Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and...

69
dentification, production and purification dentification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E. coli and in insect cells - Purification strategies Analysis of assembly processes Analysis of assembly processes - fluorescence methods - fluorescence methods - microcalorimetry - microcalorimetry - surface plasmon resonnance - surface plasmon resonnance - NMR - NMR - equilibrium binding/allostery - equilibrium binding/allostery Size and shape Size and shape - Dynamic Light scattering - SAXS and SANS - Analytical ultracentrifugation - non denaturing MS - Electron microscopy - thermodynamics: the essentials

Transcript of Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and...

Page 1: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Identification, production and purificationIdentification, production and purification

- TAP tag/MS foot-printing- Single gene expression and in vitro assembly:- Co-expression techniques in E. coli and in insect cells - Purification strategies

Analysis of assembly processesAnalysis of assembly processes

- fluorescence methods- fluorescence methods- microcalorimetry- microcalorimetry- surface plasmon resonnance- surface plasmon resonnance

- NMR- NMR- equilibrium binding/allostery- equilibrium binding/allostery

Size and shapeSize and shape

- Dynamic Light scattering- SAXS and SANS- Analytical ultracentrifugation- non denaturing MS- Electron microscopy

- thermodynamics: the essentials

Page 2: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Characterization Strategies for Characterization Strategies for non-obligatory complexesnon-obligatory complexes

Isolated components are available and pure/homogenous

Association ?(biochemical analysis)

Pull downNative gel eletrophoresis, EMSAGel filtration

AUC, SAXS, SANSNative MS, EM

Thermodynamic parameters ? EMSA, ITC, spectroscopy, AUC, SPR…..

Conformational homogeneity ? EM, SAXS, SANS, AUC, DSC…..

Association ?(biophysical analysis )

Page 3: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Biochemical methods to detect associationBiochemical methods to detect association

Native gels for protein-protein and protein-NA complexes

- association of NR LDB and co-activator peptide

- EMSA, filter binding assays

- cross-link

-[DNA] = const.-[protein] varies

Kd by fitting to binding isotherm

Page 4: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Biophysical methods to detect and characterize Biophysical methods to detect and characterize associationassociation

Thermodynamic parameters ? EMSA, ITC, spectroscopy, AUC, SPR…..

Structure ? EM, SAXS, SANS, AUC, DSC, MS…..

Fluorescence

Calorimetry

Surface Plasmon resonnance

NMR (Bruno Kieffer, march 31th)

Page 5: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Isolated compounds availible (non obligatory complexes)

Signal that is different for the free and associated compounds

Principle

Titration

Page 6: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Spectroscopic methods

Page 7: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

The electromagnetic spectrum

Page 8: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Excitation(Absorption)

Emission(fluorescence)

h > h

<

Fluorescence

Page 9: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Applications in biology

• Intensité de fluorescence et temps de vie sont très sensibles à l'environnement (100x) => sondes

• Molécules inhibitrices (quenching) => sonde d'accessibilité

• temps de vie de l'état excité (10-9 s = 1 ns), permet de mesurer des mouvements (absorption 10-15 s => molécule immobile)

• techniques de polarisation dépolarisation

• Transfert d'excitation (FRET) => mesure de distances entre chromophores

Page 10: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Natural fluorophoresburied Tryptophane

amino acids: W, Y, F

Dyes

Page 11: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

• Protéine de 283 aa issue d'une méduse (Aequorea victoria), naturellement fluorescente.

• Chromophore : modification d'une séquence GYS • lexc = 395 nm, 475 nm ; lemis = 504 nm

GFP (green fluoresent protein)

Page 12: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.
Page 13: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Split proteins for in vivo detection of protein-protein interactions

Split GFP as a probe for detecting protein-protein interactions. Protein A and protein B are linked to the split VDE intein. Interaction between protein A and protein B induces the folding of N- and C-terminal halves of VDE and protein splicing occurs. The N- and C-terminal halves of GFP are linked together by a peptide bond to yield fluorescent GFP.

Copyright (c) 2006, Ozawa lab.

Page 14: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

The emission spectrum depends on the environment of the fluorophore

Thermofluor: follow denaturation of proteins and stabilization uponligand/DNA/peptide binding

buried Tryptophane

Page 15: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.
Page 16: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.
Page 17: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.
Page 18: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.
Page 19: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.
Page 20: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Fluorescence anisotropy

one molecule (DNA, peptide or protein) is fused to a fluorophore

measure static fluorescence anisotropy

association results in an entity which rotates more slowly than the isolatedfluorophore and results in less scrambling of polarized light

Page 21: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Fluorescence Polarisation

Fluorescence is measured with a linearly polarized beam

Vertical emission

Horizontal emission

Page 22: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Rapid rotational diffusion

Intensities of vertical and horizontal emission almost equal

Page 23: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Slow rotational diffusion

Intensities of vertical and horizontal emission differ = Anisotropy

Page 24: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.
Page 25: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Polarisation de fluorescenceLoi de Perrin

• L'anisotropie de fluorescence est définie comme :

• En considérant que la probabilité d'excitation est proportionnelle à cos2(q), on peut montrer que la valeur maximum possible de l'anisotropie est :

• Dans la réalité, les valeurs de A0 sont inférieures, et :

AF// F

FF// F

F// 2F

A0max

2

5

AA0

1 F c

F

c

temps de vie de fluorescence

temps de correlation de rotation

Page 26: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

HATHAT

CoACoA

Page 27: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.
Page 28: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Peptide co-activator binding

Page 29: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

• Un fluorophore à l'état excité (D) peut transmettre son énergie à un autre (A) par transfert non-radiatif, à distance.

– La fluorescence de D est partiellement éteinte tandis que celle de A apparaît.

– Cet effet résulte d'une interaction entre les dipôles électriques de D et A.

• Conditions pour le transfert

– La distance DA doit être relativement courte (effet en 1/r6)

– Recouvrement des bandes d'émission de D et d'absorption de A.

Fluorescence Resonnace Energy Transfer

Page 30: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Transfert de fluorescence

• On définit une constante de vitesse de transfert kT

– r0 : distance de Förster, caractéristique du couple DA (distance pour laquelle on observe une efficacité de transfert de 50%)

– tf : temps de vie du donneur en l'absence de l'accepteur

• L'efficacité de transfert est donné par :

• La distance DA peut être calculée :

1

T

1

f kT

E kT

f

1 kT

r06

r06 r6

kT 1

f

r0r

6

T

f

T

f

1 E

rr01 EE

1/6

Page 31: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

• In vivo - cells co-transfected with plasmids expressing CFP and YFP fusion proteins- interaction between A and B and its modulation by effectors

CFP-A + YFP-B

CFP-AYFP-B

410 nm

In vivo and in vitro FRET analysis

• In vitro- HTP screening for compounds that inhibit A/B interaction

Page 32: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.
Page 33: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Micro Calorimetry

La manière la plus directe de mesurer les paramètres thermodynamiques:étude des échanges de chaleur G, H, S et Cp

Energies mises en jeu faibles lors par exemple de processus d’association

Kd G°10 –3 -17 kJ/mol

10 –6 -34 kJ/mol

10 – 9 -51 kJ/mol

10 –12 -68 kJ/mol

Utilisation de la calorimétrie longtemps limitée par le manque de précisiondes calorimètresDéveloppements technologiques ont permis la production de calorimètressensibles :seuils de détection de l’ordre de la cal/sec

Page 34: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Isothermal Titration Calorimetry (ITC)

Technique permettant l’étude de processus résultantde l’addition d’un composant dans la cellule de mesure. (eg titration d’une protéine par un ligand)

Mesure les enthalpies de réaction:

Anatomie d’un microcalorimètre:- cellule contenant la macromolécule T=k- seringue contenant le ligand.

Lorsque le ligand et la macromolécule interagissent, de la chaleur est absorbée ou dégagée selon que la réaction est endo ou exo thermique. Le système de régulation du calorimètre injecte ou absorbe de la chaleur pour maintenir la température constante.

Le signal mesuré est une puissance électrique.

Au cours d’une expérience ITC, un "ligand" est titré dans une

cellule contenant une solution de "macromolécule".

Page 35: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

A intervalles de temps réguliers, du ligandest injecté dans la cellule de mesure.

Les données brutes sont constituées par lacourbe puissance échangée = f(t). Cette courbe est constituée par une série de pics (chaque pic correspondant à une injection). L’aire de chaque pic représente la chaleur totale libérée pour l’injection.

Lorsque les sites de fixation du ligand sont saturés le signal diminue jusqu’à une valeur correspondant à la chaleur de dilution

Les données brutes permettent d’accéder à une isotherme de titration: chaleur échangée = f(rapport molaire ligand/macromolécule).

Une expérience ITC

Page 36: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Fixation des sous unités E1 et E3 au PSBD core domain

Protein Science (2002),11 :1091-1100.

PSBD 180-230 ME1 7.5 ME3 13.5 M

H°n

Kd

Page 37: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Differential Scanning Calorimetry (DSC)

Dédié à l’étude de la stabilité thermique des molécules

Equipé d’un système de régulation permettant la mesure des échanges de chaleur (Q produite ou absorbée) entre les cuves « échantillons » et « référence » (contenant uniquement le tampon).

Mesure l’excès de capacité calorifique présent dans la cuve échantillonCp (mcal/mol/degré) = f(T).

Dénaturation thermique des macromolécules: Tm, Cp, H dénaturation

Page 38: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Molécule d’intérêt est dans la cuve de mesure.

Dans la cuve de référence le tampon dans lequel se trouve la macromolécule.

Au cours d’une expérience on fait varier la température et on mesure l’énergie

à fournir à la cuve de mesure pour que cuves de mesures et de référence soit

exactement à la même température. On mesure l’excès de capacité calorifique présent dans la cuve échantillon: Cp = f(T)

Référence Echantillon

T1

Q

Page 39: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

As the protein is heated, it reaches a temperature at which a large amount of heat is suddenly absorbed,as the protein unfolds.

The area under the curve represents the heat absorbed on denaturation. The temperature at the midpoint is the Tm of the protein. (Why would the Tm be dependent on the pH of the solution?)

There are two Cp's evident.

Cd is associated with the actual denaturation process and is analogous to the change in heat capacity observed in phase changes, such as solid to liquid water.

Cp which is  the difference in heat capacity between the denaturated and native state.  As was the case for the transfer of benzene to water, the Cp for protein denaturation is also positive, suggesting that in protein denaturation,  hydrophobes are transferred from the interior of the protein to water.

Page 40: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Cp = dH/dT= TdS/dT.  (derived from from Maxwell's relationships).

Cp = d(H)/dT = Td(S)/dT

A positive Cp occurs when H and S are dependent on temperature, which is observed when a hydrophobe is transfer from a more nonpolar environment to water.

A negative Cp is observed when hydrophobes in water are transferred to a more nonpolar environment: formation of a protein-protein or protein-NA interface

Page 41: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Formulation stability studies

Macromolecule domain structure

Chemical half-life determinations

Determining thermal stability and reversibility

Applications of DSC

Page 42: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Thermodynamics and structure

IMFs: electrostatics, H-bonds, V der Waals, hydrophobic effect

les acides aminés hydrophobes pointent vers l’intérieur de la molécule

les paramètres thermodynamiques peuvent être estimés à partir de

la surface d’interaction (Cp).

Comment sa contribution est elle étudiée?

- théoriquement en mesurant

la surface accessible au solvant

(25 cal/mol/Å2)

- expérimentalement en mesurant des

différences de stabilité entre mutants ponctuels.

Page 43: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.
Page 44: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.
Page 45: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Dans le cadre de relations structure-fonction, l’utilisation

de mutants ponctuels permet d’évaluer quantitativement les

contributions énergétiques des diverses interactions.

Pour une interaction protéine/ligand, on mesure les Kd pour

la protéine wt et différents mutants (qui n’affectent que l’interaction

Étudiée). On en déduit la contribution des diverses interactions à la formation du complexe.

Effets thermodynamiques des mutations

Er complexé à l’oestradiol

Page 46: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

wt: 3 interactions mt: 2 interactions

P(wt) + L P(wt)-L

P(mt) + L P(mt)-L

rG° = rG° (mt) – rG° (wt)avecrG‡ = -RTln ([P-L]/[P][L])

rG° (wt)

rG° (mt) G°#0G°#0

Page 47: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Application à la Tyrosyl-tRNA synthétase

Structure de l’intermédiaire réactionnel [TyrRS-tyrosyl-adénylate]

Modèle de l’état de transition

Mute les résidus impliqués dans lareconnaissance et la stabilisation de l’état de transition

Mesure les paramètres cinétique del’enzyme wt et des mutants (kcat Km)

On en déduit les contributions énergétiques G‡ = -RTln (kcat/KM) des chaînes latérales des différents acides aminés à la stabilisation de l’état de transition.

Page 48: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Théorie de l’état de transition

Enzyme = Catalyseur.

Une réaction doit être thermodynamiquement possible

Il faut que la vitesse de réaction ne soit pas nulle.

A + B X ‡ P + Q K‡ k’

v = dP/dt = k’ [X ‡]

X ‡ : complexe activé en équilibre rapide avec A et B (X = A, B , E)

K ‡ = [X ‡]/AB

- RT ln [X ‡] = G‡

v = k’ [A][B] exp(-G‡/RT)

Page 49: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

G‡ : différence d’énergie libre entre A, B et X ‡ Rôle de l’enzyme: diminuer G‡ , ie la hauteur de la barrière d’activation

G

A+B (+Enz)

P+Q (+Enz)

X ‡

G‡

G

A + B X ‡ P + Q

v = k’ [A][B] exp(-G‡/RT)

Energie d’activation

Page 50: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

On compare G‡ pour différents mutants

Interprétation de l’Energie d’activation

G‡ représente la variation d’énergie libre standard associée à la formation

du complexe activé, c’est à dire à l’état de transition.

G‡ peut être estimée à partir des paramètres cinétiques

G‡ = G‡ (mt) – G‡ (wt)

G‡ = -RTln (kcat/KM)

Page 51: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

mt wt S

Phe-34 Tyr-34 Tyr 0.52

Gly-35 Cys-35 ATP 1.14

Ala-51 Cys-51 ATP 0.47

Gly-48 Asn-48 ATP 0.77

Gly-48 His-48 ATP 0.96

Ser-35 Cys-35 ATP 1.18

Phe-169 Tyr-169 Tyr 3.72

Gy-195 Gln-195 Tyr 4.49

Gly-35 Ser-35 ATP -0.04

Ala-51 Thr-51 ATP -0.44

G‡ = G‡ (mt) – G‡ (wt)(kcal/mol)

Page 52: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Etudes de Stabilité

Les protéines existent généralement dans deux états:

Etat natif: (N) - conformation (généralement) unique- chaîne repliée- protéine active biologiquement

Etat dénaturé: (D)- chaîne dépliée- caractéristiques de pelotes statistiques- protéine inactive

N D

Page 53: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Température: Les liaisons, de Van der Waals et électrostatiques sont déstabiliséesà haute température (énergies de liaison exothermiques).

pH: Généralement ionisation des chaînes latérales enfouies à des pH extrèmes. A pH élevé His, Tyr seront chargées négativement et auront donc tendance à pointer vers le solvant et donc déstabiliser la protéine.

Constante di-électrique: affecte les interactions électrostatiques.

Les paramètres qui gouvernent la stabilité des macromolécules

Des additifs comme des sels ou des sucres (sucrose, glucose, glycerol....) peuvent stabiliser des protéines (conservation et conditionnement des protéines)

T

Page 54: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Pour comprendre comment les structures tertiaires des macromolécules (protéines isolées ou complexes) il faut être capable de mesurer l’énergie libre de dénaturation (GH20 ou Ke).

A 25 ou 37 °C, les macromolécules sont en exclusivement sous forme Native et les constantes d’équilibre sont souvent difficilement mesurables.

En déplaçant l’équilibre dans le sens de la dénaturation (pH extrêmes, agents chaotropes, températures) on accès expérimentalement à la constante d’équilibre ou une énergie libre dans d’autres conditions expérimentales. Puis, à l’aide d’un cycle thermodynamique, on calcule GH20 ou Ke.

Agents chaotropes: Urée, Guanidinium

Etudes de Stabilité

Page 55: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Systèmes modèles: petites protéines ou complexes de structures

connues et pour lesquelles le processus de dénaturation

est réversible (RNAses, Barnase, Lysozyme, Tryp/DNA....)

Il faut disposer d’une observable qui permet de suivrele processus de dénaturation en fonction par exemple de la concentration en agent chaotrope

L’observable peut être: - activité enzymatique- signal de fluorescence, CD- viscosité- déplacement chimique...

Page 56: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

fN et fD fractions de protéine Native et Dénaturéey observable permettant de suivre la réaction

On exprime fD , fN en fonction de y

fN yN + fD yD = y fD + fN = 1 d’ou fD = (y - yN) / (yD - yN)

Dans un système à deux états, la courbe de dénaturation fD = fonction ([dénaturant]) est une sigmoîde (coopérativité folding)

On en tire Keq = [D]eq/[N]eq = fD/fN et Go = -RTlnKeq = -RTln[ fD/(1 - fD)]pour chaque concentration en dénaturant.

N D

Interprétation de la courbe de dénaturation

Page 57: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

A partir des données de dénaturation, on peut calculer l’énergie libre standard de dénaturation pour chaque concentration en agent chaotrope.

N(H20) D(H2O)

N(Urée) D(Urée)

GH20

G

Gt°(N) Gt°(D)

G = - Gt°(N) + GH20 + Gt°(D) = GH20 + Gt°(D) - Gt°(N)= GH20 + Gt° = a –m* [Urée]

En extrapolant à une concentration en urée nulle (et Gt° = 0)

observation expérimentale

GH20 = a

Page 58: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.
Page 59: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Exemple de la protéine Arc: étude des déterminants de stabilité dans le cas d’une protéine dimérique

Mutations ponctuelles

Dichroisme circulaire

N2 2U

Page 60: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Etude de l’enthalpie de dénaturation

rH°(T) = rH°(To)+ cp(T-To)

cp lié à la variation de la surface accessible au solvant.

Page 61: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Binding kinetics

• Since biological systems are not at equilibrium the rate of binding and dissociation is critical

• For a simple 1:1 interaction (A + B AB)

• Rate of dissociation – dAB/dt = k diss[AB] – where kdiss is the dissociation rate constant (koff)

• Rate of association – dAB/dt = kass[A][B]– where kass is the association rate constant (kon)

• At equilibrium: dAB/dt = kass[A][B] - kdiss[AB] = 0 • kdiss[AB] = kass[A][B]

– kdiss/kass = [A][B]/[AB] – Since KD = [A][B]/[AB] it follows that

– kdiss/kass = KD

Page 62: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Dissociation

• Any reaction of the form dAB/dt ∞ [AB] will be exponential so– i.e. [AB]t = [AB]oe-kdisst

– kdiss determined directly by curve fitting• The half life (t1/2) can be calculate as follows• Since at the t = t1/2

[AB]t/[AB]o = 0.5 = e-kdisst1/2

• It follows that -kdisst1/2= ln 0.5 = 0.693

• Thust1/2 = 0.693/koff

Dissociation ofA from BSymbols are data, lines are fitted curves

t1/2

Page 63: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Association

• In most experimental system it is impossible to follow association alone in the absence of simultaneous dissociation

• For the simple interaction A + B AB

• d[AB]/dt = kass[A][B] – kdiss[AB]

• It can be shown that [AB]t = [AB]final (1- e-kobst)

where kobs = kass[A]+koff

• Thus one needs to know the koff and the [A] to calculate the kon

Page 64: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Summary of affinity and kinetic constants biological interactions

Interaction kon (M-1s-1) koff (s-1) KD (M)

Cell-cell recognition molecules

105 1-10 10-5-10-4

Antibody/antigen 105 10-3 10-8

Cytokine/receptor 105 10-4 10-9

Enzyme/inhibitor (eg barnase/barnstar)

108 10-3 10-11

Page 65: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Factors affecting kinetics

• The association rate constant does not vary that much– Association requires two proteins to collide in the correct

orientation and in the correct conformation– This will be similar for most proteins– The basic rate is about 105 M-1.s-1

– The rate can be accelerated by long range electrostatic forces

• Increased rate of collision• Steer binding sites into correct orientation• E.g. barnase/barnstar interaction

• The dissociation rate constant varies considerable and is responsible for most of the change in affinity constants– It is determined by the number and strength of bonds in

the contact interface– Depends on size of interface and the degree of surface-

shape and electrostatic complementarity

Page 66: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

• The BIAcore uses an optical method (surface plasmon resonance) to measure changes in refractive index.

• Macromolecules binding to a sensor surface leads to an increase in refractive index near the surface.

Surface plasmon resonance

Page 67: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

A BIAcore sensorgram

Page 68: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

Sensorchips

Page 69: Identification, production and purification - TAP tag/MS foot-printing - Single gene expression and in vitro assembly: - Co-expression techniques in E.

FIN