Human Visual System Models in Computer...

54
Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik Computer Graphics Department HDR and Visual Perception Group

Transcript of Human Visual System Models in Computer...

Page 1: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Human Visual System Models in Computer Graphics

Tunç O. Aydın MPI Informatik Computer Graphics Department

HDR and Visual Perception Group

Page 2: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Outline Reality vs. Perception

– Why even bother modeling visual perception

The Human Visual System (HVS) – How the “wetware” affects our perception

HVS models in Computer Graphics – Visual Significance of contrast

– Contrast Detection

Our contributions – Key challenges

Page 3: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

High Low

Difference Image (Color coded)

Invisible Bits & Bytes

Reference (bmp, 616K) Compressed (jpg, 48K)

Page 4: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Variations of Perception

No one-to-one correspondence between visual perception and reality !

“Perceived Visual Data” instead of luminance or arbitrary pixel values

Page 5: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

The Human Visual System (HVS) Experimental

Methods of Vision Science – Micro-electrode

– Radioactive Marker

– Vivisection

– Psychophysical Experimentation

Page 6: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

HVS effects (1): Glare

Video Courtesy of Tobias Ritschel

Disability Glare (blooming)

Page 7: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Disability Glare Model of Light

Scattering

– Point Spread Function in spatial domain

– Optical Transfer Function in Fourier Domain [Deeley et al. 1991]

Spatial Frequency [cy/deg]

Mo

du

lati

on

Page 8: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

(2): Light Adaptation

Time Adaptation Level:

10-4 cd/m2 Adaptation Level:

17 cd/m2

Page 9: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Perceptually Uniform Space Transfer function:

Maps Luminance to Just Noticeable Differences (JNDs) in Luminance. [Mantiuk et al. 2004, Aydın et al. 2008]

Res

po

nse

[JN

D]

Luminance [cd/m2]

Page 10: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

(3): Contrast Sensitivity

CSF(spatial frequency, adaptation level, temporal freq., viewing dist, …)

Co

ntr

ast

Spatial Frequency

Page 11: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

November 6, 2011

Steady-state CSFS: Returns the Sensitivity (1/Threshold contrast), given the adaptation luminance and spatial frequency [Daly 1993].

Contrast Sensitivity Function (CSF)

Page 12: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

(4): Visual Channels Cortex Transform

Page 13: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

(5): Visual Masking

Loss of sensitivity to a signal in the presence of a “similar frequency” signal “nearby”.

Page 14: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Modeling Visual Masking Example: JPEG’s

pointwise extended masking:

C’: Normalized Contrast

Page 15: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

HVS Models in Graphics/Vision

HDR LDR

Tone Mapping Compression

Rate the

Quality

Quality Assessment Panorama Stitching

Page 16: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Visual Significance Pipeline

kN

n

k

ref

k

tst RRR

/1

1

ˆ

Page 17: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Contrast Detection Pipeline

Log

Thre

sho

ld E

leva

tio

n

Log Contrast Contrast Difference

Pro

bab

ility

of

Det

ecti

on

N

n

nPP1

11ˆ

Page 18: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

CONTRIBUTIONS: VISUAL SIGNIFICANCE

Page 19: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Visually Significant Edges Key Idea: Use the

magnitude of the HVS model’s response as the measure of edge strength, instead of gradient magnitude.

Result (1): Significant improvement in application results, especially for HDR images

Result (2): Only minor improvements observed in LDR retargeting and panorama stitching.

[Aydın, Čadík, Myszkowski, Seidel. 2010 ACM TAP]

Page 20: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Calibration Procedure

CSF from the Visible Differences Predictor [Daly’93]

JPEG’s pointwise extended masking Calibration: CSF derived for

sinusoidal stimuli, not for edges. Perceptual experiment for

measuring edge thresholds

Page 21: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Calibration Function

Calibration function: R: Visual Significance for sinusoidal stimulus, R’: Visual Significance for edges.

Subjective Measurements

Polynomial Fit

Metric Predictions

Polynomial Fit

Ideal Metric Response

Calibrated Metric

Response

Page 22: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Image Retargeting

Page 23: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Visual Significance Maps

High Low

Page 24: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Display Visibility under Dynamically Changing Illumination

Key Idea: Extending steady-state HVS models with temporal adaptation model

Result: A visibility class estimator integrated into a software that simulates illumination inside an automobile.

[Aydın, Myszkowski, Seidel. 2009 EuroGraphics]

Page 25: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

L

Background Luminance

cvi for Steady-State Adaptation Contrast vs. Intensity

(cvi): function assumes perfect adaptation

Contrast vs. Intensity and adaptation (cvia) accounts for maladaptation

L + ∆L

Threshold Luminance

CLcvi :

CLLcvia a ,:

Page 26: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

cvia for Maladaptation

cvia

cvi

Page 27: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Adaptation over time

Low

High

Visu

al Significan

ce t = 0 t = 0.2s t = 0.4s t = 0.8s

Page 28: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Rendering Adaptation

[Pająk, Čadík, Aydın, Myszkowski, Seidel. 2010 Electronic Imaging]

Dark Adaptation Bright Adaptation

Page 29: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

CONTRIBUTIONS: CONTRAST DETECTION

Page 30: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Quality Assessment (IQA, VQA)

Rate the

Quality

+ Reliable - High cost

Page 31: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Key Idea: Find a transformation from Luminance to pixel values, such that: – An increment of 1 pixel

value corresponds to 1 JND Luminance in both HDR and LDR domains.

– The pixel values in LDR domain should be close to sRGB pixel values

Result: Common LDR Quality metrics (SSIM, PSNR) extended to HDR through the PU space transformation

Perceptually Uniform Space

[Aydın, Mantiuk, Seidel. 2008 Electronic Imaging]

Page 32: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Perceptually Uniform Space Derivation:

for i = 2 to N

Li = Li-1 + tvi(Li-1);

end for

Fit the absolute value and subject sensitivity to sRGB within CRT luminance range

Page 33: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Key Idea: Instead of the traditional contrast difference, use distortion measures agnostic to dynamic range difference.

Result: An IQA that can meaningfully compare an LDR test image with an HDR reference image, and vice versa. Enables objective evaluation of tone mapping operators.

Dynamic Range Independent IQA

[Aydın, Mantiuk, Myszkowski, Seidel. 2008 SIGGRAPH]

Page 34: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

5x

LDR HDR Lu

min

ance

Lum

inan

ce

LDR HDR

HDR vs. LDR

Page 35: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Problem with Visible Differences

HDR Reference LDR Test HDR-VDP

95%

75%

50%

25%

Det

ecti

on

Pro

bab

ility

Co

ntr

ast

Loss

Local Gaussian Blur

Page 36: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Distortion Measures

Reference Test Contrast Loss

Reference Test Contrast Amplification

Reference Test Contrast Reversal

Page 37: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Novel Applications Tone Mapping Inverse

Tone Mapping

Page 38: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Video Quality Assessment

DRIVQM [Aydin et al. 2010] DRIVDP [Aydin et al. 2008] (frame-by-frame)

HDR Video (tone mapped for

presentation)

Page 39: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Key Idea: Extend the Dynamic Range Independent pipeline with temporal aspects to evaluate video sequences.

Result: An objective VQM that evaluates rendering quality, temporal tone mapping and HDR compression.

Dynamic Range Independent VQA

[Aydın, Čadík, Myszkowski, Seidel. 2010 SIGGRAPH Asia]

Page 40: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

CSF: ω,ρ,La → S

– ω: temporal frequency,

– ρ: spatial frequency,

– La: adaptation level,

– S: sensitivity.

Contrast Sensitivity Function

Page 41: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

CSF: ω,ρ,La → S

– ω: temporal frequency,

– ρ: spatial frequency,

– La: adaptation level,

– S: sensitivity.

Contrast Sensitivity Function

Spatio-temporal CSFT

Page 42: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

CSF: ω,ρ,La → S

– ω: temporal frequency,

– ρ: spatial frequency,

– La: adaptation level,

– S: sensitivity.

Contrast Sensitivity Function

Steady-state CSFS

Page 43: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

( )

Contrast Sensitivity Function

=

CSF(ω,ρ,La = L) CSFT(ω,ρ,La = 100 cd/m2) f(ρ,La)

x

÷ f =

CSFS(ρ,La) CSFS(ρ,100 cd/m2)

La = 100 cd/m2

CSFT(ω,ρ)

Page 44: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Extended Cortex Transform

Sustained and Transient Temporal Channels [Winkler 2005] Spatial

Page 45: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Evaluation of Rendering Methods

No temporal filtering With temporal filtering [Herzog et al. 2010]

Predicted distortion map

Page 46: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Evaluation of Rendering Qualities

High quality Low quality Predicted distortion map

Page 47: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Evaluation of HDR Compression

Medium Compression High Compression

Page 48: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Validation Study Noise, HDR video compression, tone mapping

“2.5D videos”

HDR-HDR, HDR-LDR, LDR-LDR

Page 49: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Psychophysical Validation

(1) Show videos side-by-side on a HDR Display

(2) Subjects mark regions where they detect differences

[Čadík, Aydın, Myszkowski, Seidel. 2011 Electronic Imaging]

Page 50: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Validation Study Results Stimulus DRIVQM PDM HDRVDP DRIVDP 1 0.765 -0.0147 0.591 0.488

2 0.883 0.686 0.673 0.859

3 0.843 0.886 0.0769 0.865

4 0.815 0.0205 0.211 -0.0654

5 0.844 0.565 0.803 0.689

6 0.761 -0.462 0.709 0.299

7 0.879 0.155 0.882 0.924

8 0.733 0.109 0.339 0.393

9 0.753 0.368 0.473 0.617

Average 0.809 0.257 0.528 0.563

Page 51: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Conclusion Starting Intuition: Working on “perceived” visual data,

instead of “physical” visual data.

Page 52: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Limitations and Future Work What about the rest of

the brain? – Visual Attention

– Prior Knowledge

– Gestalt Properties

– Free will

– …

User interaction?

Depth perception

Page 53: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

Acknowledgements Advisors

– Karol Myszkowski, Hans Peter Seidel

Collaborators

– Martin Čadík, Rafał Mantiuk, Dawid Pająk, Makoto Okabe

AG4 Members

– Current and past

AG4 Staff

– Sabine Budde, Ellen Fries, Conny Liegl, Svetlana Borodina, Sonja Lienard.

Thesis Committee

– Phillip Slusallek, Jan Kautz, Thorsten Thormählen.

Family

– Süheyla and Vahit Aydın, Irem Dumlupınar

Page 54: Human Visual System Models in Computer Graphicszurich.disneyresearch.com/~taydin/_resources/slides/...Human Visual System Models in Computer Graphics Tunç O. Aydın MPI Informatik

THANK YOU.

Tunç O. Aydın <[email protected]>