IAEA International Atomic Energy Agency Overview International Project on Innovative Nuclear...

18
IAEA International Atomic Energy Agency Overview International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) Presented by Jon R. Phillips On the Behalf of the INPRO Group Nuc Info’Day 2013 Bucharest, Romania, 15-16 May 2013

Transcript of IAEA International Atomic Energy Agency Overview International Project on Innovative Nuclear...

IAEAInternational Atomic Energy Agency

Overview

International Project on

Innovative Nuclear Reactors and Fuel Cycles (INPRO)

Presented by Jon R. PhillipsOn the Behalf of the INPRO Group

Nuc Info’Day 2013Bucharest, Romania, 15-16 May 2013

IAEA 2

Establishment of INPRO

Origins• Initiated in 2000• Authorized by IAEA General Conference resolutions

Basic Characteristics • Membership based • Funded mainly from extra-budgetary contributions • 15 to 20 staff (mainly CFEs from Member States) located at IAEA

Headquarters• International Project inside IAEA• Cross-cutting with all relevant technical Departments involved

IAEA 3

INPRO Objectives

• INPRO cooperates with Member States to ensure that sustainable nuclear energy is available to help meet the energy needs of the 21st century.

• To bring together technology holders and users so that they can jointly consider international and national actions required for achieving desired innovations in nuclear reactors and fuel cycles

• INPRO is part of the integrated services of the IAEA provided to Member States considering initial development or expansion of nuclear energy programmes.

IAEA 4

INPRO Membership 2001-2013

IAEA

INPRO Projects in 2012–2013: subject of this presentation

Project 1: National nuclear energy strategies

To assist Member States in building national nuclear energy strategies and in long-range nuclear energy planning through the INPRO methodology and other tools.

Project 2: Global nuclear energy scenarios

To develop global and regional nuclear energy scenarios, on the basis of a scientific-technical analysis, that lead to a global vision on sustainable nuclear energy development in the 21st century.

5

IAEA

INPRO Projects in 2012–2013: projects supporting technical communications of particular interest

Project 3: Innovations

Investigate innovations in selected nuclear energy technologies, institutional arrangements and related R&D and support Member States in pursuing these innovations and exchanging progress toward their realization.

Project 4: Policy and Dialogue

Provide Member States’ guidance in the use of nuclear energy policy and planning tools and coordination with other international organizations and initiatives, bringing together technology holders and users to share information on long-range nuclear energy strategies, global scenarios and technical and institutional innovations.

17-19 November 2010INPRO Steering Committee #16 6

IAEA

INPRO Methodology for nuclear energy system assessment (NESA) - a comprehensive, internationally agreed criteria-based sustainability assessment in areas of economics, safety, waste management, proliferation resistance, physical protection, environment and infrastructure

7

INPRO Methodology

IAEA8

Architecture of INPRO requirements (INPRO Methodology)

Basic Principles : goals for development of sustainable NES (14).

User Requirements: what should be done by designer, operator, industry and/or State to meet goal defined in Basic Principle (52).

Criteria-Acceptance Limits: Assessor’s tools to check whether a User Requirement has been met (125).

Basic Principles

User Requirements

Criteria

IAEA

INPRO Methodology – Example of Safety Assessment of Reactor: BP1 (of 4), UR3 (of 7), showing all 6 assessment criteria (IN and AL)

9

Basic Principle User Requirement Criteria Indicator Acceptance Limit

BP1. Defence-in-depth: Installations of new reactor(s) in NES shall incorporate enhanced defence-in-depth as part of their fundamental safety approach and ensure that the levels of protection in defence-in-depth shall be more independent from each other than in existing reactors.

UR3. Design basis accidents: The frequency of occurrence of accidents should be reduced, consistent with the overall safety objectives. If an accident occurs, engineered safety features should be able to restore an installation of new reactor(s) in the NES to a controlled state, and subsequently (where relevant) to a safe shutdown state, and ensure the confinement of radioactive material. Reliance on human intervention should be minimal, and should only be required after some grace period.

CR1. DBA Calculated frequency of occurrence of design basis accidents.

Reduced frequency of accidents that can cause plant damage relative to existing reactors.

CR2. Grace period Grace period until human intervention is necessary.

Reactor has a grace period of at least 8 hours in case of DBA.

CR3. Safety features Reliability of engineered safety features.

Equal or superior to existing designs.

CR4. Barriers Number of confinement barriers maintained.

At least one in the event of a DBA.

CR5. Controlled state Capability of the engineered safety features to restore the reactor to a controlled state (without operator actions).

Sufficient to reach a controlled state.

CR6. Sub-criticality Sub-criticality margins. Sufficient to cover uncertainties and to allow adequate grace period.

IAEA 10

Experience with NESA

• 6 national assessments• Argentina, Brazil, India, Republic

of Korea as technology developers.

• Armenia, and Ukraine as technology users.

• Results documented in IAEA report TECDOC-1636

IAEA 11

Experience with NESA

• 1 multinational assessment (“Joint Study”):• Canada, China, France, India,

Japan, Republic of Korea, Russian Federation, and Ukraine.

• Development of NES of sodium cooled Fast Reactor with Closed NFC.

• Results documented in IAEA report TECDOC-1639 (Rev.1)

IAEA 12

Current NESAs

Belarus recently completed!

Ongoing • Ukraine: part 2• Indonesia• Romania

Planned • Kazakhstan• Others…

IAEA

Global Nuclear Energy Scenarios

• Project 2 helps participating countries define comprehensive national energy strategies by providing a framework for the analysis and assessment of:

• transition from the current fleet of nuclear reactors and fuel cycles to a sustainable nuclear energy system

• how a national nuclear energy system could contribute to, and benefit from, sustainability of regional and global nuclear energy systems

• the role that collaboration with other countries may play in transition

13

IAEA

Global Nuclear Energy Scenarios: Example Projection

14

IAEA 15

Completed Activities

Global Scenarios and Regional Trendsof Nuclear Energy Development in the 21st Century: Studies of Nuclear Capacity Growth and Material Flow

13 INPRO Members: Participants & observers:

EC, China, India, Russia, Italy, Czech Republic, Slovakia, France, Ukraine, Japan, Canada and USA

www-pub.iaea.org/MTCD/publications/PDF/Pub1476_web.pdf

IAEA

Completed Activities

• Collaborative project ThFC (2009-2010)

• Nuclear Energy Series report No. NF-T-2.4 published in 2012

considered the potential role of thorium to supplement the uranium–plutonium fuel cycle in scenarios with a significant increase in the use of nuclear energy in the world

16

http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1540_web.pdf

IAEA

Global Nuclear Energy Scenarios: Current Activities

Objective:Develop global and regional nuclear energy scenarios, on the basis of a dynamic NES modelling and analysis, leading to a global vision of sustainable nuclear energy development in the 21st century

Recently completed collaborative project: Collaborative project GAINS (Global Architectures of Innovative Nuclear Energy Systems with Thermal and Fast Reactors and Closed Nuclear Fuel Cycle) (2008-2011) – Final Report IAEA Nuclear Energy Series NP-T-1.14 approved for publication (in print); Paper published in 2009

Ongoing collaborative project: Collaborative Project SYNERGIES (Synergistic Nuclear Energy Regional Group Interactions Evaluated for Sustainability) (2011–2014)

Planned collaborative project: ROADMAPS for a transition to globally sustainable nuclear energy systems (2014–2015)

17

IAEAInternational Atomic Energy Agency

THANK YOU!

Please, go for more detail to: http://www.iaea.org/INPRO/

Jon R. [email protected]