III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

33
III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes A. D. Carter, G. J. Burek, M. A. Wistey* , B. J. Thibeault, A. Baraskar, U. Singisetti, J. Cagnon, S. Stemmer, A. C. Gossard, C. Palmstrøm University of California, Santa Barbara *Now at Notre Dame B. Shin, E. Kim, P. C. McIntyre Stanford University Y.-J. Lee Intel B. Yue, L. Wang, P. Asbeck, Y. Taur University of California, San Diego 2010 Conference on Indium Phosphide and Related Materials, June 2-4, Takamatsu, Japan Mark. Rodwell, University of California, Santa Barbara

description

2010 Conference on Indium Phosphide and Related Materials, June 2-4, Takamatsu, Japan. III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes. Mark. Rodwell, University of California, Santa Barbara. - PowerPoint PPT Presentation

Transcript of III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

Page 1: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

III-V MOSFETs: Scaling Laws, Scaling

Limits,Fabrication Processes

A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti, J. Cagnon, S. Stemmer, A. C. Gossard, C. PalmstrømUniversity of California, Santa Barbara*Now at Notre Dame

B. Shin, E. Kim, P. C. McIntyreStanford University

Y.-J. LeeIntel

B. Yue, L. Wang, P. Asbeck, Y. TaurUniversity of California, San Diego

2010 Conference on Indium Phosphide and Related Materials, June 2-4, Takamatsu, Japan

Mark. Rodwell, University of California, Santa Barbara

Page 2: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

III-V MOSFETs for VLSI: Why and Why Not.

Lower mass → Higher Carrier Velocity→ lower input capacitanceimproved gate delay in transistor-capacitance-limited gatesnot relevant in wiring-capacitance-limited gates (i.e. most of VLSI)

But this advantage is widely misunderstood in communityInGaAs channels→ higher Id / Wg than Si only for thick dielectrics

....LOWER Id / Wg than Si for thin dielectricsbreak-even point is at ~0.5 nm EOT

More importantly: potential for higher drive currentimproved gate delay in wiring-capacitance-limited gates (VLSI)

We will introduce later candidate III-V channel designs providing higher Id / Wg than Si even for small EOT

Page 3: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

10nm gate length, < 10nm electrode spacings, < 10nm contact widths

III-V MOS: What is needed ?

True MOS device structures at ~10 nm gate lengths

Drive currents >> 1 mA/micron @ 1/2-Volt Vdd.

Dielectrics: < 0.6 nm EOT , Dit < 1012 /cm2-eV

...and the channel must be grown on Silicon

Low access resistances. Density-of-states limits.

Low dielectric Dit must survive FET process.impacts Ion, Ioff , ...

< 3 nm channel, < 1 nm gate-channel separation, < 3nm deep junctionsFully self-aligned processes: N+ S/D, S/D contacts

Page 4: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

Highly Scaled FETProcess Flows

Page 5: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

Requirements: 10 nm Lg III-V MOSFETSelf-aligned S/D contactslow resistance in ~10 nm width,< 0.5 -m2 resistivity needed.

Self-aligned N+ source/drain shallow, heavily-dopedaligned within nm of gate

Thin oxide < 1 nm EOTThin channel < 5nmShallow channel: no setbacks

LgLS/D

IBM High-k Metal gate transistor

Image Source: EE Times

Page 6: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

InGaAs MOSFET with N+ Source/Drain by MEE Regrowth1

1Singisetti, ISCS 20082Wistey, EMC 20083Baraskar, EMC 2009

Interface

HAADF-STEM1*

2 nm

InGaAs

InGaAs

regrowth

Self-aligned source/drain defined by MBE regrowth2

Self-aligned in-situ Mo contacts3

Process flow & dimensions selected for 10-30 nm Lg design;

Gate-firstgate dielectric formed after MBE growth uncontaminated / undamaged surface

* TEM by J. Cagnon, Susanne Stemmer Group, UCSB

Page 7: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

Process flow** Singisetti et al, 2008 ISCS, September, Frieburg Singisetti et al; Physica Status Solidi C, vol. 6, pp. 1394,2009

Page 8: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

SiO2

W

Cr

FIB Cross-section

Damage free channel

Process scalable to ~10 nm gate lengths

Key challenge in S/D process: gate stack etch

Requirement: avoid damaging semiconductor surface:

Approach: Gate stack with multiple selective etches*

* Singisetti et al; Physica Status Solidi C, vol. 6, pp. 1394,2009

Page 9: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

MBE Regrowth→ Gap Near Gate→ Source Resistance

W / Cr / SiO2

gate

W / Cr / SiO2

gate

SEM

SEM

• Shadowing by gate: No regrowth next to gate

• Gap region is depleted of electronsHigh source resistance because of electron depletion in the gap

MBE growth by Dr. Mark Wistey, device fabrication and characterization by U. Singisetti

W/Cr

gate

Mo+InGaAs

Ti/Au Pad

Gap in regrowth

SiO2 cap

Page 10: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

Migration Enhanced Epitaxial (MEE) S/D Regrowth*

*Wistey, EMC 2008

Wistey, ICMBE 2008

High T migration enhanced

Epitaxial (MEE) regrowth*

regrowth interface

gateNo Gap

45o tilt SEM

Top of SiO2 gate

No Gap

Side of gate

High temperature migration enhanced epitaxial regrowth

MBE growth by Dr. Mark Wistey, device fabrication and characterization by U. Singisetti

Page 11: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

SiO2

W

Cr

InGaAs

InGaAs

InGaAs

InGaAs

InAlAs

Regrowth profile dependence on As flux*

Uniform filling with lower As flux

multiple InGaAs regrowths with InAlAs marker layers

increasing As flux

regrowth

surface

* Wistey et al, EMC 2009

Wistey et al NAMBE 2009

MBE growth by Dr. Mark Wistey, device fabrication and characterization by U. Singisetti

uniform filling

5.6x10-7, 1.0x10-6,2x10-6 , 5x10-6 Torr

540 °C growth

Page 12: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

InAs source/drain regrowth

1 Wistey et al, EMC 2009

Wistey et al NAMBE 2009. 2Bhargava et al , APL 1997

InAsregrowth

Gate

side of gate

top of gate

Mo S/D metal with N+ InAs underneath

Improved InAs regrowth with low As flux for uniform filling1

InAs less susceptible to electron depletion: Fermi pinning above Ec2

Page 13: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

In-Situ Refractory Ohmics on MBE Regrown N-InGaAs

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5

Gap Spacing (m)

Res

ista

nce

()

In-situ Mo on n-InAs In-situ Mo on n-InGaAs

ρc = 0.6 ± 0.4 Ω·µm2

n = 1×1020 cm-3

ρc = 1.0 ± 0.6 Ω·µm2

n = 5×1019 cm-3

0

2

4

6

8

0 0.5 1 1.5 2 2.5 3 3.5

Res

ista

nce

()

Gap Spacing (m)

Interface

HAADF-STEM*

2 nm

InGaAs

InGaAsregrowth

TEM by Dr. J. Cagnon, Stemmer Group, UCSB

A. Baraskar

Contact resistivityto MEE regrown materialis ~1.2 -m2.

Page 14: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

Self-Aligned Contacts: Height Selective Etching*

Mo

InGaAs

PR

PR PR

* Burek et al, J. Cryst. Growth 2009

Dummy gate

No regrowth

Page 15: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

Fully Self-Aligned III-V MOSFET Process

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

dra

in c

urre

nt,

I D (m

A/

m)

VDS

(V)

Lg = 200 nm W

g = 8 m

Vgs

: 0 to 4 V in 0.5 V steps

Page 16: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

Drive current and transconductance

0.95 mA/m peak Id , ~0.45 mS/m peak gm

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4

dra

in c

urre

nt,

I D (

mA

/m

)

transcon

ductran

ce, g

m (mS

/m

)

Vgs

(V)

Vds

=2 V

Lg=200 nm

Page 17: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

27 nm Self-Aligned Process Flow

Self-aligned structures at ~10 nm gate length can be fabricated

MEE regrowth has very narrowprocess window→ CBE or MOCVD ?

Page 18: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

III-V FET Scaling&

High-Current-DensityChannels

Page 19: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

laws in constant-voltage limit:

FET Scaling Laws

GW widthgate

GL

FET parameter change

gate length decrease 2:1

current density (mA/m), gm (mS/m) increase 2:1

channel 2DEG electron density increase 2:1

electron mass in transport direction constant

gate-channel capacitance density increase 2:1

dielectric equivalent thickness decrease 2:1

channel thickness decrease 2:1

channel density of states increase 2:1

source & drain contact resistivities decrease 4:1

Current densities should doubleCharge densities must double

Changes required to double device / circuit bandwidth.

Page 20: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

Semiconductor Capacitances Must Also Scale

inversiondepth /Tc

oxc

)( thgs VV

2*2 2/ gmqcdos

)2/()()(charge channel 2* gmEEqVVcqn wellfwellfdoss

motion) onalunidirecti(

scale. both alsomust states ofdensity & thicknessInversion

qEE wellf /)(

Page 21: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

Calculating Current: Ballistic Limit

fvv )3/4( velocity electron mean

2/3

2/3,

2/1

V 1)/*()/(1

)/*(

m

mA 84

thgs

ooxodos

oVV

mmgcc

mmgJ

minima band of # theis where, )/*(2/* ,22 gmmgcgmqc oodosdos

thgsdosequiv

equivdoscfdos VV

cc

ccVVc

s :charge Channel

2/* through velocity Fermidetermines

toapplied voltage voltage FermiChannel2ffff

dos

vmqVEv

c

Do we get highest current with high or low mass ?

Page 22: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

Standard InGaAs MOSFETs have superior Id to Si at large EOT.Standard InGaAs MOSFETs have inferior Id to Si at small EOT.

2/3*

,

2/1*2/3

)/()/(1 where,

V 1m

mA84

oequivodos

othgs

mmgcc

mmgK

VVKJ

Drive Current Versus Mass, # Valleys, and EOT

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.01 0.1 1

K

m*/mo

g=2

EOT=1.0 nmEOT includes the wavefunction depth term (mean wavefunction depth*

SiO2 /

semiconductor )

0.6 nm

0.4 nm

g=1

InGaAs <--> InP Si

0.3 nm

/EOTε

)/c/c(c oxequiv

2SiO

1depth

11

Solomon / Laux Density-of-States-Blottleneck → III-V loses to Si.

Page 23: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

substrate material

III-V Band Properties, normal {100} Wafer

X L

valleys tocomparable are masses nsversevalley tra-L

eV 0.28 0.075 1.90

eV 0.57 0.050 0.65

eV 0.47 0.062 1.23

/ /

valley L

EEmmmm Lotol

Si Si

GaAs GaAs

InP InAs

InP AsGaIn

substrate material

0.50.5

---

0.067

0.026

0.045

/

valley *

omm

(negative) 0.19 0.92

eV 0.47 0.22 1.30

eV 0.87 0.16 1.13

eV 0.83 0.19 1.29

/ /

valley

EEmmmm

X

xotol

Page 24: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

substrate material

Consider Instead: Valleys in {111} Wafer

X L

---

0.067

0.026

0.045

/

valley *

omm

(negative) 0.19 0.92

eV 0.47 0.22 1.30

eV 0.87 0.16 1.13

eV 0.83 0.19 1.29

/ /

valley

EEmmmm

X

xotol

eV 0.28 0.075 1.90

eV 0.57 0.050 0.65

eV 0.47 0.062 1.23

/ /

valley L

EEmmmm Lotol

Si Si

GaAs GaAs

InP InAs

InP AsGaIn

substrate material

0.50.5

mass verticalmoderate have valleys L three& valleysX

mass verticalhigh has valley Lone :nOrientatio

Page 25: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

substrate material

Valley in {111} Wafer: with Quantization in thin wells

X L

mass erselow transv valley; L[111]Selects

---

0.067

0.026

0.045

/

valley *

omm

(negative) 0.19 0.92

eV 0.47 0.22 1.30

eV 0.87 0.16 1.13

eV 0.83 0.19 1.29

/ /

valley

EEmmmm

X

xotol

eV 0.28 0.075 1.90

eV 0.57 0.050 0.65

eV 0.47 0.062 1.23

/ /

valley L

EEmmmm Lotol

Si Si

GaAs GaAs

InP InAs

InP AsGaIn

substrate material

0.50.5

Page 26: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

nm 4

nm 2

(?) nm 1

alignment L

for thicknessWell

material

{111} -L FET: Candidate Channel Materials

GaSb

GaAs

AsGaIn

material

0.50.5

0.039

0.067

0.045

/

valley *

omm

eV 0.07 0.10 1.30

eV 0.28 0.075 1.90

eV 0.47 0.062 1.23

/ /

valley L

EEmmmm Lotol

Page 27: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

Standard Approach valleys in [100] orientation

3 nm GaAs wellAlSb barriers

Relative Energies:=0 eVL=177 meVX[100]= 264 meVX[010] = 337 meV

-1-0.5

00.5

11.5

2

LE

ne

rgy,

eV

X[010]X[100]L

Wav

efu

nctio

ns

-1

Page 28: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

First Approach: Use both and L valleys in [111]

-1

XL[111]L[111] L[111]

L[111]-1

2.3 nm GaAs wellAlSb barriers[111] orientation

Relative Energies:= 41 meVL[111] (1)= 0 meVL[111] (2)= 84 meV

L[11-1] =175 meVX=288 meV

Page 29: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

2/3*

,

2/1*2/3

)/()/(1 where,

V 1m

mA84

oequivodos

othgs

mmgcc

mmgK

VVKJ

Combined -L wells in {111} orientation vs. Si

GaAs MOSFET with combined and L transport, 2 nm well→ g=2, m*/m0=0.07GaSb MOSFET with combined and L transport, ~4 nm well→ m*/m0=0.039, mL*/m0=0.1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.01 0.1 1

K

m*/mo

g=2

EOT=1.0 nmEOT includes the wavefunction depth term (mean wavefunction depth*

SiO2 /

semiconductor )

0.6 nm

0.4 nm

GaAs Si

0.3 nm

GaSb

combined ( -L) transport

/EOTε

)/c/c(c oxequiv

2SiO

1semi

11

Page 30: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

2nd Approach: Use L valleys in Stacked Wells

Three 0.66 nm GaAs wells0.66 nm AlSb barriers [111] orientation

Relative Energies:=338 meVL[111](1) = 0 meVL[111](2)= 61 meVL[111](3)= 99 meV L[11-1] =232 meVX=284 meV

-1

XL[111]L[111]

All L[111]

-1

Page 31: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

Conclusion

Page 32: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

III-V MOSWith appropriate design, III-V channels can provide > current than Si

...even for highly scaled devices

But present III-V device structures are also unsuitable for 10 nm MOSlarge access regions, low current densities, deep junctions

Raised S/D regrowth process is a path towards a nm VLSI III-V device

Gate dielectric still requires major progress...

Page 33: III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

(end)