HST/WFC3)Imaging)and)Mul45Wavelength)Characterizaon) )of...

1
HST/WFC3 Imaging and Mul4Wavelength Characteriza4on of EdgeOn Protoplanetary Disks Authors: Carolina “Cee” Gould 1 , Gaspard Duchene 1,3 , Karl Stapelfeldt 2 , Francois Menard 3 , Deborah Padgett 4 , Marchall D. Perrin 5 , Christophe Pinte 3 , Schuyler Wolff 6 Affilia4ons: 1. UC Berkeley, 2. NASA JPL, , 3. Université Grenoble Alpes, 4. NASA GSFC, , 5. STScI, 6. Johns Hopkins University Cee Gould Undergraduate, UC Berkeley Duchene et al. 2002 A&A 400 559 Duchene et al. 2010 ApJ 712 112 McCabe et al. 2011 ApJ 727 90 Stapelfeldt et al. 1998 ApJL 502 L65 Watson et al. 2007 Protostars and Planets V p.523 Detailed Analysis of SSTTau J024021.4+281349 2MASS J111602877624533 HH 30 Results Graph: Normalized surface brightness vs distance from the midplane. Similar results are obtained if the slice is taken at a different loca4on of the disk, so long as the jet is avoided. Future Acknowledgements Recently, in some disks we have iden.fied the presence of a tenuous “atmosphere” well above the disk midplane that we tenta.vely explain as due to small dust grains being li=ed up by magne.c and/or radia.ve forces. Here we report on our effort to beder characterize such atmospheres and to search for correla4ons with other key parameters, such as the degree of disk sedling and the apparent intensity of ouelow ac4vity in the system. We have obtained Cycle 22 deep HST/WFC3 F475W (λ c = 0.48μm) images of 6 edge on disks, which are complimented by archival HST images at other visible wavelengths. If small dust grains are responsible for the atmosphere, we expect them to sca@er much more efficiently at the shortest wavelengths and, thus, the atmosphere to be more prominent in the F475W images. Goals Methods This project has been supported by funding from the Space Telescope Science Ins4tute as part of program GO13643. I would also like to give thanks the UCB SURF Program for providing the funding and resources to con4nue this research this summer. HK Tau B One of the key steps toward planet forma4on is the sedling of dust par4cles in the midplane of a protoplanetary disk. To study this, we need to characterize the ver4cal structure of a number of disks. Edgeon disks provide a unique observing opportunity as the glare of the bright central star is blocked by the disk itself and the ver.cal structure of the disk is in direct view (e.g. Watson et al. 2007) For many years, our team has combined high resolu4on (HST and adap4ve op4cs) images of of edgeon protoplanetary disks and high fidelity radia4ve transfer models to extract the key physical parameters of each disk (e.g. Stapelfeldt et al. 1998; Duchene et al. 2004, 2010; McCabe et al. 2011). Context Here we present preliminary results, including 3color visible light images of all disks, which were made using only HST observa4ons (WFPC2, ACS, and/or WFC3) and with the filters F475W, F606W, and F814W. Included is the well studied HH 30 system, and a more detailed analysis of the largest edgeon disk system in our sample. Objects Name SFR R Disk SpT Jet Disk Atmosphere 1 2 3 4 5 6 7 # 2MASS J111602877624533 SSTGBS J111110.7764157 HK Tau B 2MASS J162813702431391 HH 30 SSTC2D J163131.2242627 SSTTau J024021.4+281349 1 2 3 4 5 6 7 Tau 450 AU M1 Flared Oph 160 AU M Flat/Sedled Flared Flared Flat/Sedled Flat/Sedled Flared 105 AU Tau (Lep) HST 3 color F814W, F606W, and F475W: (Center) 3 color HST and Keck F814W, J, K’ : (Right) HST 2 color F606W and F814W and CARMA 1.3mm contours Future work will include quan4fying the observed atmosphere and disentangling it from the disk, which will involve radia4ve transfer modeling. We will then search to correlate the appearance of an atmosphere with other disk proper4es, including presence of a jet, mass, and degree of sedling as an indicator of evolu4on. The plot on the right maps the surface brightness along the disk. This plot was created by first aligning the filtered images, then isola4ng a slice along the disk, at the loca4on illustrated by the red line along the disk in the inset. The curve was then created by mapping the intensity of each pixel along the length of the slice. From the graph, we see that the intensity of surface brightness drops faster at longer, redder, wavelengths (K’) as a func4on of distance away from the midplane. Conversely, our new pursuit of the bluer F475W profile further captures this trend: the intensity of surface brightness drops slower at shorter, bluer, wavelengths. This observa4on that there is s4ll blue light at large distances from the disk then strongly suggests the presence of small dust grains in this region. A range of targets were selected to emphasize disk diversity, as there is no obvious correla4on between a visible atmosphere and stellar or other disk characteris4cs. Moving forward, possible correla4ons with other system proper4es such as Xray luminosity will be explored. Interes4ng to note the silhouede in disk #4 in the F475W image, i.e., absorp4on of background emission by the opaque disk itself, as there is evidence for a similar phenomenon at mm wavelength for the same system. 225 AU Tau [email protected] Cha Cha Oph 300 AU 125 AU 75 AU M0 M M2 M2.5 K8 References View This Poster Online! Scan the QR Code, OR Visit ceegould.weebly.com SSTGBS J111110.7764157 2MASS J162813702431391 SSTC2D J163131.2242627

Transcript of HST/WFC3)Imaging)and)Mul45Wavelength)Characterizaon) )of...

Page 1: HST/WFC3)Imaging)and)Mul45Wavelength)Characterizaon) )of ...ceegould.weebly.com/.../small_final_aas_poster_.pdf · HST/WFC3)Imaging)and)Mul45Wavelength)Characterizaon))of)Edge5On)Protoplanetary)Disks)

HST/WFC3  Imaging  and  Mul4-­‐Wavelength  Characteriza4on    of  Edge-­‐On  Protoplanetary  Disks  

Authors: Carolina “Cee” Gould1, Gaspard Duchene1,3, Karl Stapelfeldt2, Francois Menard3, Deborah Padgett4, Marchall D. Perrin5, Christophe Pinte3, Schuyler Wolff 6

Affilia4ons:  1.  UC  Berkeley,  2.  NASA  JPL,  ,  3.  Université  Grenoble  Alpes,  4.  NASA  GSFC,  ,  5.  STScI,  6.  Johns  Hopkins  University   Cee  Gould  Undergraduate,  UC  Berkeley  

Duchene  et  al.  2002  A&A  400  559  Duchene  et  al.  2010  ApJ  712  112  McCabe  et  al.  2011  ApJ  727  90  Stapelfeldt  et  al.  1998  ApJL  502  L65  Watson  et  al.  2007  Protostars  and                  Planets  V  p.523      

Detailed Analysis of SSTTau  J024021.4+281349  

2MASS  J11160287-­‐7624533   HH  30  

Results  

Graph:  Normalized  surface  brightness  vs  distance  from  the  midplane.  Similar  results  are  obtained  if  the  slice  is  taken  at  a  different  loca4on  of  the  disk,  so  long  as  the  jet  is  avoided.  

Future  

Acknow

ledgem

ents  

•  Recently,  in  some  disks  we  have  iden.fied  the  presence  of  a  tenuous  “atmosphere”  well  above  the  disk  midplane  that  we  tenta.vely  explain  as  due  to  small  dust  grains  being  li=ed  up  by  magne.c  and/or  radia.ve  forces.  

•  Here  we  report  on  our  effort  to  beder  characterize  such  atmospheres  and  to  search  for  correla4ons  with  other  key  parameters,  such  as  the  degree  of  disk  sedling  and  the  apparent  intensity  of  ouelow  ac4vity  in  the  system.    

•  We  have  obtained    Cycle  22  deep  HST/WFC3  F475W  (λc  =  0.48μm)  images  of  6  edge  on  disks,  which  are  complimented  by  archival  HST  images  at  other  visible  wavelengths.    

•  If  small  dust  grains  are  responsible  for  the  atmosphere,  we  expect  them  to  sca@er  much  more  efficiently  at  the  shortest  wavelengths  and,  thus,  the  atmosphere  to  be  more  prominent  in  the  F475W  images.  

 Goals  

Metho

ds  

This  project  has  been  supported  by    funding  from  the  Space  Telescope    Science  Ins4tute  as  part  of  program    GO-­‐13643.  I  would  also  like  to  give  thanks  the  UCB  SURF  Program  for  providing  the  funding  and  resources  to  con4nue  this  research  this  summer.  

HK  Tau  B  

•  One  of  the  key  steps  toward  planet  forma4on  is  the  sedling  of  dust  par4cles  in  the  midplane  of  a  protoplanetary  disk.  To  study  this,  we  need  to  characterize  the  ver4cal  structure  of  a  number  of  disks.    •  Edge-­‐on  disks  provide  a  unique  observing  opportunity  as  the  glare  of  the  bright  central  star  is  blocked  by  the  disk  itself  and  the  ver.cal  structure  of  the  disk  is  in  direct  view  (e.g.  Watson  et  al.  2007)  •  For  many  years,  our  team  has  combined  high  resolu4on  (HST  and  adap4ve  op4cs)  images  of  of  edge-­‐on  protoplanetary  disks  and  high  fidelity  radia4ve  transfer  models  to  extract  the  key  physical  parameters                  of  each  disk  (e.g.  Stapelfeldt  et  al.  1998;  Duchene  et  al.  2004,  2010;  McCabe  et  al.  2011).  Co

ntext  

Here  we  present  preliminary  results,  including  3-­‐color  visible  light  images  of  all  disks,  which  were  made  using  only  HST  observa4ons  (WFPC2,  ACS,  and/or  WFC3)  and  with  the  filters  F475W,  F606W,  and  F814W.  Included  is  the  well-­‐studied  HH  30  system,  and  a  more  detailed  analysis  of  the  largest  edge-­‐on  disk  system  in  our  sample.      

 Objects  

Name   SFR   RDisk   SpT   Jet   Disk   Atmosphere  

1   2   3   4   5   6  

7  

#  

2MASS  J11160287-­‐7624533  

SSTGBS  J111110.7-­‐764157  

HK  Tau  B  

2MASS  J16281370-­‐2431391  

HH  30  

SSTC2D  J163131.2-­‐242627  

SSTTau  J024021.4+281349  

1  

2  

3  

4  

5  

6  

7   Tau   450  AU   M1   Flared   ✔  ✔  

Oph   160  AU   M   ✗   ✗  Flat/Sedled  

✔  

✔  

✔  

✔  

✗  

✗  

✗  

Flared   ✔  

Flared  

Flat/Sedled  

Flat/Sedled  

Flared  

105  AU  Tau  

✔  

(Lep)  HST  3  color  F814W,  F606W,  and  F475W:  (Center)    3  color  HST  and  Keck  F814W,  J,  K’  :  (Right)  HST  2  color  F606W  and  F814W  and  CARMA  1.3mm  contours      

Future  work  will  include  quan4fying  the  observed  atmosphere  and  disentangling  it  from  the  disk,  which  will  involve  radia4ve  transfer  modeling.  We  will  then  search  to  correlate  the  appearance  of  an  atmosphere  with  other  disk  proper4es,  including  presence  of  a  jet,  mass,  and  degree  of  sedling  as  an  indicator  of  evolu4on.  

The  plot  on  the  right  maps  the  surface  brightness  along  the  disk.  This  plot  was  created  by  first  aligning  the  filtered  images,  then  isola4ng  a  slice  along  the  disk,  at  the  loca4on  illustrated  by  the  red  line  along  the  disk  in  the  inset.  The  curve  was  then  created  by  mapping  the  intensity  of  each  pixel  along  the  length  of  the  slice.    From  the  graph,  we  see  that  the  intensity  of  surface  brightness  drops  faster  at  longer,  redder,  wavelengths  (K’)  as  a  func4on  of  distance  away  from  the  midplane.    Conversely,  our  new  pursuit  of  the  bluer  F475W  profile  further  captures  this  trend:  the  intensity  of  surface  brightness  drops  slower  at  shorter,  bluer,  wavelengths.  This  observa4on  that  there  is  s4ll  blue  light  at  large  distances  from  the  disk  then  strongly  suggests  the  presence  of  small  dust  grains  in  this  region.    

 A  range  of  targets  were  selected  to  emphasize  disk  diversity,  as  there  is  no  obvious  correla4on  between  a  visible  atmosphere  and  stellar  or  other  disk  characteris4cs.  Moving  forward,  possible  correla4ons  with  other  system  proper4es  such  as  X-­‐ray  luminosity  will  be  explored.      

Interes4ng  to  note  the  silhouede  in  disk  #4  in  the  F475W  image,  i.e.,  absorp4on  of  background  emission  by  the  opaque  disk  itself,  as  there  is  evidence  for  a  similar  phenomenon  at  mm  wavelength  for  the  same  system.  

225  AU  Tau  

[email protected]  

Cha  

Cha  

Oph   300  AU  

125  AU  

75  AU  

✗  

M0  

M  

M2  

M2.5  

K8  

References  

View  This  Poster  Online!  

Scan  the  QR  Code,  OR  Visit  ceegould.weebly.com  

SSTGBS  J111110.7-­‐764157   2MASS  J16281370-­‐2431391   SSTC2D  J163131.2-­‐242627