HTS Development and Industrialization at SuNAM

43
HTS Development and Industrialization at SuNAM Superconductor, Nano & Advanced Material Seung Hyun Moon SuNAM Co., Ltd. 2014. 05. 21. @ 1 st Workshop on Accelerator Magnets in HTS

description

HTS Development and Industrialization at SuNAM. Seung Hyun Moon SuNAM Co., Ltd. 2014. 05. 21. @ 1 st Workshop on Accelerator Magnets in HTS. Superconductor, Nano & Advanced Materials. Contents. Brief introduction to SuNAM - PowerPoint PPT Presentation

Transcript of HTS Development and Industrialization at SuNAM

Page 1: HTS Development and Industrialization at  SuNAM

HTS Development and Industrialization

at SuNAM

Superconductor, Nano & Advanced Materials

Seung Hyun Moon

SuNAM Co., Ltd.

2014. 05. 21.

@ 1st Workshop on Accelerator Magnets in HTS

Page 2: HTS Development and Industrialization at  SuNAM

Brief introduction to SuNAM

SuNAM’s strategy to practical 2G wire (performance, price & availability) Strategy : performance, throughput & yield. RCE-DR :The highest throughput unique SuNAM’s process.

SuNAM’s now & the future direction Now : product performances & customer oriented R&D results. Future : wide strip full in-line process & ready for use 2G wires.

Contents

Industry of HTS Tapes: performance, length, yield, width. Is it possible

to think of round wire? What is now, in 2 years and in 5 years?

Page 3: HTS Development and Industrialization at  SuNAM

Company Overview

SuNAM : Superconductor, Nano & Advanced Materials ( 서남 , 瑞藍 )

Establishment 2004. 11. 17.

CEOSeungHyun Moon / SoonChul Hwang

Registered Capital $3M

No. of Employees ~ 59 (10 Ph.Ds)

H.Q. Gyeonggi-do, Korea

Current Production Capacity

~ 60 km / month (4 mm/ > 150 A)

Core Technology2G HTS manufacturing technology based on RCE-DR process

SuNAM is a technology-intensive venture company established to achieve a noble mission,

a commercialization of superconductor and cutting-edge/nano materials.

SuNAM, a specialized green energy material company, pursues the second generation HTS

wires and its applications along with associated equipment system under the motto,

“Development of highly efficient and environmentally friendly energy-use technology”

Superconduct-ing Magnet Systems

High Effi-ciency Power Supply

Cryocooler

Business Area

Page 4: HTS Development and Industrialization at  SuNAM

SuNAM’s Location

CCA 2014 in Jeju

60 km south from Seoul

SuNAM

Page 5: HTS Development and Industrialization at  SuNAM

Site area : 5,500 m2

Building area : 1,750 m2

Gross floor area : 3,050 m2

Class < 10,000 clean room

area : 1,000 m2

Production Facilities

Page 6: HTS Development and Industrialization at  SuNAM

6

Sponsored by Ministry of Trade, Industry & Energy(MOTIE),

through Inst. of Energy Tech. Evaluation and Planning(KETEP)

Critical current; IC > 1,000 A/cm @77 K, s.f.

(length > 1 km, uniformity > 96%)

In-field performance; IC > 1,000 A/cm @20 K, 10 T

Stacked conductor; IC > 1,800 A/cm @77 K, s.f.

IC measurement tech.; 0-10 T, > 1,800 A/cm, 20~77

K

DC reactor demo; 400 mH, 1,500 A

~US$13M; $9M from Gov’t, $4M from SuNAM

(June 2013 ~ May 2017, 4 years)

New Gov’t Sponsored Coated Conductor Project

Target

Budget

Page 7: HTS Development and Industrialization at  SuNAM

SuNAM’s Strategy to Practi-cal 2G Wire (Performance,

Price & Availability)

Page 8: HTS Development and Industrialization at  SuNAM

…there is a technology gap from 2G wire to practical applications…

2G Manufacturer

SuNAM, AMSC, Bruker, d-nano, Fujikura, Sumitomo, Superpower, STI, Theva, …

…there is a need for ready to use 2G conductor concepts…

Motivation

Industry needs Scalable currents and various geometries Reproducible quality and quantity within an acceptable

time Mechanical and electrical stability Low degradation, long lifetime Reliable and specific electrical insulation Simple, low ohmic contacts and joints Low losses Competitive cost ….

Industry

AMSC, Bruker, GE, Innopower, LS Cable, Nexans, nkt cables, Oswald, Siemens, Sumitomo, Southwire, …

- presented by KIT

Page 9: HTS Development and Industrialization at  SuNAM

Performance : architecture, processes(materials including HTS & packag-

ing)

High critical current(Ic) & critical current density(Jc, Je) at the specific application

conditions(temperature(T) & B-field(B, q)).

Good mechanical properties(Ys) & low ac loss.

Stabilities : mechanical, electrical, low degradation, long life-time in shelf.

Ready to use : insulation, joint, ohmic contact, piece length & geometries.

Yield : Important for availability & cost!!

Numbers of process?? 0.95 = 0.59, 0.910 = 0.35, 0.9510 = 0.60…

Process margin is more important in our experiences.

Yield definition? 80%

70%97%

VS.

How can we realize practical HTS 2G wire? (I)

Page 10: HTS Development and Industrialization at  SuNAM

Throughput : Important for availability & cost!!

RCE DR : ~ 100 nm/sec or faster (SuNAM)

PLD, MOCVD ~ 10 nm/sec, MOD ~ 1 nm/sec

RCE-DR process : easy to scale-up to wide

strip.

Wide web process !!

RCE-DR (melt growth)

How can we realize practical HTS 2G wire? (II)

Page 11: HTS Development and Industrialization at  SuNAM

Scale up Issues: IBAD & in-Situ High Rate E-Beam

Robert H. Hammond (Stanford Univ.)

New Ideas, Directions?

High rate, large area, high IC and low cost of pate-

rials processes will eventually be required – not

immediately but in 10 years.

High rate may require growth in liquid flux.

Cost Example

Page 12: HTS Development and Industrialization at  SuNAM

RCE-DR process by SuNAM

SuNAM DR path

(single time)

Conventional CDR path(repeat more

than >>1,000

times)

RCE-DR : Reactive Co-Evaporation by

Deposition & Reaction (SuNAM, R2R) :

Patent pending(PCT) High rate co-evaporation at low tempera-

ture & pressure to the target thickness(> 1

mm) at once in deposition zone (6 ~

10nm/s) Fast (<< 30 sec. ) conversion from amor-

phous glassy phase to superconducting

phase at high temperature and oxygen

pressure in reaction zone Simple, higher deposition rate & area, low

system cost Easy to scale up :single path

Page 13: HTS Development and Industrialization at  SuNAM

SuNAM’s Now

Page 14: HTS Development and Industrialization at  SuNAM

Hastelloy C276 (Ni-alloy tape)orStainless Steel-tape

Seed layer (Y2O

3)

~ 7 nm

IBAD-MgO layer ~ 10 nm

Homoepi-MgO layer ~ 20 nm

Diffusion barrier (Al2O3) ~ 40 nm

Hastelloy or SUS

Al2O3

Y2O3

IBAD-MgO

Epi-MgO

LaMnO3

ReBCO

Ag

Buffer layer ~20 nm

Superconducting layer (1.3 ~ 1.5 mm)

Protecting layer (0.6 mm)

IBAD(sputter &E-beam)

sputter

RCE-DR

DC sputter

Electro-polishing

Typical Ic ~ > 700 A/12 mm at 77 K self-field (Jc > 4 MA/cm2)

( + Cu electroplating (+ lamination))

* Linear speed of each process : 120 m/hr or more.

or SDP(Solution

DepositionPlanarization)

SuNAM’s 2G Wire Architecture – 12 mm width

Page 15: HTS Development and Industrialization at  SuNAM

<QCM Feedback program>

<RHEED spot Feedback program>

Control computer

An appropriate feedback algorithm can keep the shape of the RHEED spot in the

specific range, while QCM monitoring to adjust the e-gun power.

Before optimization After optimization

Quality Control : RHEED Vision System

Page 16: HTS Development and Industrialization at  SuNAM

[Start] [End]

50

60

70

80

90

100

110120

130140

150160

170180

140

150

160

170

180

190

Start color

End color

RCE Vision System will be introduced for increasing the uniformity of composition in

RCE-DR process. The control computer takes (RGB) values in three-dimensional vec-

tor space which is transformed from the color of the tape surface.

Control the power

Color detection

Is the (RGB) vectorin the range?

Yes

No

Quality Control : RCE Vision System

Page 17: HTS Development and Industrialization at  SuNAM

Thickness : ~ 1.32 um

Optimization Properties of GdBCO CC on STS substrate

0 10 20 30 400

200

400

600

800

1000

Ic

(A

/12m

m)

Length (m)

Average Ic = 742 A/cm

Jc ~ 5.3 MA/cm2

-100 0 100 200 300 400 500 600 700 800 9001000

0.0

5.0x10-6

1.0x10-5

1.5x10-5

2.0x10-5

2.5x10-5

3.0x10-5

Volta

ge (

V)

Current (A)

Page 18: HTS Development and Industrialization at  SuNAM

RCE-DR Results on Stainless Steel Substrate

%variation) of cientCOV(coeffi 100 %COV min,max,

max-min 100

CC II

CIχσ Mean : Deviation, Standard :

Particle IBAD defects

Composition

Page 19: HTS Development and Industrialization at  SuNAM

Before combining After combining

0 100 200 300 400 500 600 700 800

0.0

5.0x10-6

1.0x10-5

1.5x10-5

2.0x10-5

2.5x10-5

3.0x10-5

12 mm-width : 740 A 4 mm-width Center : 234 A 4 mm-width Left : 235 A 4 mm-width Right : 240 A

Volta

ge (V

)

Current (A)

Cutting side

After bending

System for Al2O3 barrier & Y2O3 seed System for IBAD, homo-epi & buffer

Combining Barrier, Seed, IBAD, Buffer Systems in One

We can achieve higher yield > 70 %

Page 20: HTS Development and Industrialization at  SuNAM

RCE-DR Results on Stainless Steel Substrate

Page 21: HTS Development and Industrialization at  SuNAM

RCE-DR Results on Stainless Steel Substrate

Page 22: HTS Development and Industrialization at  SuNAM

579 A/978 mSuNAM(2014.4)

(by Dr. Izumi, ISTEC, Japan & EUCAS2013)

Development of HTS 2G Wire

550

600

Page 23: HTS Development and Industrialization at  SuNAM

0 100 200 300 400 500 600 700 800 900 1000 11000

100

200

300

400

500

600

700

800

900

1000

Ic

(A

/cm

-w) @

77 K

Length (m)

10kAm

100kAm

200kAm

300kAm

Ic x L :

400kAm

500kAm

600kAm

700kAm

Development of HTS 2G Wire

(2009.8)1065mx282A

(2008.10)500mx300A

(2006.7)100mx253A

(2010.10)540mx466A

(2011.2)816mx572A

(2014.03)978mx579A

(2013.12)860mx600A

2017 Goal

(2014.02)270mx370A

(2016 Target)500mx400A

Page 24: HTS Development and Industrialization at  SuNAM

0 100 200 300 400 500 6000

50

100

150

200

250

300

Ic (

A / 4

mm

)

Length ( m )

joint1 joint2

0 50 100 150 200 2500.0

1.0x10-5

2.0x10-5

3.0x10-5

4.0x10-5

5.0x10-5

6.0x10-5

7.0x10-5

J oint Resistance(Rj) = 24 n

Volta

ge (

V)

Current (A)

0 50 100 150 200 250 3000.0

1.0x10-5

2.0x10-5

3.0x10-5

4.0x10-5

5.0x10-5

6.0x10-5

7.0x10-5

J oint Resistance (Rj) = 38 n

Volta

ge (

V)

Current (A)

IC/4mm and Joint Resistance for Brass Laminated CC

Joint overlap length : typically 100~150 mm

Page 25: HTS Development and Industrialization at  SuNAM

Coil winding service up to 1.4 m diameter is available now

No-insulation, polyimide(tape & solution) insulations

Various kinds of epoxy, paraffin molding(or wet winding)

Coil Example

Paraffin molding

Page 26: HTS Development and Industrialization at  SuNAM

Superconducting magnet parameter

ConductorWidth; Thickness [mm] 4.1(12.1); 0.21(0.1)

Ic @ 20 K, B =1.5 T [A]⊥ > 180A

Coil

# of DP coils,

(4mmW; 12mmW)28; 2

turn per pancake 133

Winding i.d.; o.d.; [mm] 245(274); 300.9

Overall height [mm] 452

Conductor per DP

(4mmW; 12mmW) [m]232; 255

Total Conductor

(4mmW; 12mW) [m]6,496; 510

Operation

Bc [T] 4.0

Iop [A] 205

Top [K] 8

CryostatClear bore [mm] 203

Cold bore [mm] 245

72 hr to 8K

4T, 203 mm Diameter RT Bore Cryogen Free Magnet

Page 27: HTS Development and Industrialization at  SuNAM

Parameters Specification

Maximum current 1000A

Temperature 12K ~ 70K

Angle 0~135º

Sample length, width

30 ~ 90mm, <15mm

Development of Ic (B, T, Ɵ) Measurement System

Page 28: HTS Development and Industrialization at  SuNAM

(measured by ENEA, 2013)

RCE-DR : in B-field Properties

Page 29: HTS Development and Industrialization at  SuNAM

0 2 4 6 8 10 12 14 16 18 200

50

100

150

200

250

300

350

SuNAM HLB B || SuNAM HLB B SuNAM HCN B || SuNAM HCN B

J e (k

A/c

m2 )

0H (T)

0 2 4 6 8 10 12 14 16 18 200

200

400

600

800

1000

1200

1400

0

5

10

15

20

25 SuNAM HLB B || SuNAM HLB B SuNAM HCN B || SuNAM HCN B

I c (A

, 4 m

m-W

)

0H (T)

Jc (

MA

/cm

2 )

In-field Performance

Measured at LNCMI (by Miyoshi)

Page 30: HTS Development and Industrialization at  SuNAM

Increase the pinning by composition control

(1.0 1.4 3.6)

Compositions studied here give a

more Cu rich liquid which influences

growth dynamics and pinning

There will be excess Gd2O3 in all the samples but the specific

composition, pO2, T is key to performance. It is clear what is

best place to get very fine nanoparticles. Particles in C could

be made smaller

Page 31: HTS Development and Industrialization at  SuNAM

In-field Performance (77 K)

(By Dr. Izumi, ISS2012(Japan))

RCE-DR GdBCO w/o APC (C,D composition)

SuNAM’s present: 1.4 um

SuNAM’s future di-rection for magnet :

~ 3 um

Only with composition control in RCE-

DR process, we can achieve strong

pinnings without APCs.

Page 32: HTS Development and Industrialization at  SuNAM

Tensile stress

5 % reduction of Ic @ 581 MPa Reversible strain limit : 812 MPa Reversible strain limit :

~ 0.73 % for GdBCO/SUS

Mechanical Properties of CC on SUS good enough0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

rev. = 0.73%

GdBCO CC with stainless steel substrate

loading unloading

Nor

mal

ized

crit

ical

cur

rent

, Ic/I c0

Uniaxial strain, %

0 200 400 600 800 1000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

GdBCO-CC Tapewith SUS substrateIc0

= 167.5A

95%Ic

= 581 MPa

rev.

= 812 MPa

loading unloading

Nor

mal

ized

crit

ical

cur

rent

, Ic/I c0

Tensile stress, MPa

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

200

400

600

800

1000

stainless steel substrate; GdBCO CC tape(77 K) 12 mm width Brass-laminatedCC tapes(77 K) 12 mm width Cu-stabilized CC tapes(RT) 12 mm width Cu-stabilized CC tapes(77 K)

Uni

axia

l str

ess,

MP

a

Uniaxial strain, %

Page 33: HTS Development and Industrialization at  SuNAM

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 Tesla 0.1 Tesla 0.2 Tesla 0.3 Tesla 0.5 Tesla 1.0 Tesla 2.0 Tesla 3.0 Tesla 4.0 Tesla 5.0 Tesla

Norm

aliz

ed c

ritica

l curr

ent, I

c/I c

0

RCE-DR_Cu stabilized_Hastelloy substrate

Uniaxial strain, %

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

RCE-DR_Brass laminated_Hastelloy substrate

0.0 Tesla 0.1 Tesla 0.2 Tesla 0.3 Tesla 0.5 Tesla 1.0 Tesla 2.0 Tesla 3.0 Tesla 4.0 Tesla 5.0 TeslaN

orm

aliz

ed c

ritica

l curr

ent, I

c/I c

0

Uniaxial strain, %

5.0 T

1.0 T1.0 T

0.1 T

(a) Cu-stabilized CC

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0 Tesla 0.1 Tesla 0.2 Tesla 0.3 Tesla 0.5 Tesla 1.0 Tesla 2.0 Tesla 3.0 Tesla 4.0 Tesla 5.0 Tesla

RCE-DR_Cu stabilized_STS substrate

Norm

aliz

ed c

ritica

l curr

ent, I

c/I c

0

Uniaxial strain, %

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

5.0 T

1.0 T1.0 T

Nor

mal

ized

critic

al c

urre

nt, I

c/I c

0Uniaxial strain, %

0.1 Tesla 0.2 Tesla 0.3 Tesla 0.5 Tesla 1.0 Tesla 2.0 Tesla 3.0 Tesla 4.0 Tesla 5.0 Tesla

RCE-DR_Brass laminated_STS substrate

0.1 T

Hastelloy

STS

B//c

Ic(e,B) Characteristics in Various 2G Wires – Strains

(b) Brass-laminated CC

Page 34: HTS Development and Industrialization at  SuNAM

Bending Characteristics

Sample length subjected to bending: 18.5 mm

Voltage tap separation: 10 mm

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2

0.88

0.92

0.96

1.00

1.04 RCE-DRHastelloy-GdBCO

Nor

mal

ized

crit

ical

cur

rent

, Ic/I c0

Bending strain (at GdBCO film), %

RCE-DRSTS-GdBCO

Ic peak

(0.2%)

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.20.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Ic/I

cmax = 1 - 0.25|

b-

@Icpeak|2

Ic/I

cmax = 1 - 0.177|

b-

@Icpeak|2

I c/I cm

ax

-@Ic peak

, %

GdBCO CC tapesBending deformation

RCE-DR-Hastelloy RCE-DR-Stainless steel

Uniaxial tension RCE-DR-Hastelloy RCE-DR-Stainless steel

Page 35: HTS Development and Industrialization at  SuNAM

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Brass laminatedCopper Stabilized

12 mm_RCE-DR_STS substrate_RIST

Mec

hani

cal d

elam

inat

ion

stre

ngth

, MPa

Superconducting side

Substrate side

(Side)

center

Superconductor side

side

Substrate side

center

De-lamination Strength Test Results

Page 36: HTS Development and Industrialization at  SuNAM

CC tape width : 2 ~ 4 mm

Cu buffer layer width : 10 mm

Stacking method : soldering

0 50 100 150 200 250 300 350

0.0

1.0µ

2.0µ

Voltage[V

]

Current[A]

Ic : 343 A/4mm-w. @ 77 K, sf

IC for stacking wire

857 A/cm-w.

Scaler for solder-ing

- Stacking wire made of 2G HTS

CC

4 mm

6 mm

0.8 mm

Cross section of 5-ply stacking wire

Stacking Wire

Page 37: HTS Development and Industrialization at  SuNAM

Stacking Wire

Page 38: HTS Development and Industrialization at  SuNAM

SuNAM’s Future Direction

Page 39: HTS Development and Industrialization at  SuNAM

Price Reduction

100

25

10

(Unit: USD / kAm)

12 mm 120 mm

360 mm

Width :

Capacity :1,000 km/y 15,000 km/y

75,000 km/y

CAPEX* :

* Capital Expense : Required Investment in Produc-tion Line

$ 7 Mil. $ 20 Mil. $ 30 Mil.

Max Rev-enue :

$ 20 Mil. $ 75 Mil. $ 150 Mil.

Achievable with Existing Line of

SuNAM

“Increasing Demand for HTS 2G wire has surpassed the

supply”

“For market entrance $ 50 / kAm is the threshold ”

“Price Reduction will ignite an exponential growth of demand for HTS 2G wire”

“High throughput, low material cost, High yield is 3

Critical Success Factor”

Direction of Technology Development in the Future

Page 40: HTS Development and Industrialization at  SuNAM

[ Specification Table ]

Model AN CN LB/LS K

Description Silver(+Cu…)Dry coating

CopperWet Coating

Brass/ Stainless steel

Lamination

Polyimide tape(+)Insulation

Substrate Hastelloy or Non-magnetic Stainless Steel

Width[ mm ]

Commercial : 4 mm, 12 mm.Special Order : 2 ~ 10 mm multi width is available

Thickness[ mm ]

HAS : 0.06~0.07SS* : 0.11~0.12

HAS : 0.09~0.11SS* : 0.14~0.16

HAS : 0.18~0.22SS* : 0.23~0.27 + 0.1

FinalProcess

SilverSputter

CopperPlating

Brass or SS*Lamination Wrapping

PieceLength Above 100 m , 200 m , 300 m + without Splice

Min. Ic@ 77 k S.F.

(100 ) / 150 / 200 A + @ 4 mm (300 / 400) / 500 / 600 / 700 A + @ 12 mm

SuNAM’s 2G HTS Wire

Page 41: HTS Development and Industrialization at  SuNAM

SuNAM’s Future

Present, 2014

2 years later

5 years later

Value

Ic(77K, 0T) (A/cm-w) > 500

Ic(20K, 10T) (A/cm-w) > 300

Uniformity (1s, %) < 6

Stacked wire Ic (A/cm-w) > 800

Width (mm) = < 12

Max. piece length (km) ~ 1

Price( $/kA-m) ~ 150

Value

Ic(77K, 0T) (A/cm-w) > 700

Ic(20K, 10T) (A/cm-w) > 600

Uniformity (1s, %) < 5

Stacked wire Ic (A/cm-w) > 1,200

Width (mm) = < 12

Max. piece length (m) ~ 1.2

Price( $/kA-m) ~ 100

Value

Ic(77K, 0T) (A/cm-w) > 1,000

Ic(20K, 10T) (A/cm-w) > 1,000

Uniformity (1s, %) < 4

Stacked wire Ic (A/cm-w) > 1,800

Width (mm) = < 120

Max. piece length (km) > 2

Price( $/kA-m) < 50

Page 42: HTS Development and Industrialization at  SuNAM

SuNAM : J. H. Lee, H. K. Kim, B. J. Mean, Y. S. Kim, S. W. Yoon, K. K. Cheon,

and H. J. Lee.

Seoul Nat’l Univ. : J. W. Lee, S. M. Choi, S. I. Yoo.

KERI : H. S. Ha, S. S. Oh.

Korea Polytech. Univ. : G. W. Hong, H. G. Lee.

Andong Nat’l Univ. : H. S. Shin.

RIST : J. S. Lim

Stanford Univ. : R. H. Hammond.

iBeam Materials : V. Matias

Univ. of Cambridge : J. M. Driscoll

MIT : S.Y. Hahn, Y. Iwasa

Acknowledgement

Page 43: HTS Development and Industrialization at  SuNAM

Thanks for

Attention !

www.i-sunam.com

See you at

CCA 2014(Nov. 30 ~ Dec. 3)

JEJU ISLAND,

KOREA