Hybrid switching converter for and SoCs

23
Hybrid switching converter architectures for powering processors and SoCs Yogesh Ramadass Kilby Labs Texas Instruments, Santa Clara 1

Transcript of Hybrid switching converter for and SoCs

Page 1: Hybrid switching converter for and SoCs

TI Information

Hybrid switching converter architectures for powering processors and SoCs

Yogesh RamadassKilby LabsTexas Instruments, Santa Clara

1

Page 2: Hybrid switching converter for and SoCs

TI Information

Mobile applications

2

• Higher charging currents

• Processors with more power

• Thin profile, Heavily space constrained

M. Halpern, HPCA, 2016

~8A

~4A

Dongbin Hu, CPES, 2016

Page 3: Hybrid switching converter for and SoCs

TI Information

Automotive applications

3

Source: PwC analysis• Electronics heavy

• Higher current demands with low EMI

• 3V - 42V input support

Page 4: Hybrid switching converter for and SoCs

TI Information

Increasing switching frequency

4

Inductors are usually the largest component.

1) Smaller size

2) Faster response 3) Lower BOM cost

Converter volume: 1,270 mm3 Converter volume: 157 mm3

Inductor volume: 232 mm3 Inductor volume: 19.2 mm3

High frequency operation 15 times smaller inductors!

Page 5: Hybrid switching converter for and SoCs

TI Information

High frequency (HF) buck converter limitations

5

• High side switch (Q1) on‐time is very short at HF– 5 MHz  200ns period– 10‐to‐1 voltage ratio 20ns high side on‐time

Switch timing diagram

HF converters on the market today have low conversion ratios (<5-to-1) and low current (<1A)

Page 6: Hybrid switching converter for and SoCs

TI Information

Buck converter loss breakdown

6

Conduction

QRRSwitching

IV-Overlap

Page 7: Hybrid switching converter for and SoCs

TI Information 7

BUCK HYBRID RESONANT

Lo

Co

S1

S2Vin

+

Vo

-

Ro

iLo

+

vsw

-

Topology Options

Page 8: Hybrid switching converter for and SoCs

TI Information

Three‐Level Buck Converter (D < 0.50)

Slide 8

VIN

CFLYCO

VOUTVFLY

Q1

Q2

Q3

Q4

iL

VIN

VSW

CFLYCO

VOUTVFLY

Q1

Q2

Q3

Q4

iL

VIN

VSW

CFLYCO

VOUTVFLY

Q1

Q2

Q3

Q4

iL

VSW

VIN

VSW

CFLYCO

VOUTVFLY

Q1

Q2

Q3

Q4

iL

VSW

VIN − VFLY ≈ VIN/2 VFLY ≈ VIN/2

iL

TSW

t

t

Page 9: Hybrid switching converter for and SoCs

TI Information

VIN

CFLYCO

VOUTVFLY

Q1

Q2

Q3

Q4

iL

VIN

VSW

CFLYCO

VOUTVFLY

Q1

Q2

Q3

Q4

iL

VIN

VSW

CFLYCO

VOUTVFLY

Q1

Q2

Q3

Q4

iL

VSW

VIN

VSW

CFLYCO

VOUTVFLY

Q1

Q2

Q3

Q4

iL

VSWVIN − VFLY ≈ VIN/2 VFLY ≈ VIN/2

iL

TSW

t

t

VIN VIN

Three‐Level Buck Converter (D > 0.50)

Slide 9

Page 10: Hybrid switching converter for and SoCs

TI Information

Resonant Switched Capacitor Converter

Slide 10

• Extension of 3-level converter with very low inductance

• Constant inductor current traded off for small form factor

K. Kesarwani, APEC 2015

Page 11: Hybrid switching converter for and SoCs

TI Information

3‐level converter advantages

11

• Q1, Q3 gate‐drives interleaved and 180⁰ out of phase. 2X switching frequency

• Peak inductor ripple current is ¼ of 2L converter

Page 12: Hybrid switching converter for and SoCs

TI Information

Power density improvements

12

• >2.5X area density and >5X volume density benefits• Reduction in height and ability to handle larger currents with smaller

inductors

Figure removed for public release

Page 13: Hybrid switching converter for and SoCs

TI Information

Switch Rsp and FoM

• Lower voltage switches have inherent Rsp and FoMbenefits

• Ability to use lower voltage rated FETs crucial in nano‐meter scale CMOS processes

Page 14: Hybrid switching converter for and SoCs

TI Information

Device Voltage Ratings

VIN

0

Page 15: Hybrid switching converter for and SoCs

TI Information

3‐Level Loss Breakdown

15

Conduction

QRR

IV-Overlap

Switching

Passive

Savings

Page 16: Hybrid switching converter for and SoCs

TI Information

3‐Level with Lower Voltage Top Switch

16

Conduction

QRR

IV-Overlap

Switching

Passive

Savings

Page 17: Hybrid switching converter for and SoCs

TI Information

SW

I_HS

VGS_HS

• Loop parasitics cause ringing forcing the slowdown of drives and increasing overlap losses

Power Loop Inductance ‐ Buck

Page 18: Hybrid switching converter for and SoCs

TI Information

SW

I_HS

VGS_HS

• Increased number of switches and external passives – increase in loop inductance

• Effective on‐chip passives needed to take peak currents

Power Loop Inductance – 3‐Level 

Page 19: Hybrid switching converter for and SoCs

TI Information

SW

I_HS

VGS_HS

Board routing ‐ Buck

LP8758

Page 20: Hybrid switching converter for and SoCs

TI Information

SW

I_HS

VGS_HS

Board routing – 3‐Level

FB1N

VT1 VIN12

INTB

SW2 PGND1

IM1 VB1

PGND1 VB1

AGND FB1P

SW2

SW1

SW1

GPIO1

SDA

VT1M2

M2

M62 M1

VIN12

CflyCim

PGND1

M52

• Increased number of switches and external passives –complicated floor planning and board routing

• Effective on‐chip passives needed to take peak currents

Page 21: Hybrid switching converter for and SoCs

TI Information 21

Gate drive and boot capacitor management

Page 22: Hybrid switching converter for and SoCs

TI Information 22

Gate drive and boot capacitor management

• Complicated boot‐capacitor management• Increased level shifting complexity

Figure removed for public release

Page 23: Hybrid switching converter for and SoCs

TI Information

Conclusions

• Power density and efficiency becoming ever more crucial in automotive and consumer systems

• Hybrid and Resonant topologies provide distinct advantages in reducing magnetics size and improving efficiency

• Increased device/passive/pin count and control complexity

• Provides opportunities to circuit and system designers to come up with innovative circuit architectures and control techniques to mitigate problems