR images to obtain an HR image. Source:Van Reeth et al. (2012).

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 13 / 36

  • Super-resolution: acquisition model

    • x: HR image• {yk}Nk=1: set of LR image observations

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 14 / 36

  • Super-resolution: acquisition model

    • x: HR image• {yk}Nk=1: set of LR image observations

    Figure: The general acquisition model. Source: Van Reeth et al. (2012).

    • ⇒

    yk = DkBkGk

    x

    + vk

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 15 / 36

  • Super-resolution: acquisition model

    • x: HR image• {yk}Nk=1: set of LR image observations

    Figure: The general acquisition model. Source: Van Reeth et al. (2012).

    • ⇒

    yk = DkBk

    Gkx

    + vk

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 15 / 36

  • Super-resolution: acquisition model

    • x: HR image• {yk}Nk=1: set of LR image observations

    Figure: The general acquisition model. Source: Van Reeth et al. (2012).

    • ⇒

    yk = DkBk

    Gkx

    + vk

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 15 / 36

  • Super-resolution: acquisition model

    • x: HR image• {yk}Nk=1: set of LR image observations

    Figure: The general acquisition model. Source: Van Reeth et al. (2012).

    • ⇒

    yk = Dk

    BkGkx

    + vk

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 15 / 36

  • Super-resolution: acquisition model

    • x: HR image• {yk}Nk=1: set of LR image observations

    Figure: The general acquisition model. Source: Van Reeth et al. (2012).

    • ⇒

    yk =

    DkBkGkx

    + vk

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 15 / 36

  • Super-resolution: acquisition model

    • x: HR image• {yk}Nk=1: set of LR image observations

    Figure: The general acquisition model. Source: Van Reeth et al. (2012).

    • ⇒

    yk =

    DkBkGkx + vk

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 15 / 36

  • Super-resolution: acquisition model

    • x: HR image• {yk}Nk=1: set of LR image observations

    Figure: The general acquisition model. Source: Van Reeth et al. (2012).

    • ⇒ yk = DkBkGkx + vk

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 15 / 36

  • Super-resolution: acquisition model

    • yk = DkBkGkx + vk

    • yk = Akx + vk

    • y =

    y1y2...yN

    ,A =A1A2...

    AN

    , v =v1v2...vN

    • y = Ax + v

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 16 / 36

  • Super-resolution: acquisition model

    • yk = DkBkGkx + vk• yk = Akx + vk

    • y =

    y1y2...yN

    ,A =A1A2...

    AN

    , v =v1v2...vN

    • y = Ax + v

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 16 / 36

  • Super-resolution: acquisition model

    • yk = DkBkGkx + vk• yk = Akx + vk

    • y =

    y1y2...yN

    ,A =A1A2...

    AN

    , v =v1v2...vN

    • y = Ax + v

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 16 / 36

  • Super-resolution: acquisition model

    • yk = DkBkGkx + vk• yk = Akx + vk

    • y =

    y1y2...yN

    ,A =A1A2...

    AN

    , v =v1v2...vN

    • y = Ax + v

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 16 / 36

  • Research question

    Can super-resolution reconstruction yield images of better qualitythan direct high resolution reconstruction?

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 17 / 36

  • Minimization problem

    • y = Ax + v• v unknown

    • Ill-posed problem• min

    x

    12

    ||y − Ax||2

    +

    12

    λ||Fx||2

    • λ: regularization parameter• F : prior knowledge about x

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 18 / 36

  • Minimization problem

    • y = Ax + v• v unknown• Ill-posed problem

    • minx

    12

    ||y − Ax||2

    +

    12

    λ||Fx||2

    • λ: regularization parameter• F : prior knowledge about x

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 18 / 36

  • Minimization problem

    • y = Ax + v• v unknown• Ill-posed problem• min

    x

    12

    ||y − Ax||2

    +

    12

    λ||Fx||2

    • λ: regularization parameter• F : prior knowledge about x

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 18 / 36

  • Minimization problem

    • y = Ax + v• v unknown• Ill-posed problem• min

    x

    12

    ||y − Ax||2 +

    12

    λ||Fx||2

    • λ: regularization parameter• F : prior knowledge about x

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 18 / 36

  • Minimization problem

    • y = Ax + v• v unknown• Ill-posed problem• min

    x

    12 ||y − Ax||

    2 + 12λ||Fx||2

    • λ: regularization parameter• F : prior knowledge about x

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 18 / 36

  • Minimization problem

    • y = Ax + v• v unknown• Ill-posed problem• min

    x

    12 ||y − Ax||

    2 + 12λ||Fx||2

    • λ: regularization parameter• F : prior knowledge about x

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 18 / 36

  • Different kinds of regularization

    • Tikhonov:

    minx

    1

    2||y − Ax||22 +

    1

    2λ||Fx||22

    • Total variation:

    minx

    1

    2||y − Ax||22 +

    1

    2λ||Fx||1

    • Edge-preserving

    • F first-order difference matrix

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 19 / 36

  • Different kinds of regularization

    • Tikhonov:

    minx

    1

    2||y − Ax||22 +

    1

    2λ||Fx||22

    • Total variation:

    minx

    1

    2||y − Ax||22 +

    1

    2λ||Fx||1

    • Edge-preserving

    • F first-order difference matrix

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 19 / 36

  • Different kinds of regularization

    • Tikhonov:

    minx

    1

    2||y − Ax||22 +

    1

    2λ||Fx||22

    • Total variation:

    minx

    1

    2||y − Ax||22 +

    1

    2λ||Fx||1

    • Edge-preserving• F first-order difference matrix

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 19 / 36

  • General problem statement

    • Minimization problem of the form

    minx

    1

    2||y − Ax||2 + 1

    2λ||x||2R

    • Convex problem

    • Sufficient condition for optimality:

    (ATA + λR)x = ATy

    • Conjugate gradient method

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 20 / 36

  • General problem statement

    • Minimization problem of the form

    minx

    1

    2||y − Ax||2 + 1

    2λ||x||2R

    • Convex problem• Sufficient condition for optimality:

    (ATA + λR)x = ATy

    • Conjugate gradient method

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 20 / 36

  • General problem statement

    • Minimization problem of the form

    minx

    1

    2||y − Ax||2 + 1

    2λ||x||2R

    • Convex problem• Sufficient condition for optimality:

    (ATA + λR)x = ATy

    • Conjugate gradient method

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 20 / 36

  • Conjugate gradient method

    • Iterative method• System of equations Ku = f

    • Search directions pk conjugate wrt K (pkKpl = 0, k 6= l)• uk+1 = uk + αkpk• ||u− uk ||K = min

    v∈u0+span{p0,...,pk−1}

    ||u− v||K

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 21 / 36

  • Conjugate gradient method

    • Iterative method• System of equations Ku = f• Search directions pk conjugate wrt K (pkKpl = 0, k 6= l)• uk+1 = uk + αkpk• ||u− uk ||K = min

    v∈u0+span{p0,...,pk−1}

    ||u− v||K

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 21 / 36

  • Super-resolution simulations

    Phantom (128 x 128 pixels)

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 22 / 36

  • Super-resolution simulations

    Shifted

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 22 / 36

  • Super-resolution simulations

    Blurred

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 22 / 36

  • Super-resolution simulations

    Down-sampled

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 22 / 36

  • Super-resolution simulations

    Noise added

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 22 / 36

  • Super-resolution simulations4 low resolution images (32 x 32 pixels)

    5 10 15 20 25 30

    5

    10

    15

    20

    25

    30

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    5 10 15 20 25 30

    5

    10

    15

    20

    25

    30

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    5 10 15 20 25 30

    5

    10

    15

    20

    25

    30

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    5 10 15 20 25 30

    5

    10

    15

    20

    25

    30

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 23 / 36

  • Super-resolution simulationsModel solution

    Total variation

    Tikhonov

    Edge-preserving

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 24 / 36

  • Low-field MRI simulations

    • s = W x + e• Angles 0◦, 10◦, ..., 350◦

    • Signal-to-noise ratios starting from 0.5

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 25 / 36

  • Low-field MRI simulations

    Model solution Direct HR solution (SNR = 10)

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 26 / 36

  • Low-field MRI simulations

    Model solution Direct HR solution (SNR = 0.5)

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 27 / 36

  • Low-field MRI simulationsLR images (8× 8 pixels)

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 28 / 36

  • Low-field MRI simulations

    SR solution

    HR solution

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 29 / 36

  • Low-field MRI simulations

    SR solution HR solution

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 29 / 36

  • LUMC dataset

    • GoalI Application to real dataI Validation of the model

    • 7 T MRI scanner• Gradient in one direction• 16 angles

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 30 / 36

  • LUMC dataset

    Model solution First 1D projection

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 31 / 36

  • LUMC dataset

    Model solution

    First 1D projection

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 31 / 36

  • LUMC dataset

    Model solution First 1D projection

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 31 / 36

  • LUMC dataset

    16 1D projections

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 32 / 36

  • LUMC dataset

    Model solution

    Result

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 33 / 36

  • LUMC dataset

    Model solution Result

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 33 / 36

  • LUMC dataset

    Model solution Result

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 33 / 36

  • LUMC dataset

    Model solution Result

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 33 / 36

  • Conclusions and further research

    • ConclusionsI Super-resolution can yield better resultsI Total variation regularizationI Validation of the measurement model

    • Further research

    I Apply super-resolution to PSU dataI New LUMC prototypeI Measurements at LUMC with more complicated fieldI Dictionary learning

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 34 / 36

  • Conclusions and further research

    • ConclusionsI Super-resolution can yield better resultsI Total variation regularizationI Validation of the measurement model

    • Further researchI Apply super-resolution to PSU dataI New LUMC prototypeI Measurements at LUMC with more complicated fieldI Dictionary learning

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 34 / 36

  • LUMC dataset: super-resolutionModel solution

    One LR image

    HR result

    SR result

    Merel de Leeuw den Bouter (TU Delft) Image Reconstruction in Low-Field MRI June 14, 2017 36 / 36

    MRIPrototypesSuper-resolutionMinimization problemConjugate gradient methodSimulationsDatasetConclusion