Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP)...

51
Hybrid Random-Structured Coding Zixiang Xiong Texas A&M University December 28, 2013 Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 1 / 42

Transcript of Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP)...

Page 1: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Hybrid Random-Structured Coding

Zixiang Xiong

Texas A&M University

December 28, 2013

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 1 / 42

Page 2: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Outline

1 Random vs structured codes: Point-to-point systems

2 Random vs. structured coding: Multiterminal systemsSlepian-Wolf codingKorner & Marton’s binary two-help-one problem

3 The Gaussian two-help-one problemBerger-Tung (BT) random codingKrithivasan-Pradhan (KP) structured codingHybrid random-structured coding

Partial sum-rate tightnessGap to optimal sum-rate

4 Conclusions

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 2 / 42

Page 3: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Outline

1 Random vs structured codes: Point-to-point systems

2 Random vs. structured coding: Multiterminal systemsSlepian-Wolf codingKorner & Marton’s binary two-help-one problem

3 The Gaussian two-help-one problemBerger-Tung (BT) random codingKrithivasan-Pradhan (KP) structured codingHybrid random-structured coding

4 Conclusions

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 3 / 42

Page 4: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Random codes for point-to-point systems

What are they?

Codes with randomness

Invented by Shannon in 1948

Key theoretical tool

In proving Shannon’s classic source andchannel coding theorems

Recent invention/rediscovery of codes based onrandom graphs

Turbo/LDPC codes

Fulfilled Shannon’s prophecy (after 50 years)

What do we learn from Shannon?

Random codes are optimal for point-to-pointsystems

Random graphs

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 4 / 42

Page 5: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Structured codes for point-to-point systems

What are they?

Codes with structure

Linear/lattice/trellis codes

Widely used in communication systems

For their low complexityPotentially limit-approaching (as promisedby info theory)

Achievable capacity12 log(SNR)→ 1

2 log(1 + SNR) forAWGN channelsOptimal for at least some point-to-pointsystems as wellStructure “comes for free”

Nested lattice codes

Can structured codes exceed the info-theoretic limits?

No, at least for memoryless point-to-point systems

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 5 / 42

Page 6: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Outline

1 Random vs structured codes: Point-to-point systems

2 Random vs. structured coding: Multiterminal systemsSlepian-Wolf codingKorner & Marton’s binary two-help-one problem

3 The Gaussian two-help-one problemBerger-Tung (BT) random codingKrithivasan-Pradhan (KP) structured codingHybrid random-structured coding

4 Conclusions

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 6 / 42

Page 7: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Random codes for multiterminal systems

Slepian-Wolf coding’73X,Y: two correlated sources with finite alphabet

Separate encoding and joint decoding

Near-lossless decoding, i.e., limn→∞ Pe((Xn,Yn) ≠ (Xn, Yn)) = 0

Encoder

Encoder

Joint Decoder

Y

X

WY

WX

Y

X^

^n

n n

n

Rate R1

Rate R2

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 7 / 42

Page 8: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Random codes for multiterminal systems

Slepian-Wolf theoremSlepian-Wolf rate region (proved by using random coding/bining)

R1 ≥ H(X∣Y)R2 ≥ H(Y ∣X)

R1 + R2 ≥ H(X,Y)

R1

H(Y|X)

H(X)

H(Y)

H(X|Y)

R2

H(X,Y)

H(X,Y)

achievablerate region for

SW coding

achievablerate region for

separate entropy coding

No rate loss compared to joint encoding of X and Y

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 8 / 42

Page 9: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Random codes for multiterminal systems

Slepian-Wolf coding exampleAssumptions:

X,Y ∈ {0,1}3 → binary triplets

H(X) = H(Y) = 3 bits → equiprobable tripletsCorrelation between X and Y

x and y differ at most in one positionHamming distance dH(x,y) ≤ 1H(X∣Y) = 2 bits

Question:If y is perfectly known at the decoder but not at the encoder, is it possible

to send 2 bits instead of 3 for x andreconstruct x without loss?

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 9 / 42

Page 10: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Random codes for multiterminal systems

Slepian-Wolf coding exampleSolution:

Form 4 cosets and send 2-bit index of the coset x belongs to:coset Z00: {000,111} ← codewords of rate- 1

3 repetition codecoset Z01: {001,110}coset Z10: {010,101}coset Z11: {011,100}

In each set: 2 members at dH = 3Joint decoder: in the set indexed by Z:

Using y, pick x s.t. dH(x,y) ≤ 1This guarantees correct/lossless decodingExample: y=[000], index 00 from encoder, x =[000]

index 01 from encoder, x =[001]index 10 from encoder, x =[010]index 11 from encoder, x =[100]

Separate encoding as efficient as joint encoding!

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 10 / 42

Page 11: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Random codes for multiterminal systems

Equivalent way of viewing last example from a syndrome concept

Form parity-check matrix of rate- 13 repetition code

H = [ 1 1 01 0 1

]

Syndrome=coset/bin indexCoset/bin 0: {000,111} has syndrome Z = 00Coset/bin 1: {001,110} has syndrome Z = 01Coset/bin 2: {010,101} has syndrome Z = 10Coset/bin 3: {011,100} has syndrome Z = 11

All 4 cosets preserve the distance properties of the repetition codeEncoding corresponds to matrix multiplication Hx

Compression 3:2

Separate encoding as efficient as joint encoding!

1. Random coding optimal for this symmetric Slepian-Wolf coding example

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 11 / 42

Page 12: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Outline

1 Random vs structured codes: Point-to-point systems

2 Random vs. structured coding: Multiterminal systemsSlepian-Wolf codingKorner & Marton’s binary two-help-one problem

3 The Gaussian two-help-one problemBerger-Tung (BT) random codingKrithivasan-Pradhan (KP) structured codingHybrid random-structured coding

4 Conclusions

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 12 / 42

Page 13: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Structured codes for multiterminal systems

The binary two-help-one problemHow to encode the mod-2 sum of binary sources? Introduced by Korner &Marton in 1979

Encoder 1

Encoder 2

Encoder 3

Joint

Decoder

Y n1Y n1

Y n2Y n2

Zn = Y n1 © Y n

2Zn = Y n1 © Y n

2

W1W1

W2W2

00

ZnZn

Y1 and Y2 are doubly symmetric binary sourcesOnly the first two encoders are allowed to transmit, the decoderreconstructs Z = Y1 ⊕ Y2 losslessly

This is combined compression and inference (for big data)Goes beyond Slepian-Wolf coding

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 13 / 42

Page 14: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Structured codes for multiterminal systems

The rate region of Korner-Marton codingSlepian-Wolf coding before forming Z = Y1 ⊕ Y2 certainly works

Structured coding strictly improves random (Slepian-Wolf) coding!

R1

R2

H(Z)

H(Z)

Structured coding

R1

R2

H(Z)

H(Z)

H(Y1)

H(Y2)

Random coding

Using the same linear code, encoder i transmits Hyi

So both encoders use the same rate H(Z)The decoder forms Hy1 ⊕Hy2 = H(y1⊕y2) = Hz before recovering z

by picking the element with dH ≤ 1 in the coset indexed by z

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 14 / 42

Page 15: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Structured codes for multiterminal systems

Korner-Marton coding exampleRecall 4 cosets at each encoder (from the Slepian-Wolf coding example)

coset Z00: {000,111} ; coset Z01: {001,110}coset Z10: {010,101} ; coset Z11: {011,100}

Suppose y1=[101], encoder 1 transmits index 10y2=[101], encoder 2 transmits 10, decoder forms 00 before reconstructing z as [000]

y2=[001], encoder 2 transmits 01, decoder forms 11 before reconstructing z as [100]

y2=[111], encoder 2 transmits 00, decoder forms 10 before reconstructing z as [010]

y2=[100], encoder 2 transmits 11, decoder forms 01 before reconstructing z as [001]

First instance of linear coding beating the best-known random coding

2. Linear coding optimal for this symmetric Korner-Marton coding example

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 15 / 42

Page 16: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Multiterminal systems

Structured vs. random codesIt was long held that random codes are optimal for many comm. systems

Korner and Marton’s work showed advantage of structured code for some multiterminalsystems

Partially responsible for their recent back-to-back Shannon awards

Structured coding for multiterminal systems currently a very active area of research

RepriseLinear coding optimal for symmetric Korner-Marton coding

Symmetry means H(Y1∣Y2) = H(Y2∣Y1) or P(Y1 = 0∣Y2 = 1) = P(Y1 = 1∣Y2 = 0)

What about the general asymmetric case?Y1 and Y2 are binary sources with joint PMF (p01 ≠ p10 in general)

Y1/Y2 0 10 p00 p01

1 p10 p11

Q: Which coding scheme is better? A: Neither

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 16 / 42

Page 17: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

How to encode the mod-2 sum of binary sources?

Ahlswede-Han codingIntroduced by Ahlswede & Han in 1983

Random coding: First quantize Yn1 and Yn

2 as Un1 and Un

2

Structured coding: Then apply Korner-Marton coding on Yn1 and Yn

2 withUn

1 and Un2 as decoder side info

Achievable rate pairs

R1 ≥ I(Y1; U1∣U2) +H(Z∣U1,U2)R2 ≥ I(Y2; U2∣U1) +H(Z∣U1,U2)

R1 + R2 ≥ I(Y1,Y2; U1,U2) + 2H(Z∣U1,U2)

Performs no worse than Slepian-Wolf and Korner-Marton coding forgeneral correlation

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 17 / 42

Page 18: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

How to encode the mod-2 sum of binary sources?

Ahlswede-Han coding exampleExpanded rate region when

Y1/Y2 0 10 0.00392 0.976081 0.01992 0.00008

Due to asymmetry, time sharing between Slepian-Wolf and Korner-Marton always exists

Ahlswede-Han coding achieves points (e.g., P) outside the time-sharing regionOptimal coding scheme not known

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 18 / 42

Page 19: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Outline

1 Random vs structured codes: Point-to-point systems

2 Random vs. structured coding: Multiterminal systemsSlepian-Wolf codingKorner & Marton’s binary two-help-one problem

3 The Gaussian two-help-one problemBerger-Tung (BT) random codingKrithivasan-Pradhan (KP) structured codingHybrid random-structured coding

4 Conclusions

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 19 / 42

Page 20: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

DefinitionSeparate compression and joint decompression of a linear combination Z = Y1 − cY2 ofjointly Gaussian sources Y1 and Y2 subject to an MSE distortion constraint on Z

Problem characterized by the linear coefficient c, the source correlation coefficient ρ, andthe MSE distortion constraint D on Z

Encoder 1

Encoder 2

Encoder 3

Joint

Decoder

Y n1Y n1

Y n2Y n2

Zn = Y n1 ¡ cY n

2Zn = Y n1 ¡ cY n

2

W1W1

W2W2

00

ZnZn

MotivationArises in many practical video surveillance applications, e.g.,reconstructing the motion difference between two video sequences

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 20 / 42

Page 21: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Outline

1 Random vs structured codes: Point-to-point systems

2 Random vs. structured coding: Multiterminal systemsSlepian-Wolf codingKorner & Marton’s binary two-help-one problem

3 The Gaussian two-help-one problemBerger-Tung (BT) random codingKrithivasan-Pradhan (KP) structured codingHybrid random-structured coding

4 Conclusions

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 21 / 42

Page 22: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

Berger-Tung’s generic random coding scheme 1977Independent quantization of

Y1 to U1 s.t. U1 = Y1 +Q1 with Q1 ∼ N (0,q1)Y2 to U2 s.t. U2 = Y2 +Q2 with Q2 ∼ N (0,q2)

Followed by Slepian-Wolf compression (or binning) of U1 and U2 leads to rate region

RBT

(q1, q2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(R1,R2) ∶

R1 ≥ H(U1∣U2)

R2 ≥ H(U2∣U2)

R1 + R2 ≥ H(U1,U2)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

Berger-Tung (BT) achievable rate region

RBT(D) = conv( ⋃(U1,U2)∈U(Y1,Y2)

{(R1,R2) ∶ R1 ≥ I(Y1;U1∣U2), R2 ≥ I(Y2;U2∣U1),

R1 + R2 ≥ I(Y1,Y2;U1,U2)})

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 22 / 42

Page 23: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

When c ⋅ ρ ≤ 0, e.g., ρ > 0, c = −1

Referred to as the µ-sum problem (e.g., with Z = Y1 + Y2)

Considered by Wagner et al. in 2005

Berger-Tung (or random QB) coding is optimal

0 0.5 1 1.5 2 2.5 3 3.5 40

1

2

3

4

5

6

distortionD

rate(b/s)

Sum-rate-distortion functionR (D )

Sum-rate of the Berger-Tung schemeRBT (D )

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 23 / 42

Page 24: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Outline

1 Random vs structured codes: Point-to-point systems

2 Random vs. structured coding: Multiterminal systemsSlepian-Wolf codingKorner & Marton’s binary two-help-one problem

3 The Gaussian two-help-one problemBerger-Tung (BT) random codingKrithivasan-Pradhan (KP) structured codingHybrid random-structured coding

4 Conclusions

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 24 / 42

Page 25: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1Referred to as the µ-difference problem (e.g., with Z = Y1 − Y2)

Considered by Krithivasan-Pradhan in 2009 using structured/latticecodesTwo lattices (Λ1,Λ2) for SC; one lattice ΛC with ΛC ⊆ Λi for CC

Independent lattice quantizers (Λ1,Λ2) on Y1 and cY2Encoders send quantized versions modulo the same lattice ΛC

Transmission rates

Ri = log2σ2(ΛC)σ2(Λi)

Krithivasan-Pradhan (KP) achievable rate region

RKP(D) = {(R1,R2) ∶ 2−2R1 + 2−2R2 ≤ D1 + c2 − 2cρ

}

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 25 / 42

Page 26: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1

Referred to as the µ-difference problem (e.g., with Z = Y1 − Y2)

Considered by Krithivasan-Pradhan in 2009 using structured/lattice codes

Smaller sum-rate than the random Berger-Tung scheme for certain (ρ, c) pairs

Structured codes beat random codes!

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.240

1

2

3

4

5

6

distortionD

rate(b/s)

Sum-rate of Krithivasan & Pradhan's schemeRKP (D )

Sum-rate of the Berger-Tung schemeRBT (D )

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 26 / 42

Page 27: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1

Referred to as the µ-difference problem (e.g., with Z = Y1 − Y2)

Considered by Krithivasan-Pradhan in 2009 using structured/lattice codes

Smaller sum-rate than the random Berger-Tung scheme for certain (ρ, c) pairs

Structured codes beat random codes!

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.240

1

2

3

4

5

6

distortionD

rate(b/s)

Sum-rate of Krithivasan & Pradhan's schemeRKP (D )

Sum-rate of the Berger-Tung schemeRBT (D )

Wagner ’08

Maddah-Ali & Tse ‘10Improved by

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 26 / 42

Page 28: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Outline

1 Random vs structured codes: Point-to-point systems

2 Random vs. structured coding: Multiterminal systemsSlepian-Wolf codingKorner & Marton’s binary two-help-one problem

3 The Gaussian two-help-one problemBerger-Tung (BT) random codingKrithivasan-Pradhan (KP) structured codingHybrid random-structured coding

4 Conclusions

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 27 / 42

Page 29: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1

For the µ-difference problem, can we do better?

New hybrid random-structured coding scheme

Inspired by Ahlswede & Han’s for encoding the mod-2 sum of binary sourcesHybrid random BT coding (layer I) and structured KP coding (layer II)

Un1Un1Y n

1Y n1

V n1V n1

V n2V n2

Encoder 1

Encoder 2

mod ¤Cmod ¤C

++++

Y n2Y n2

Decoder

Un2Un2

¡¡

V nV n

Random Quantizer I

Q¤1(Tn1 )Q¤1(Tn1 )

Q¤2(Tn2 )Q¤2(Tn2 )

Random Quantizer II

mod ¤Cmod ¤C

mod ¤Cmod ¤C

R(1)1R(1)1

R(2)1R(2)1

R(2)2R(2)2

R(1)2R(1)2

Layer I

Layer IILayer I

Slepian-Wolf Encoder II

Slepian-Wolf

Decoder

Un1Un1

££

¸3¸3

Layer II

Layer II

Layer I

££

cc

ZnZn

Slepian-Wolf Encoder I

££

¸1¸1

££

¸2¸2

Un2Un2

¡¡++

++++

¡¡

++

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 28 / 42

Page 30: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1Theorem 1: Achievable rate region of hybrid random-structured coding

Rnew(D) = conv( ⋃(U1,U2)∈U(c,D)

{(R1,R2) ∶

R1 ≥ I(Y1; U1∣U2) + I(V1 − V2; Y1,V2∣U1,U2),R2 ≥ I(Y2; U2∣U1) + I(V1 − V2; V1,Y2∣U1,U2),

R1 + R2 ≥ I(Y1,Y2; U1,U2) + I(V1 − V2; Y1,V2∣U1,U2)

+ I(V1 − V2; V1,Y2∣U1,U2)})

U(c,D) ∆= {(U1,U2,V1,V2) ∶ Ui = Yi + Pi,V1 = Y1 +Q1,V2 = cY2 +Q2,

Pi ∼ N (0,pi),Qi ∼ N (0,qi), i = 1,2, indep. of each other and

(Y1,Y2), such that E[(Z − E(Z∣U1,U2,V1 − V2))2] ≤ D}

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 29 / 42

Page 31: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1

Comparison betweenRnew(D),RKP(D) andRBT(D)Hybrid coding always subsumes structured KP coding

Rnew(D) ⊇RKP(D)

It becomes a QB random coding with additional rate of 12 log2

and12 log2

(with α + β = 1) at the two encoders

Lemma 1:

Rnew(D) ⊇RKP(D) ∪ [RBT(D) ⊎ {(12

log21α,

12

log21β) ∶ α + β = 1}]

New rate regionRnew(D) strictly improves the time-sharing regionbetweenRKP(D) andRBT(D)

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 30 / 42

Page 32: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1

Comparison betweenRnew(D),RKP(D) andRBT(D)

3.5 4 4.5 5 5.5 63

3.5

4

4.5

5

5.5

6

6.5

7

R1 (b/s)

R2(b/s)

KP rate region RKP (D)QB rate region RQB (D)

Time-sharing region between RQB(D) and RKP (D)Rate region of new hybrid scheme Rnew(D)Time-sharing region between RQB(D) and Rnew(D)

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 30 / 42

Page 33: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1We look deeper at the minimum achievable sum-rate

Rnew(D) ∆= min{R1 + R2 ∶ (R1,R2) ∈Rnew(D)}

Theorem 2: Achievable sum-rate of hybrid random-structured coding

Rnew(D)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

12 log2

16c2(1−ρ2)(1−cρ)2D2 ,

if c ≤ 1ρ+√

1−ρ2& D ≤ 2c2(1 − ρ2)

min(log22σ2

ZD , 1

2 log216c((1−ρ2)c−ρD)

D2 ) ,

if c > 1ρ+√

1−ρ2& D ≤ 2c2(1−ρ2)

1+cρ

min(log+22σ2

ZD , 1

2 log+24(1−cρ)2

D−c2(1−ρ2)) ,otherwise

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 31 / 42

Page 34: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1

Comparison between Rnew(D), RKP(D) and RBT(D)

Corollary to Lemma 1:

Rnew(D) ≤ min (RKP(D),RBT(D) + 1)

When can Rnew(D) strictly improve both RKP(D) and RBT(D)?

Lemma 2:

Rnew(D) < min (RKP(D),RBT(D))

if either 12ρ < c < min (

32ρ ,

1ρ+√

1−ρ2) & D < c(1−ρ2

)(3−2cρ)(2cρ−1)ρ

or√

32ρ < c < 1

ρ+√

1−ρ2& D < 4(2 −

√3)c2(1 − ρ2)

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 32 / 42

Page 35: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1

Comparison between Rnew(D), RKP(D) and RBT(D)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 10.4

0.5

0.6

0.7

0.8

0.9

1

ρ

c

(ρ, c) region where Rnew(D) <min{RQB(D),RKP (D)} for sufficiently small D

Boundary of (ρ, c) region where RKP (D) < RQB(D) for sufficiently small D

Boundary of (ρ, c) region where Rnew(D) < RQB(D) for sufficiently small D

Boundary of (ρ, c) region where Rnew(D) strictly improves conv(RQB(D),RKP (D)) for small D

c = θ(ρ) and ρ <√22

c = θ(ρ) and ρ ≥√22

c = 1

ρ+√

1−ρ2and ρ ≥

√22

c = 12ρ and ρ ≥

√22

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 32 / 42

Page 36: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Outline

1 Random vs structured codes: Point-to-point systems

2 Random vs. structured coding: Multiterminal systemsSlepian-Wolf codingKorner & Marton’s binary two-help-one problem

3 The Gaussian two-help-one problemBerger-Tung (BT) random codingKrithivasan-Pradhan (KP) structured codingHybrid random-structured coding

Partial sum-rate tightnessGap to optimal sum-rate

4 Conclusions

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 33 / 42

Page 37: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

Partial sum-rate tightnessSum-rate lower bound needed −− to compared with achievable sum-rateupper bound from hybrid coding

Consider a new and more general problem of Gaussian two-terminal SC

problem with covariance matrix ΣY = [ 1 ρρ 1 ] and covariance matrix

distortion constraintD = [ k21 θk1k2

θk1k2 k22

]

Fact: If the minimum sum-rate for the above problem is R(D), then

R(D) = minD∈Υ(ρ,c,D)

R(D),

where Υ(ρ, c,D) contains all real 2 × 2 symmetric matricesD such that0 ⪯D ⪯ ΣY and [1 − c]D[1 − c]T ≤ D

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 34 / 42

Page 38: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

Partial sum-rate tightness

Lemma 3: A new sum-rate lower bound R(D) ≥ max (R†(D),R‡

(D)), where

R†(D)

∆=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

12 log2 [

1−ρ2+2ρk1k2(1+θ)(1+θ)2k2

1k22

] , θ ≤ θ⋆

12 log2 [

(1−ρ2)

2

(1−θ)2k21k2

2(1−ρ2+2ρk1k2(1+θ))

] , θ > θ⋆

R‡(D)

∆=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

12 log2 [

1−ρ2+2ρk1k2(1+θ)(1+θ)2k2

1k22

] , θ ≤ θ⋆

12 log2 [

(1−ρ2)

2

(1−θ)2k2i (4k2

i ρ2−4ρθk1k2+k2

j )] , θ⋆ < θ ≤ θ‡

12 log2 [

(1−ρ2)

2(1−ρ2

−k2j (1−θ

2))

(1−θ2)2k21k2

2((1−ρ2)2−kj(kj−2kiρθ)(1−ρ2)−k2

1k22ρ

2(1−θ2))] , θ‡

< θ

with ki = min(k1, k2), kj = max(k1, k2), and

θ⋆∆=

12ρk1k2

(

(1 − ρ2)2 + 4ρ2k21k2

2 − (1 − ρ2))

θ‡ ∆=

12ρk1k2

(

(1 − ρ2)2 + 4ρ2k21k2

2 − 8k2i ρ

2(1 − ρ2) + (1 − ρ2))

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 35 / 42

Page 39: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

Partial sum-rate tightness

Lemma 3: A new sum-rate lower bound R(D) ≥ max (R†(D),R‡

(D)), where

R†(D)

∆=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

12 log2 [

1−ρ2+2ρk1k2(1+θ)(1+θ)2k2

1k22

] , θ ≤ θ⋆

12 log2 [

(1−ρ2)

2

(1−θ)2k21k2

2(1−ρ2+2ρk1k2(1+θ))

] , θ > θ⋆

R‡(D)

∆=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

12 log2 [

1−ρ2+2ρk1k2(1+θ)(1+θ)2k2

1k22

] , θ ≤ θ⋆

12 log2 [

(1−ρ2)

2

(1−θ)2k2i (4k2

i ρ2−4ρθk1k2+k2

j )] , θ⋆ < θ ≤ θ‡

12 log2 [

(1−ρ2)

2(1−ρ2

−k2j (1−θ

2))

(1−θ2)2k21k2

2((1−ρ2)2−kj(kj−2kiρθ)(1−ρ2)−k2

1k22ρ

2(1−θ2))] , θ‡

< θ

The 1st lower bound R†(D) proved in Xiong’13 using the estimation-theoretic approach

of Wang’10

The 2nd lower bound R‡(D) newly obtained by combining the approach of Wang’10

and the technique in Wagner’11, which exploits stochastic degradedness of the channelY1 → Y2 with respect to Y1 → Z

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 35 / 42

Page 40: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

Partial sum-rate tightnessTheorem 3: A new sum-rate lower bound

R(D) ≥ R(D)∆= minD∈Υ(ρ,c,D)

max (R†(D),R‡

(D))

Comparison among sum-rate lower and upper bounds

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10−5

0

2

4

6

8

10

12

D

Sum-rate

(b/s)

Time-sharing sum-rate between QB and hybrid coding schemes l.c.e(Rnew(D), RQB(D))

Wagner’s sum-rate lower bound RW (D)Maddah-Ali and Tse’s sum-rate lower bound RMAT (D)New sum-rate lower bound R(D)

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 36 / 42

Page 41: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

Partial sum-rate tightnessTheorem 4: First partial sum-rate tightness result

RQB(D) = R(D) = R(D)

if ρ ∈ (0, 1), 0 ≤ c ≤ 11+2ρ , D ≥

2c2(1−ρ2

)(1−2cρ)1−3cρ or 0 ≤ c ≤ 2ρ

1+2ρ2 , D ≥c(1−ρ2

)(1−2c2ρ2)

ρ(2−3cρ)

0

0.2

0.4

0.6

0.8

1

00.2

0.40.6

0.81

0

0.2

0.4

0.6

0.8

1

ρ

c

D/σ2 Z

Boundary of Dσ2Z

ratio for QB sum-rate tightness

Boundary of Dσ2Z

ratio for QB sum-rate suboptimality

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 37 / 42

Page 42: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

Partial sum-rate tightnessTheorem 4: First partial sum-rate tightness result

RQB(D) = R(D) = R(D)

if ρ ∈ (0, 1), 0 ≤ c ≤ 11+2ρ , D ≥

2c2(1−ρ2

)(1−2cρ)1−3cρ or 0 ≤ c ≤ 2ρ

1+2ρ2 , D ≥c(1−ρ2

)(1−2c2ρ2)

ρ(2−3cρ)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-c

½

-c = q (r) if r <

p2

2

if r ≥p2

22r1{

Rnew(D) < RBT(D) for small D

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 37 / 42

Page 43: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

Partial sum-rate tightnessTheorem 4: First partial sum-rate tightness result

RQB(D) = R(D) = R(D)

if ρ ∈ (0, 1), 0 ≤ c ≤ 11+2ρ , D ≥

2c2(1−ρ2

)(1−2cρ)1−3cρ or 0 ≤ c ≤ 2ρ

1+2ρ2 , D ≥c(1−ρ2

)(1−2c2ρ2)

ρ(2−3cρ)

R(D) = RBT(D) for large D

-c < 1+2r

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-c

½

-c = q (r) if r <

p2

2

if r ≥p2

22r1{ Rnew(D) < RBT(D) for small D

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 37 / 42

Page 44: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Outline

1 Random vs structured codes: Point-to-point systems

2 Random vs. structured coding: Multiterminal systemsSlepian-Wolf codingKorner & Marton’s binary two-help-one problem

3 The Gaussian two-help-one problemBerger-Tung (BT) random codingKrithivasan-Pradhan (KP) structured codingHybrid random-structured coding

Partial sum-rate tightnessGap to optimal sum-rate

4 Conclusions

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 38 / 42

Page 45: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

Gap to optimal sum-rateTheorem 5: For any (ρ, c,D) triple, it holds that

Rnew(D) − R(D) ≤ Rnew(D) − R(D) ≤ 2

10−4

10−3

10−2

10−1

100

0

2

4

6

8

10

12

14

16

D/σ2Z

sum-rate

(b/s)

Sum-rate of Krithivasan & Pradhan’s scheme RKP (D)

BT sum-rate bound RBT (D)

Sum-rate of the new scheme Rnew (D)

Lower sum-rate bound Rlb(D)

BT sum−rate is suboptimal

BT sum−rate is TIGHT

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 39 / 42

Page 46: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

Gap to optimal sum-rateTheorem 5: For any (ρ, c,D) triple, it holds that

Rnew(D) − R(D) ≤ Rnew(D) − R(D) ≤ 2

10−4

10−3

10−2

10−1

100

0

2

4

6

8

10

12

14

16

D/σ2Z

sum-rate

(b/s)

Sum-rate of Krithivasan & Pradhan’s scheme RKP (D)

BT sum-rate bound RBT (D)

Sum-rate of the new scheme Rnew (D)

Lower sum-rate bound Rlb(D)

BT sum−rate is suboptimal

Sum−rate gap

BT sum−rate is TIGHT

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 39 / 42

Page 47: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

The Gaussian two-help-one problem

Gap to optimal sum-rateLemma 4: If c = 1 or c = ρ, it holds that

Rnew(D) − R(D) ≤ Rnew(D) − R(D) ≤ 1

0 0.02 0.04 0.06 0.08 0.1 0.120

1

2

3

4

5

6

7

8

D

Sum-rate

(b/s)

Sum-rate of QB coding scheme RQB (D)

Sum-rate of Krithivasan-Pradhan coding scheme RKP (D)Sum-rate of new hybrid coding scheme Rnew(D)New sum-rate lower bound R(D)

QB sum-ratesuboptimal

QB sum-rate is tight

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 40 / 42

Page 48: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Conclusions

Intellectual merits:

Hybrid scheme conceptually brings together two different worlds

Philosophically the right approach (with better performance)

Problem addressed:Very timely and interesting

Thanks to Korner & Marton, Ahlswede & Han, and other IT gurusCombined SC and inference for big dataThe more general many-help-one problem

Results significant and intriguingFirst partial sum-rate tightness resultsMany open issues (e.g., optimality of hybrid coding)

Broader impact:Hybrid approach applicable to many other network comm. scenarios

Cooperative networks: The two-way relay channelThe interference channels

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 41 / 42

Page 49: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Conclusions

Intellectual merits:

Hybrid scheme conceptually brings together two different worlds

Philosophically the right approach (with better performance)

Problem addressed:Very timely and interesting

Thanks to Korner & Marton, Ahlswede & Han, and other IT gurusCombined SC and inference for big dataThe more general many-help-one problem

Results significant and intriguingFirst partial sum-rate tightness resultsMany open issues (e.g., optimality of hybrid coding)

Broader impact:Hybrid approach applicable to many other network comm. scenarios

Cooperative networks: The two-way relay channelThe interference channels

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 41 / 42

Page 50: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

Conclusions

Intellectual merits:

Hybrid scheme conceptually brings together two different worlds

Philosophically the right approach (with better performance)

Problem addressed:Very timely and interesting

Thanks to Korner & Marton, Ahlswede & Han, and other IT gurusCombined SC and inference for big dataThe more general many-help-one problem

Results significant and intriguingFirst partial sum-rate tightness resultsMany open issues (e.g., optimality of hybrid coding)

Broader impact:Hybrid approach applicable to many other network comm. scenarios

Cooperative networks: The two-way relay channelThe interference channels

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 41 / 42

Page 51: Hybrid Random-Structured Codingewh.ieee.org/r10/xian/com/xiong2013.pdf · Krithivasan-Pradhan (KP) structured coding Hybrid random-structured coding Partial sum-rate tightness Gap

References

1 Slepian and Wolf, “Noiseless coding of correlated information sources,” IEEETrans. Inform. Theory, Jul. 1973.

2 Korner and Marton, “How to encode the modulo-two sum of binary sources,”IEEE Trans. Inform. Theory, Mar. 1979.

3 Ahlswede and Han, “On source coding with side information via amultiple-access channel and related problems in multi-user information theory,”IEEE Trans. Inform. Theory, May 1983.

4 Krithivasan and Pradhan, “Lattices for distributed source coding: jointlyGaussian sources and reconstruction of a linear function,” IEEE Trans. Inform.Theory, Dec. 2009.

5 Wagner, “On distributed compression of linear functions,” IEEE Trans. Inform.Theory, Jan. 2011.

6 Maddah-Ali and Tse, “Interference neutralization in distributed lossy sourcecoding,” Proc. ISIT’10, Jun. 2010

7 Yang, Zhang, and Xiong, “A new sufficient condition for sum-rate tightness inquadratic Gaussian multiterminal source coding,” IEEE Trans. Inform. Theory,January 2013.

8 Yang and Xiong, “Distributed compression of linear functions: Partial sum-ratetightness and gap to optimal sum-rate,” IEEE Trans. Inform. Theory, to appear.

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 42 / 42