How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

30
How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the Journal of Virology. Alexsia L. Richards and William T. Jackson Department of Microbiology and Molecular Genetics Medical College of Wisconsin 8701 Watertown Plank Road Milwaukee, WI 53226 414-955-8456 Fax: 414-955-6535 [email protected] Copyright © 2013, American Society for Microbiology. All Rights Reserved. J. Virol. doi:10.1128/JVI.00460-13 JVI Accepts, published online ahead of print on 12 June 2013 on November 18, 2018 by guest http://jvi.asm.org/ Downloaded from

Transcript of How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

Page 1: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation

A Minireview for the Journal of Virology.

Alexsia L. Richards and William T. Jackson

Department of Microbiology and Molecular Genetics

Medical College of Wisconsin

8701 Watertown Plank Road

Milwaukee, WI 53226

414-955-8456

Fax: 414-955-6535

[email protected]

Copyright © 2013, American Society for Microbiology. All Rights Reserved.J. Virol. doi:10.1128/JVI.00460-13 JVI Accepts, published online ahead of print on 12 June 2013

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 2: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

Abstract. 1

2

The autophagic degradation pathway is a powerful tool in the host cell arsenal against 3

cytosolic pathogens. Contents trapped inside cytosolic vesicles, termed 4

autophagosomes, are delivered to the lysosome for degradation. In spite of the 5

degradative nature of the pathway, some pathogens are able to subvert autophagy for 6

their benefit. In many cases, these pathogens have developed strategies to induce the 7

autophagic signaling pathway while inhibiting the associated degradation activity. One 8

surprising finding from the recent literature is that some viruses do not impede 9

degradation, but instead promote the generation of degradative autolysosomes, which 10

are the endpoint compartments of autophagy. Dengue virus, poliovirus and hepatitis C 11

virus, all positive-stranded RNA viruses, utilize the maturation of autophagosomes into 12

acidic and ultimately degradative compartments to promote their replication. While the 13

benefits that each virus reaps from autophagosome maturation are unique, the parallels 14

between the viruses indicate a complex relationship between cytosolic viruses and host 15

cell degradation vesicles. 16

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 3: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

Introduction to Autophagy. 17

18

While many viruses avoid or suppress host immune responses, several subvert the host 19

immune machinery to promote their own replication (1). The autophagic pathway is one 20

well-characterized effector mechanism of the innate immune response, resulting in a 21

highly regulated lysosomal degradation mechanism by which a cell degrades its own 22

contents. The pathway has been shown to be essential for cellular clearance of several 23

intracellular pathogens including Mycobacterium tuberculosis, Toxoplasma gondii, and 24

Herpes simplex virus ( HSV-1) (2-4). Despite the role of autophagic signaling in innate 25

immunity, several pathogens are capable of subverting autophagy for their own benefit 26

(5, 6). In particular, the replication cycle of positive-strand RNA viruses, which are the 27

causative agents of many diseases including myocarditis, encephalitis, and hand foot 28

and mouth disease (7-9) can be promoted by some aspect of the autophagic pathway. 29

However, there is a difference between a pathogen benefitting from autophagic 30

signaling or the machinery from the autophagic pathway, and a pathogen benefitting 31

from the endpoint activity of autophagy, which is the degradation of cytosolic contents. 32

Both are of interest, but this review will focus exclusively on relatively new findings that 33

several pathogens can actually benefit from the degradative activity of autophagy. 34

35

Autophagy is a constitutive degradation pathway with important roles in development, 36

differentiation, and stress responses (10). By facilitating the removal of damaged 37

organelles and cytoplasmic protein aggregates, autophagy has proven to be essential 38

for maintaining cellular homeostasis (6). Several signaling pathways induce autophagic 39

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 4: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  4

signaling, although the mechanism by which these pathways cooperate to promote 40

vesicle formation remains unknown (11). Inhibition of the Akt / mTOR pathway has long 41

been considered essential for induction of autophagic signaling, although recent reports 42

have demonstrated the existence of mTOR-independent autophagy (12, 13). Induction 43

of an ubiquitin-like conjugation system promotes lipidation of the cytosolic microtubule-44

associated light chain 3 (LC3) protein with phosphotidylethanolamine, generating a 45

membrane-associated species known as LC3-II (14-16). LC3-II is associated with both 46

the inner and outer membrane of the growing autophagosome, and this association is 47

essential for autophagosome formation (14, 17, 18). LC3-II remains the only protein 48

known to stably associate with completed autophagosomes, and as such it is an 49

invaluable marker for monitoring autophagy. The initial events in autophagosome 50

biogenesis have been well described elsewhere (18-20). 51

52

Autophagosomes are unique vesicles composed of two lipid bilayers which, during their 53

formation, engulf cytosolic contents, including long-lived proteins, intracellular 54

pathogens, or damaged organelles. This cargo is then transported to the lysosome for 55

degradation (10). Double-membraned autophagosomes undergo a stepwise maturation 56

process culminating in their fusion with lysosomes to form degradative autolysosomes 57

(Figure 1). Autophagosomes mature into amphisomes, a change primarily characterized 58

by the acidification of the lumen of the vesicle and the acquisition of proteins associated 59

with late endosomes and lysosomes (21). Mature amphisomes then fuse with 60

lysosomes to form autolysosomes, in the process losing one lipid bilayer through an 61

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 5: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  5

unknown mechanism (22, 23). The autolysosome is the compartment in which actual 62

autophagy, the degradation of cytosolic contents, takes place. 63

The acidification of the amphisome is believed to be the result of fusion with late 64

endosomes bearing vacuolar ATPases (21, 24). Treatment of cells with inhibitors of 65

vesicular acidification, including bafilomycin A 1, chloroquine, and ammonium chloride, 66

prevents autolysosome formation (24-26). This indicates that acidification of either the 67

autophagosome, the lysosome, or both is a prerequisite for fusion of the 68

autophagosome with the lysosome. Two proteins, the lysosomal-associated membrane 69

protein 2 (LAMP-2) and Rab7, have been reported to be required for autophagosome 70

maturation. Rab7 is a small GTP-binding protein that has functions in late endosomal 71

transport (27, 28). Depletion of endogenous Rab7 or expression of a dominant negative 72

form results in decreased autophagosome maturation (29, 30). LAMP-2, a lysosomal 73

transmembrane protein, is one of the most abundant lysosomal components (31). 74

Depletion of LAMP-2 prevents autophagosome fusion with lysosomes (32-34). These 75

data indicate that multiple steps of the autophagosome formation and maturation 76

pathway are regulated by the cell and may be subverted by pathogens. 77

78

Viral Subversion of the Autophagic Pathway. 79

80

As obligate intracellular parasites, the success of a virus depends on its ability to evade 81

the host cell ’ s antiviral defenses, as well as its ability to regulate cellular processes that 82

facilitate its own replication. Subversion of the autophagic pathway, which aids both of 83

these goals, has been most extensively studied in positive-strand RNA viruses (35, 36). 84

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 6: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  6

Optimal production of positive-strand RNA viruses depends on initiation of the 85

autophagic pathway during infection. This is counter-intuitive, because the autophagic 86

pathway promotes degradation of cytosolic contents, and positive-strand RNA viruses 87

replicate in the cytosol. 88

89

The physical hallmark of the autophagic pathway is the formation of cytosolic double-90

membraned vesicles (19, 37). Positive-strand RNA viruses replicate their genome in 91

association with cytosolic membranes (38, 39). Therefore, by inducing autophagy, these 92

viruses may be facilitating the creation of scaffolds for their own replication. However, 93

these vesicles are part of a degradative pathway, and if this pathway is unaltered, the 94

vesicles will fuse with lysosomes and their contents will be degraded. Coxsackievirus B 95

3 (CVB 3), an enterovirus in the Picornaviridae family, appears to have developed a 96

strategy to prevent this. CVB3 relies on autophagosome formation for optimal virus 97

replication (40, 41). However, during both in vitro and in vivo infections, there is 98

evidence that amphisome maturation and autophagic protein degradation are inhibited 99

(40, 41). The mechanism by which CVB3 upregulates autophagosome formation while 100

restricting autophagic degradation is unknown. Treatment of CVB 3- infected cells with 101

inhibitors of autophagosome maturation results in increased virus production, indicating 102

that at least a portion of the virus remains sensitive to autophagic degradation (41). 103

Recently it was also shown that rotavirus induces autophagic signals to promote virus 104

replication, but that the virus blocks protein degradation (42). As with CVB 3, the 105

mechanism by which rotaviruses specifically inhibits autophagosome degradation is not 106

yet known. Further work to identify the specific virus or host cell proteins used by these 107

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 7: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  7

viruses to prevent degradation will help our understanding of autophagic regulation in 108

general. 109

110

A similar anti-degradative phenomenon has been observed in bacterial infection 111

models, with the best-characterized being Legionella pneumophila infection, which 112

induces replication vesicles that resemble autophagosomes (43). The vacuoles become 113

acidic; however, the bacteria secrete a factor that delays their fusion with lysosomes 114

(44). A recent report indicates that Legionella can interfere with the formation of LC3-II, 115

although the significance of this to autophagosome maturation is unclear (45). Inhibition 116

of autophagosome maturation has been observed for several other non-viral pathogens 117

(46). 118

119

In the following sections we discuss recent advances in understanding the interaction of 120

three positive-strand RNA viruses with the late stages of the autophagic pathway. 121

Replication of all three viruses is reduced when autophagy is inhibited. Conversely, 122

stimulation of autophagy increases infectious virus production (47-52). To date, this 123

subset of viruses are the only pathogens shown to induce autophagosome formation to 124

promote their own replication while allowing maturation of the vesicles, fusion of 125

amphisomes with lysosomes, and subsequent cargo degradation. For reference, a brief 126

description of assays used to monitor autophagosome maturation and autophagic 127

degradation is provided in Table 1, and more detail is available in (53). 128

129

130

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 8: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  8

Dengue fever virus. 131

132

Dengue virus, a member of the Flaviviridae, is the causative agent of dengue fever, 133

which in a small subset of the population progresses to dengue hemorrhagic fever / 134

dengue shock syndrome (54, 55). Dengue virus (DENV) is comprised of four 135

antigenically related but distinct viruses (DENV-1 to DENV-4) with each virus 136

comprising many distinct genotypes (56). Thus far, only DENV-2 and DENV-3 have 137

been shown to require autophagosome formation for maximum virus replication (52, 54, 138

57). During infection with either virus, viral proteins involved in translation and 139

replication locate to autophagosomes (52, 57). 140

141

While DENV-2 and DENV-3 both subvert autophagosome formation, there are some 142

major differences in the way these viruses interact with the late stages of the autophagic 143

pathway. DENV-3 non-structural proteins primarily co-localize with autolysosomes 144

during infection, whereas DENV-2 proteins are primarily located on immature 145

autophagosomes (52). During DENV-2 virus infection autophagy increases the cells 146

degradative capacity, specifically in regards to cellular lipid droplets (51). The 147

degradation of lipid droplets by autophagy is referred to as lipophagy (58). Increased 148

lipophagy during DENV-2 infection results in both a decrease in triglycerides and an 149

increase in β-oxidation. Inhibition of autophagosome formation reduces infectious virus 150

production, however, when cells are supplied with the products of lipophagy, virus 151

production returns to levels observed in cells capable of autophagy. The authors 152

speculate that the release of free fatty acids during lipophagy increases ATP 153

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 9: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  9

generation, which is critical for viral replication (51). A role for lipophagy during DENV-3 154

infection has not yet been reported. 155

156

Hepatitis C Virus. 157

158

Hepatitis C Virus (HCV), another flavivirus, is a major cause of chronic liver disease 159

(59). The HCV RNA-dependent RNA polymerase interacts with the cellular autophagy 160

protein Atg5, and the two proteins co-localize during early time points of infection (60). 161

Additionally, HCV RNA and proteins co-fractionate with LC3-II on a discontinuous 162

sucrose gradient (61). Expression of HCV proteins NS5A and NS4B in isolation is 163

sufficient to induce autophagic signaling (62, 63). While there is agreement that HCV 164

induces autophagic signaling, the specific role of autophagy during HCV infection 165

remains controversial. Autophagy was shown to be essential for translation of the viral 166

genome but dispensable once the infection has begun (49). These data contrast with a 167

report showing knockdown of autophagy genes had no effect on virus translation and 168

RNA replication but instead was essential for HCV particle formation (47). 169

170

HCV-infected cells expressing tandem-tagged GFP-RFP-LC3 (see Table 1) show 171

predominantly red fluorescence indicating maturation of autophagosomes into acidic 172

amphisomes (64, 65). The RFP-positive puncta co-localize with LAMP-1, demonstrating 173

fusion of the autophagosome with either late endosomes or lysosomes (65). However, 174

there is at least one report of an incomplete autophagic response to HCV infection. No 175

change in either p 62 levels or long-lived protein degradation was observed following 176

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 10: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  10

transfection with the HCV replicon (66). This discrepancy may result from a difference 177

between transfection of the viral genome and infection with live virus. However, 178

elevated autolysosome formation has been observed following transfection of the HCV 179

replicon, making this an unlikely explanation (67). An alternative hypothesis is that 180

typical autophagosome cargo, such as p 62, is not incorporated into the specialized 181

autophagosomes generated during HCV infection. If this is the case, assays measuring 182

protein degradation levels would not be a reliable measure of autophagosome 183

maturation. 184

185

HCV genome replication is attenuated following depletion of LAMP-2 or Rab7, both of 186

which are essential for autolysosome formation (65). Treatment with either bafilomycin 187

A 1 or chloroquine, both of which inhibit autophagosome maturation, results in reduced 188

viral RNA and protein expression (65, 68). Investigation of the (RIG-I)- like Receptor 189

(RLR) signaling cascade following HCV infection has revealed a role for autophagic 190

degradation during infection in suppressing the innate immune response to infection 191

(65). Activation of the IFN-β promoter by ectopically expressed RIG-I was measured in 192

infected cells in both the presence and absence of autophagic degradation. In control 193

cells HCV was able to inhibit RIG-I mediated IFN-β activation. In the absence of 194

autophagic degradation infected cells showed a significant increase in IFN-activation. 195

The varied reports on the effects of autophagy in HCV production lead us to conclude 196

that the process may play multiple roles in promoting viral replication. 197

198

199

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 11: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  11

Poliovirus. 200

201

Poliovirus (PV), the causative agent of poliomyelitis, is a member of the Picornaviridae 202

family. It is one of the most well-characterized members of this family, in terms of its 203

molecular and cellular biology, biochemistry, structure, life cycle, and pathogenesis, and 204

therefore represents an important model virus (69). By 5 hours post-infection, infected 205

cells exhibit extensive accumulation of autophagic vacuoles throughout the cytoplasm 206

(50, 70). Viral RNA replication proteins localize to the autophagosome membrane 207

during infection (50, 71). LC3 and LAMP-1 also co-localize during infection indicating 208

autophagosome fusion with late endosomes and / or lysosomes (50). Staining infected 209

cells with MDC, a lysosomotropic agent that is concentrated in acidic compartments by 210

an ion-trapping mechanism, reveals that the lumen of autophagosomes acidifies relative 211

to the cytosol (50, 72). Infection promotes autophagic protein degradation; however, 212

unlike Dengue virus and HCV, degradation is not necessary for virus replication since 213

lysosomal protease inhibitors have no impact on intracellular virus titer (73). 214

Our group recently showed that poliovirus utilizes both autophagosome formation and 215

maturation of the autophagic vacuole to promote two separate and distinct steps in the 216

virus life cycle. Inhibitors of autophagosome formation limit viral RNA replication (73). 217

However, if autophagosome formation proceeds normally but vesicle acidification is 218

inhibited, virus production remains attenuated. In the absence of acidic vesicles, viral 219

entry, translation, RNA replication, and genome encapsidation all occur normally. Acidic 220

vesicles are, however, required for the last step in production of an infectious virion, 221

marked by the internal cleavage of capsid protein VP0, which results in the maturation 222

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 12: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  12

of a noninfectious provirion to an infectious virion (73). This cleavage step is attenuated 223

in the absence of vesicle acidification, resulting in a decrease in the number of 224

infectious virions produced. How an acidic vesicle can promote the maturation of a 225

presumably cytosolic, non-enveloped virus is a current question of research focus. 226

227

Possible connections among viruses that benefit from autophagosome maturation. 228

We have presented here three examples of how viruses benefit from autophagosome 229

maturation. However, there are indications that some of these benefits may be 230

conserved amongst the viruses. Of the viruses discussed, only HCV has been 231

definitively shown to use autophagic degradation to downregulate immune signaling 232

during infection (65). However, preliminary results indicate that the immune response to 233

Dengue virus infection may also be attenuated by autophagic degradation (65). 234

Recently Japanese encephalitis virus (JEV) has been shown to subvert autophagy as a 235

viral immune evasion strategy. The mechanism may be similar to that used by HCV, 236

since type I interferon (IFN) activation is increased when JEV infects cells deficient in 237

autophagy (74). Infection with JEV increases autolysosome formation in vivo, and this 238

formation is essential for maximum virus production (74). Is it not yet known if 239

autophagic degradation is responsible for restriction of the immune response during 240

JEV infection. Interestingly, autophagy is essential for JEV production even in an IFN-241

defective background, indicating that the virus may have multiple uses for the 242

autophagic pathway during infection. 243

244

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 13: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  13

A recent publication investigated the role of autophagy in lipid metabolism during HCV 245

infection. As with Dengue virus, infection with HCV results in the appearance of 246

autophagosomes filled with lipid cargo (75). Inhibition of autophagosome maturation 247

through bafilomycin A 1 treatment results in an accumulation of cholesterol in both HCV 248

replicon cells and cells infected with HCV strain JFH1 (75). The purpose of increased 249

autophagic breakdown of cholesterol during HCV infection remains elusive. One 250

hypothesis is that the autophagic flux of cholesterol is needed for lipid droplet 251

biogenesis during HCV infection. This would be very intriguing as lipid droplet area is 252

decreased by autophagic degradation during Dengue virus infection (75, 76). The 253

differences in the proposed roles of autophagic degradation of lipids during infection 254

may be a product of the different requirements each virus has for lipid droplets during 255

infection. Unlike Dengue virus, lipid droplets are required for HCV virion assembly (76), 256

therefore increased surface area of these lipid droplets may aid HCV in replication. 257

Conversely, Dengue virus may promote destruction of these lipid pools to provide 258

energy for virus replication occurring at an alternate site in the cell. 259

260

261

The data gathered thus far regarding the role of autophagy during poliovirus and 262

Dengue virus infection is almost exclusively from in vitro systems. Therefore, the effects 263

of autophagic degradation on the host immune response to infection have not been 264

assessed. If it is found that immune signaling during infection is attenuated through 265

autophagic degradation, then autophagic degradation could play multiple pro-viral roles 266

during infection. Recently, impairment of autophagosome formation has been shown to 267

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 14: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  14

hamper formation of infectious Dengue virus particles, while having minimal effects on 268

viral RNA replication (77). This suggests that both poliovirus and Dengue virus may be 269

utilizing the environment within a mature autophagosome to promote the final steps in 270

production of viral progeny. It is not yet know if inhibitors of autophagosome maturation 271

have an effect on Dengue virus particle formation. 272

273

Conclusion. 274

275

It is now appreciated that viruses such as poliovirus, Dengue virus, and HCV rely on the 276

degradative activity of the autophagic pathway for efficient replication. While this review 277

focused on the three viruses for which the role of autophagic maturation during infection 278

has been elucidated, the story is far from complete. For example, encephalomyocarditis 279

virus (EMCV) and porcine reproductive and respiratory syndrome virus (PRRSV), both 280

subvert the autophagic pathway for optimal virus production, while promoting 281

autophagic protein degradation (78, 79). Both PRRSV and EMCV replication have been 282

shown to be sensitive to treatments known to restrict autophagosome maturation (80, 283

81). There is currently no model for the role that maturation of the autophagosome is 284

playing during infection with either of these viruses. It will be interesting to learn if either 285

virus shares a mechanism with one of the viruses presented in this review, or if novel 286

roles for autophagosome maturation are discovered. There is also recent evidence that 287

treatment with the Cathepsin inhibitor Pepstatin A results in a decrease in Influenza A 288

production, which the authors of the study have linked to Pepstatin A altering the 289

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 15: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  15

regulation of autophagy (82). Together, these data indicate that multiple viruses may 290

utilize autophagic degradation. 291

292

The question remains, how do these viruses thrive in a highly degradative environment? 293

One possibility is that they have evolved to be resistant to degradation within the 294

autolysosome. Alternatively, they may have developed a mechanism to avoid being 295

trapped within the degradative vesicles. Finally, viral replication may occur outside of 296

the degradative autophagosome and thus be unaffected by the degradative 297

environment within the vesicle. 298

299

It is often in the best interest of a virus to maintain the host cell’s integrity until progeny 300

virus production is complete. For example, many viruses have evolved mechanisms to 301

prevent cellular apoptosis, a pathway that is linked to autophagy (83, 84). The way in 302

which a virus interacts with the autophagic pathway may have important implications for 303

cell viability throughout the infection. A number of studies have indicated that autophagy 304

is induced by ER stress (85, 86) In both yeast and mammalian cells autophagy has 305

been shown to have pro-survival effects when the ER is overloaded with misfolded 306

proteins (87-89). Inhibition of the autophagic pathway increases cell death following ER 307

stress. This effect is due to the degradation of protein aggregates and misfolded 308

proteins (87). Both HCV and EMCV have been shown to increase ER stress (65, 66, 309

90-92). By allowing autophagic degradation to proceed unperturbed, these viruses may 310

be minimizing the risk of cell death prior to the completion of the replicative cycle. 311

312

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 16: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  16

Finally, by studying the way in which viruses regulate cellular pathways, a great deal 313

has been learned about the functions of the host cell. The mechanism by which viruses 314

inhibit or promote autophagic degradation will not only improve our understanding of 315

virus replication, but also shed light on the ways in which the late stages of autophagy 316

are regulated. 317

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 17: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  17

References.

1. Randow, F., and C. Munz. 2012. Autophagy in the regulation of pathogen replication and adaptive immunity. Trends Immunol. 33:475-487. doi: 10.1016/j.it.2012.06.003; 10.1016/j.it.2012.06.003.

2. Orvedahl, A., D. Alexander, Z. Talloczy, Q. Sun, Y. Wei, W. Zhang, D. Burns, D. A. Leib, and B. Levine. 2007. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell. Host Microbe. 1:23-35. doi: 10.1016/j.chom.2006.12.001.

3. Andrade, R. M., M. Wessendarp, M. J. Gubbels, B. Striepen, and C. S. Subauste. 2006. CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. J. Clin. Invest. 116:2366-2377. doi: 10.1172/JCI28796.

4. Songane, M., J. Kleinnijenhuis, M. G. Netea, and R. van Crevel. 2012. The role of autophagy in host defence against Mycobacterium tuberculosis infection. Tuberculosis (Edinb). 92:388-396. doi: 10.1016/j.tube.2012.05.004; 10.1016/j.tube.2012.05.004.

5. Kirkegaard, K., M. P. Taylor, and W. T. Jackson. 2004. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat. Rev. Microbiol. 2:301-314. doi: 10.1038/nrmicro865.

6. Kudchodkar, S. B., and B. Levine. 2009. Viruses and autophagy. Rev. Med. Virol. 19:359-378. doi: 10.1002/rmv.630.

7. Gaaloul, I., S. Riabi, R. Harrath, M. Evans, N. H. Salem, S. Mlayeh, S. Huber, and M. Aouni. 2012. Sudden unexpected death related to enterovirus myocarditis: histopathology, immunohistochemistry and molecular pathology diagnosis at post-mortem. BMC Infect. Dis. 12:212-2334-12-212. doi: 10.1186/1471-2334-12-212; 10.1186/1471-2334-12-212.

8. Li, J., C. Lin, M. Qu, X. Li, Z. Gao, X. Zhang, Y. Liu, Y. Huang, X. Wang, L. Jia, X. Li, G. Liu, H. Yan, L. Chen, and Q. Wang. 2013. Excretion of enterovirus 71 in persons infected with hand, foot and mouth disease. Virol. J. 10:31-422X-10-31. doi: 10.1186/1743-422X-10-31; 10.1186/1743-422X-10-31.

9. Katoh, H., Y. Mori, H. Kambara, T. Abe, T. Fukuhara, E. Morita, K. Moriishi, W. Kamitani, and Y. Matsuura. 2011. Heterogeneous nuclear ribonucleoprotein A2 participates in the replication of Japanese encephalitis virus through an interaction with viral proteins and RNA. J. Virol. 85:10976-10988. doi: 10.1128/JVI.00846-11; 10.1128/JVI.00846-11.

10. Levine, B., and D. J. Klionsky. 2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell. 6:463-477.

11. Xie, Z., and D. J. Klionsky. 2007. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9:1102-1109. doi: 10.1038/ncb1007-1102.

12. Pyo, J. O., J. Nah, and Y. K. Jung. 2012. Molecules and their functions in autophagy. Exp. Mol. Med. 44:73-80. doi: 10.3858/emm.2012.44.2.029; 10.3858/emm.2012.44.2.029.

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 18: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  18

13. Tovilovic, G., B. Ristic, M. Siljic, V. Nikolic, T. Kravic-Stevovic, M. Dulovic, M. Milenkovic, A. Knezevic, M. Bosnjak, V. Bumbasirevic, M. Stanojevic, and V. Trajkovic. 2013. mTOR-independent autophagy counteracts apoptosis in herpes simplex virus type 1-infected U251 glioma cells. Microbes Infect.. doi: 10.1016/j.micinf.2013.04.012; 10.1016/j.micinf.2013.04.012.

14. Kabeya, Y., N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako, T. Noda, E. Kominami, Y. Ohsumi, and T. Yoshimori. 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo j. 19:5720-5728. doi: 10.1093/emboj/19.21.5720.

15. Xie, Z., U. Nair, and D. J. Klionsky. 2008. Dissecting autophagosome formation: the missing pieces. Autophagy. 4:920-922.

16. Mizushima, N., A. Yamamoto, M. Hatano, Y. Kobayashi, Y. Kabeya, K. Suzuki, T. Tokuhisa, Y. Ohsumi, and T. Yoshimori. 2001. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol. 152:657-668.

17. Xie, Z., U. Nair, and D. J. Klionsky. 2008. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell. 19:3290-3298. doi: 10.1091/mbc.E07-12-1292.

18. Tanida, I. 2010. Autophagosome Formation and Molecular Mechanism of Autophagy. Antioxid. Redox Signal.. doi: 10.1089/ars.2010.3482.

19. Rubinsztein, D. C., T. Shpilka, and Z. Elazar. 2012. Mechanisms of autophagosome biogenesis. Curr. Biol. 22:R29-34. doi: 10.1016/j.cub.2011.11.034.

20. Weidberg, H., E. Shvets, and Z. Elazar. 2011. Biogenesis and cargo selectivity of autophagosomes. Annu. Rev. Biochem. 80:125-156. doi: 10.1146/annurev-biochem-052709-094552.

21. Eskelinen, E. L. 2005. Maturation of autophagic vacuoles in Mammalian cells. Autophagy. 1:1-10.

22. Wang, C. W., and D. J. Klionsky. 2003. The molecular mechanism of autophagy. Mol. Med. 9:65-76.

23. Dunn, W. A.,Jr. 1990. Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J. Cell Biol. 110:1935-1945.

24. Mousavi, S. A., R. Kjeken, T. O. Berg, P. O. Seglen, T. Berg, and A. Brech. 2001. Effects of inhibitors of the vacuolar proton pump on hepatic heterophagy and autophagy. Biochim. Biophys. Acta. 1510:243-257.

25. Nakamura, N., A. Matsuura, Y. Wada, and Y. Ohsumi. 1997. Acidification of vacuoles is required for autophagic degradation in the yeast, Saccharomyces cerevisiae. J. Biochem. 121:338-344.

26. Fass, E., E. Shvets, I. Degani, K. Hirschberg, and Z. Elazar. 2006. Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J. Biol. Chem. 281:36303-36316. doi: 10.1074/jbc.M607031200.

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 19: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  19

27. Press, B. 1998. Mutant Rab7 Causes the Accumulation of Cathepsin D and Cation-independent Mannose 6-Phosphate Receptor in an Early Endocytic Compartment J. Cell Biol. 140:1075-1089. doi: 10.1083/jcb.140.5.1075.

28. Santillo, M. 1997. Role of the Small GTPase RAB7 in the Late Endocytic Pathway J. Biol. Chem. 272:4391-4397. doi: 10.1074/jbc.272.7.4391.

29. Gutierrez, M. G., D. B. Munafo, W. Beron, and M. I. Colombo. 2004. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J. Cell. Sci. 117:2687-2697. doi: 10.1242/jcs.01114.

30. Jager, S., C. Bucci, I. Tanida, T. Ueno, E. Kominami, P. Saftig, and E. L. Eskelinen. 2004. Role for Rab7 in maturation of late autophagic vacuoles J. Cell. Sci. 117:4837-4848. doi: 10.1242/jcs.01370.

31. Eskelinen, E. L., Y. Tanaka, and P. Saftig. 2003. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol. 13:137-145.

32. Saftig, P., W. Beertsen, and E. L. Eskelinen. 2008. LAMP-2: a control step for phagosome and autophagosome maturation. Autophagy. 4:510-512.

33. Fortunato, F., H. Burgers, F. Bergmann, P. Rieger, M. W. Buchler, G. Kroemer, and J. Werner. 2009. Impaired autolysosome formation correlates with Lamp-2 depletion: role of apoptosis, autophagy, and necrosis in pancreatitis Gastroenterology. 137:350-60, 360.e1-5. doi: 10.1053/j.gastro.2009.04.003.

34. Tanaka, Y., G. Guhde, A. Suter, E. L. Eskelinen, D. Hartmann, R. Lullmann-Rauch, P. M. Janssen, J. Blanz, K. von Figura, and P. Saftig. 2000. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice Nature. 406:902-906. doi: 10.1038/35022595.

35. Shi, J., and H. Luo. 2012. Interplay between the cellular autophagy machinery and positive-stranded RNA viruses. Acta Biochim. Biophys. Sin. (Shanghai). 44:375-384. doi: 10.1093/abbs/gms010; 10.1093/abbs/gms010.

36. Taylor, M. P., and K. Kirkegaard. 2008. Potential subversion of autophagosomal pathway by picornaviruses. Autophagy. 4:286-289.

37. Klionsky, D. J. 2005. The molecular machinery of autophagy: unanswered questions. J. Cell. Sci. 118:7-18. doi: 10.1242/jcs.01620.

38. Whitton, J. L., C. T. Cornell, and R. Feuer. 2005. Host and virus determinants of picornavirus pathogenesis and tropism. Nat. Rev. Microbiol. 3:765-776. doi: 10.1038/nrmicro1284.

39. Mackenzie, J. 2005. Wrapping things up about virus RNA replication. Traffic. 6:967-977. doi: 10.1111/j.1600-0854.2005.00339.x.

40. Kemball, C. C., M. Alirezaei, C. T. Flynn, M. R. Wood, S. Harkins, W. B. Kiosses, and J. L. Whitton. 2010. Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo. J. Virol.. doi: 10.1128/JVI.01417-10.

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 20: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  20

41. Wong, J., J. Zhang, X. Si, G. Gao, I. Mao, B. M. McManus, and H. Luo. 2008. Autophagosome supports coxsackievirus B3 replication in host cells. J. Virol. 82:9143-9153. doi: 10.1128/JVI.00641-08.

42. Crawford, S. E., J. M. Hyser, B. Utama, and M. K. Estes. 2012. Autophagy hijacked through viroporin-activated calcium/calmodulin-dependent kinase kinase-beta signaling is required for rotavirus replication. Proc. Natl. Acad. Sci. U. S. A. 109:E3405-13. doi: 10.1073/pnas.1216539109; 10.1073/pnas.1216539109.

43. Joshi, A. D., and M. S. Swanson. 2011. Secrets of a successful pathogen: legionella resistance to progression along the autophagic pathway Front. Microbiol. 2:138. doi: 10.3389/fmicb.2011.00138.

44. Swanson, M. S., and E. Fernandez-Moreira. 2002. A microbial strategy to multiply in macrophages: the pregnant pause Traffic. 3:170-177.

45. Choy, A., J. Dancourt, B. Mugo, T. J. O'Connor, R. R. Isberg, T. J. Melia, and C. R. Roy. 2012. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science. 338:1072-1076. doi: 10.1126/science.1227026; 10.1126/science.1227026.

46. Deretic, V., and B. Levine. 2009. Autophagy, immunity, and microbial adaptations. Cell. Host Microbe. 5:527-549. doi: 10.1016/j.chom.2009.05.016; 10.1016/j.chom.2009.05.016.

47. Tanida, I., M. Fukasawa, T. Ueno, E. Kominami, T. Wakita, and K. Hanada. 2009. Knockdown of autophagy-related gene decreases the production of infectious hepatitis C virus particles. Autophagy. 5:937-945.

48. Dreux, M., P. Gastaminza, S. F. Wieland, and F. V. Chisari. 2009. The autophagy machinery is required to initiate hepatitis C virus replication. Proc. Natl. Acad. Sci. U. S. A. 106:14046-14051. doi: 10.1073/pnas.0907344106.

49. Dreux, M., and F. V. Chisari. 2009. Autophagy proteins promote hepatitis C virus replication. Autophagy. 5:1224-1225.

50. Jackson, W. T., T. H. Giddings Jr, M. P. Taylor, S. Mulinyawe, M. Rabinovitch, R. R. Kopito, and K. Kirkegaard. 2005. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol. 3:e156. doi: 10.1371/journal.pbio.0030156.

51. Heaton, N. S., and G. Randall. 2010. Dengue virus-induced autophagy regulates lipid metabolism. Cell. Host Microbe. 8:422-432. doi: 10.1016/j.chom.2010.10.006.

52. Khakpoor, A., M. Panyasrivanit, N. Wikan, and D. R. Smith. 2009. A role for autophagolysosomes in dengue virus 3 production in HepG2 cells. J. Gen. Virol. 90:1093-1103. doi: 10.1099/vir.0.007914-0.

53. Klionsky, D. J., F. C. Abdalla, H. Abeliovich, R. T. Abraham, A. Acevedo-Arozena, K. Adeli, L. Agholme, M. Agnello, P. Agostinis, J. A. Aguirre-Ghiso, H. J. Ahn, O. Ait-Mohamed, S. Ait-Si-Ali, T. Akematsu, S. Akira, H. M. Al-Younes, M. A. Al-Zeer, M. L. Albert, R. L. Albin, J. Alegre-Abarrategui, M. F. Aleo, M. Alirezaei, A. Almasan, M. Almonte-Becerril, A. Amano, R. Amaravadi, S. Amarnath, A. O. Amer, N. Andrieu-Abadie,

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 21: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  21

V. Anantharam, D. K. Ann, S. Anoopkumar-Dukie, H. Aoki, N. Apostolova, P. Auberger, M. Baba, S. K. Backues, E. H. Baehrecke, B. A. Bahr, X. Y. Bai, Y. Bailly, R. Baiocchi, G. Baldini, W. Balduini, A. Ballabio, B. A. Bamber, E. T. Bampton, G. Banhegyi, C. R. Bartholomew, D. C. Bassham, R. C. Bast Jr, H. Batoko, B. H. Bay, I. Beau, D. M. Bechet, T. J. Begley, C. Behl, C. Behrends, S. Bekri, B. Bellaire, L. J. Bendall, L. Benetti, L. Berliocchi, H. Bernardi, F. Bernassola, S. Besteiro, I. Bhatia-Kissova, X. Bi, M. Biard-Piechaczyk, J. S. Blum, L. H. Boise, P. Bonaldo, D. L. Boone, B. C. Bornhauser, K. R. Bortoluci, I. Bossis, F. Bost, J. P. Bourquin, P. Boya, M. Boyer-Guittaut, P. V. Bozhkov, N. R. Brady, C. Brancolini, A. Brech, J. E. Brenman, A. Brennand, E. H. Bresnick, P. Brest, D. Bridges, M. L. Bristol, P. S. Brookes, E. J. Brown, J. H. Brumell, N. Brunetti-Pierri, U. T. Brunk, D. E. Bulman, S. J. Bultman, G. Bultynck, L. F. Burbulla, W. Bursch, J. P. Butchar, W. Buzgariu, S. P. Bydlowski, K. Cadwell, M. Cahova, D. Cai, J. Cai, Q. Cai, B. Calabretta, J. Calvo-Garrido, N. Camougrand, M. Campanella, J. Campos-Salinas, E. Candi, L. Cao, A. B. Caplan, S. R. Carding, S. M. Cardoso, J. S. Carew, C. R. Carlin, V. Carmignac, L. A. Carneiro, S. Carra, R. A. Caruso, G. Casari, C. Casas, R. Castino, E. Cebollero, F. Cecconi, J. Celli, H. Chaachouay, H. J. Chae, C. Y. Chai, D. C. Chan, E. Y. Chan, R. C. Chang, C. M. Che, C. C. Chen, G. C. Chen, G. Q. Chen, M. Chen, Q. Chen, S. S. Chen, W. Chen, X. Chen, X. Chen, X. Chen, Y. G. Chen, Y. Chen, Y. Chen, Y. J. Chen, Z. Chen, A. Cheng, C. H. Cheng, Y. Cheng, H. Cheong, J. H. Cheong, S. Cherry, R. Chess-Williams, Z. H. Cheung, E. Chevet, H. L. Chiang, R. Chiarelli, T. Chiba, L. S. Chin, S. H. Chiou, F. V. Chisari, C. H. Cho, D. H. Cho, A. M. Choi, D. Choi, K. S. Choi, M. E. Choi, S. Chouaib, D. Choubey, V. Choubey, C. T. Chu, T. H. Chuang, S. H. Chueh, T. Chun, Y. J. Chwae, M. L. Chye, R. Ciarcia, M. R. Ciriolo, M. J. Clague, R. S. Clark, P. G. Clarke, R. Clarke, P. Codogno, H. A. Coller, M. I. Colombo, S. Comincini, M. Condello, F. Condorelli, M. R. Cookson, G. H. Coombs, I. Coppens, R. Corbalan, P. Cossart, P. Costelli, S. Costes, A. Coto-Montes, E. Couve, F. P. Coxon, J. M. Cregg, J. L. Crespo, M. J. Cronje, A. M. Cuervo, J. J. Cullen, M. J. Czaja, M. D'Amelio, A. Darfeuille-Michaud, L. M. Davids, F. E. Davies, M. De Felici, J. F. de Groot, C. A. de Haan, L. De Martino, A. De Milito, V. De Tata, J. Debnath, A. Degterev, B. Dehay, L. M. Delbridge, F. Demarchi, Y. Z. Deng, J. Dengjel, P. Dent, D. Denton, V. Deretic, S. D. Desai, R. J. Devenish, M. Di Gioacchino, G. Di Paolo, C. Di Pietro, G. Diaz-Araya, I. Diaz-Laviada, M. T. Diaz-Meco, J. Diaz-Nido, I. Dikic, S. P. Dinesh-Kumar, W. X. Ding, C. W. Distelhorst, A. Diwan, M. Djavaheri-Mergny, S. Dokudovskaya, Z. Dong, F. C. Dorsey, V. Dosenko, J. J. Dowling, S. Doxsey, M. Dreux, M. E. Drew, Q. Duan, M. A. Duchosal, K. Duff, I. Dugail, M. Durbeej, M. Duszenko, C. L. Edelstein, A. L. Edinger, G. Egea, L. Eichinger, N. T. Eissa, S. Ekmekcioglu, W. S. El-Deiry, Z. Elazar, M. Elgendy, L. M. Ellerby, K. E. Eng, A. M. Engelbrecht, S. Engelender, J. Erenpreisa, R. Escalante, A. Esclatine, E. L. Eskelinen, L. Espert, V. Espina, H. Fan, J. Fan, Q. W. Fan, Z. Fan, S. Fang, Y. Fang, M. Fanto, A. Fanzani, T. Farkas, J. C. Farre, M. Faure, M. Fechheimer, C. G. Feng, J. Feng, Q. Feng, Y. Feng, L. Fesus, R. Feuer, M. E. Figueiredo-Pereira, G. M. Fimia, D. C. Fingar, S. Finkbeiner, T. Finkel, K. D. Finley, F. Fiorito, E. A. Fisher, P. B. Fisher, M. Flajolet, M. L. Florez-McClure, S. Florio, E. A. Fon, F. Fornai, F. Fortunato, R. Fotedar, D. H. Fowler, H. S. Fox, R. Franco, L. B. Frankel, M. Fransen, J. M. Fuentes, J. Fueyo, J. Fujii, K. Fujisaki, E. Fujita, M. Fukuda, R. H. Furukawa, M. Gaestel, P. Gailly, M. Gajewska, B. Galliot, V. Galy, S. Ganesh, B. Ganetzky, I. G. Ganley, F. B. Gao, G. F. Gao, J. Gao, L. Garcia, G. Garcia-Manero, M. Garcia-Marcos, M. Garmyn, A. L. Gartel, E. Gatti, M. Gautel, T. R. Gawriluk, M. E. Gegg, J. Geng, M. Germain, J. E. Gestwicki, D. A. Gewirtz, S. Ghavami, P. Ghosh, A. M. Giammarioli, A. N. Giatromanolaki, S. B. Gibson, R. W. Gilkerson, M. L. Ginger, E. Goncu, C. Gongora, C. D. Gonzalez, R. Gonzalez, C. Gonzalez-Estevez, R. A. Gonzalez-Polo, E. Gonzalez-Rey, N. V. Gorbunov, S. Gorski, S. Goruppi, R. A. Gottlieb, D. Gozuacik, G. E. Granato, G. D. Grant, K. N. Green, A. Gregorc, F. Gros, C. Grose, T. W. Grunt, P. Gual, J. L. Guan, K. L. Guan, S. M. Guichard, A. S. Gukovskaya, I.

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 22: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  22

Gukovsky, J. Gunst, A. B. Gustafsson, A. J. Halayko, A. N. Hale, S. K. Halonen, M. Hamasaki, F. Han, T. Han, M. K. Hancock, M. Hansen, H. Harada, M. Harada, S. E. Hardt, J. W. Harper, A. L. Harris, J. Harris, S. D. Harris, M. J. Hebert, K. A. Heidenreich, M. H. Helfrich, G. V. Helgason, E. P. Henske, B. Herman, P. K. Herman, C. Hetz, S. Hilfiker, J. A. Hill, L. J. Hocking, P. Hofman, T. G. Hofmann, J. Hohfeld, T. L. Holyoake, M. H. Hong, D. A. Hood, G. S. Hotamisligil, E. J. Houwerzijl, M. Hoyer-Hansen, B. Hu, C. A. Hu, H. M. Hu, Y. Hua, C. Huang, J. Huang, S. Huang, W. P. Huang, T. B. Huber, W. K. Huh, T. H. Hung, T. R. Hupp, G. M. Hur, J. B. Hurley, S. N. Hussain, P. J. Hussey, J. J. Hwang, S. Hwang, A. Ichihara, S. Ilkhanizadeh, K. Inoki, T. Into, V. Iovane, J. L. Iovanna, N. Y. Ip, Y. Isaka, H. Ishida, C. Isidoro, K. Isobe, A. Iwasaki, M. Izquierdo, Y. Izumi, P. M. Jaakkola, M. Jaattela, G. R. Jackson, W. T. Jackson, B. Janji, M. Jendrach, J. H. Jeon, E. B. Jeung, H. Jiang, H. Jiang, J. X. Jiang, M. Jiang, Q. Jiang, X. Jiang, X. Jiang, A. Jimenez, M. Jin, S. Jin, C. O. Joe, T. Johansen, D. E. Johnson, G. V. Johnson, N. L. Jones, B. Joseph, S. K. Joseph, A. M. Joubert, G. Juhasz, L. Juillerat-Jeanneret, C. H. Jung, Y. K. Jung, K. Kaarniranta, A. Kaasik, T. Kabuta, M. Kadowaki, K. Kagedal, Y. Kamada, V. O. Kaminskyy, H. H. Kampinga, H. Kanamori, C. Kang, K. B. Kang, K. I. Kang, R. Kang, Y. A. Kang, T. Kanki, T. D. Kanneganti, H. Kanno, A. G. Kanthasamy, A. Kanthasamy, V. Karantza, G. P. Kaushal, S. Kaushik, Y. Kawazoe, P. Y. Ke, J. H. Kehrl, A. Kelekar, C. Kerkhoff, D. H. Kessel, H. Khalil, J. A. Kiel, A. A. Kiger, A. Kihara, D. R. Kim, D. H. Kim, D. H. Kim, E. K. Kim, H. R. Kim, J. S. Kim, J. H. Kim, J. C. Kim, J. K. Kim, P. K. Kim, S. W. Kim, Y. S. Kim, Y. Kim, A. Kimchi, A. C. Kimmelman, J. S. King, T. J. Kinsella, V. Kirkin, L. A. Kirshenbaum, K. Kitamoto, K. Kitazato, L. Klein, W. T. Klimecki, J. Klucken, E. Knecht, B. C. Ko, J. C. Koch, H. Koga, J. Y. Koh, Y. H. Koh, M. Koike, M. Komatsu, E. Kominami, H. J. Kong, W. J. Kong, V. I. Korolchuk, Y. Kotake, M. I. Koukourakis, J. B. Kouri Flores, A. L. Kovacs, C. Kraft, D. Krainc, H. Kramer, C. Kretz-Remy, A. M. Krichevsky, G. Kroemer, R. Kruger, O. Krut, N. T. Ktistakis, C. Y. Kuan, R. Kucharczyk, A. Kumar, R. Kumar, S. Kumar, M. Kundu, H. J. Kung, T. Kurz, H. J. Kwon, A. R. La Spada, F. Lafont, T. Lamark, J. Landry, J. D. Lane, P. Lapaquette, J. F. Laporte, L. Laszlo, S. Lavandero, J. N. Lavoie, R. Layfield, P. A. Lazo, W. Le, L. Le Cam, D. J. Ledbetter, A. J. Lee, B. W. Lee, G. M. Lee, J. Lee, J. H. Lee, M. Lee, M. S. Lee, S. H. Lee, C. Leeuwenburgh, P. Legembre, R. Legouis, M. Lehmann, H. Y. Lei, Q. Y. Lei, D. A. Leib, J. Leiro, J. J. Lemasters, A. Lemoine, M. S. Lesniak, D. Lev, V. V. Levenson, B. Levine, E. Levy, F. Li, J. L. Li, L. Li, S. Li, W. Li, X. J. Li, Y. B. Li, Y. P. Li, C. Liang, Q. Liang, Y. F. Liao, P. P. Liberski, A. Lieberman, H. J. Lim, K. L. Lim, K. Lim, C. F. Lin, F. C. Lin, J. Lin, J. D. Lin, K. Lin, W. W. Lin, W. C. Lin, Y. L. Lin, R. Linden, P. Lingor, J. Lippincott-Schwartz, M. P. Lisanti, P. B. Liton, B. Liu, C. F. Liu, K. Liu, L. Liu, Q. A. Liu, W. Liu, Y. C. Liu, Y. Liu, R. A. Lockshin, C. N. Lok, S. Lonial, B. Loos, G. Lopez-Berestein, C. Lopez-Otin, L. Lossi, M. T. Lotze, P. Low, B. Lu, B. Lu, B. Lu, Z. Lu, F. Luciano, N. W. Lukacs, A. H. Lund, M. A. Lynch-Day, Y. Ma, F. Macian, J. P. MacKeigan, K. F. Macleod, F. Madeo, L. Maiuri, M. C. Maiuri, D. Malagoli, M. C. Malicdan, W. Malorni, N. Man, E. M. Mandelkow, S. Manon, I. Manov, K. Mao, X. Mao, Z. Mao, P. Marambaud, D. Marazziti, Y. L. Marcel, K. Marchbank, P. Marchetti, S. J. Marciniak, M. Marcondes, M. Mardi, G. Marfe, G. Marino, M. Markaki, M. R. Marten, S. J. Martin, C. Martinand-Mari, W. Martinet, M. Martinez-Vicente, M. Masini, P. Matarrese, S. Matsuo, R. Matteoni, A. Mayer, N. M. Mazure, D. J. McConkey, M. J. McConnell, C. McDermott, C. McDonald, G. M. McInerney, S. L. McKenna, B. McLaughlin, P. J. McLean, C. R. McMaster, G. A. McQuibban, A. J. Meijer, M. H. Meisler, A. Melendez, T. J. Melia, G. Melino, M. A. Mena, J. A. Menendez, R. F. Menna-Barreto, M. B. Menon, F. M. Menzies, C. A. Mercer, A. Merighi, D. E. Merry, S. Meschini, C. G. Meyer, T. F. Meyer, C. Y. Miao, J. Y. Miao, P. A. Michels, C. Michiels, D. Mijaljica, A. Milojkovic, S. Minucci, C. Miracco, C. K. Miranti, I. Mitroulis, K. Miyazawa, N. Mizushima, B. Mograbi, S. Mohseni, X. Molero, B. Mollereau, F. Mollinedo, T. Momoi, I. Monastyrska, M. M. Monick, M. J. Monteiro, M. N. Moore, R. Mora, K. Moreau, P.

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 23: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  23

I. Moreira, Y. Moriyasu, J. Moscat, S. Mostowy, J. C. Mottram, T. Motyl, C. E. Moussa, S. Muller, S. Muller, K. Munger, C. Munz, L. O. Murphy, M. E. Murphy, A. Musaro, I. Mysorekar, E. Nagata, K. Nagata, A. Nahimana, U. Nair, T. Nakagawa, K. Nakahira, H. Nakano, H. Nakatogawa, M. Nanjundan, N. I. Naqvi, D. P. Narendra, M. Narita, M. Navarro, S. T. Nawrocki, T. Y. Nazarko, A. Nemchenko, M. G. Netea, T. P. Neufeld, P. A. Ney, I. P. Nezis, H. P. Nguyen, D. Nie, I. Nishino, C. Nislow, R. A. Nixon, T. Noda, A. A. Noegel, A. Nogalska, S. Noguchi, L. Notterpek, I. Novak, T. Nozaki, N. Nukina, T. Nurnberger, B. Nyfeler, K. Obara, T. D. Oberley, S. Oddo, M. Ogawa, T. Ohashi, K. Okamoto, N. L. Oleinick, F. J. Oliver, L. J. Olsen, S. Olsson, O. Opota, T. F. Osborne, G. K. Ostrander, K. Otsu, J. H. Ou, M. Ouimet, M. Overholtzer, B. Ozpolat, P. Paganetti, U. Pagnini, N. Pallet, G. E. Palmer, C. Palumbo, T. Pan, T. Panaretakis, U. B. Pandey, Z. Papackova, I. Papassideri, I. Paris, J. Park, O. K. Park, J. B. Parys, K. R. Parzych, S. Patschan, C. Patterson, S. Pattingre, J. M. Pawelek, J. Peng, D. H. Perlmutter, I. Perrotta, G. Perry, S. Pervaiz, M. Peter, G. J. Peters, M. Petersen, G. Petrovski, J. M. Phang, M. Piacentini, P. Pierre, V. Pierrefite-Carle, G. Pierron, R. Pinkas-Kramarski, A. Piras, N. Piri, L. C. Platanias, S. Poggeler, M. Poirot, A. Poletti, C. Pous, M. Pozuelo-Rubio, M. Praetorius-Ibba, A. Prasad, M. Prescott, M. Priault, N. Produit-Zengaffinen, A. Progulske-Fox, T. Proikas-Cezanne, S. Przedborski, K. Przyklenk, R. Puertollano, J. Puyal, S. B. Qian, L. Qin, Z. H. Qin, S. E. Quaggin, N. Raben, H. Rabinowich, S. W. Rabkin, I. Rahman, A. Rami, G. Ramm, G. Randall, F. Randow, V. A. Rao, J. C. Rathmell, B. Ravikumar, S. K. Ray, B. H. Reed, J. C. Reed, F. Reggiori, A. Regnier-Vigouroux, A. S. Reichert, J. J. Reiners Jr, R. J. Reiter, J. Ren, J. L. Revuelta, C. J. Rhodes, K. Ritis, E. Rizzo, J. Robbins, M. Roberge, H. Roca, M. C. Roccheri, S. Rocchi, H. P. Rodemann, S. Rodriguez de Cordoba, B. Rohrer, I. B. Roninson, K. Rosen, M. M. Rost-Roszkowska, M. Rouis, K. M. Rouschop, F. Rovetta, B. P. Rubin, D. C. Rubinsztein, K. Ruckdeschel, E. B. Rucker 3rd, A. Rudich, E. Rudolf, N. Ruiz-Opazo, R. Russo, T. E. Rusten, K. M. Ryan, S. W. Ryter, D. M. Sabatini, J. Sadoshima, T. Saha, T. Saitoh, H. Sakagami, Y. Sakai, G. H. Salekdeh, P. Salomoni, P. M. Salvaterra, G. Salvesen, R. Salvioli, A. M. Sanchez, J. A. Sanchez-Alcazar, R. Sanchez-Prieto, M. Sandri, U. Sankar, P. Sansanwal, L. Santambrogio, S. Saran, S. Sarkar, M. Sarwal, C. Sasakawa, A. Sasnauskiene, M. Sass, K. Sato, M. Sato, A. H. Schapira, M. Scharl, H. M. Schatzl, W. Scheper, S. Schiaffino, C. Schneider, M. E. Schneider, R. Schneider-Stock, P. V. Schoenlein, D. F. Schorderet, C. Schuller, G. K. Schwartz, L. Scorrano, L. Sealy, P. O. Seglen, J. Segura-Aguilar, I. Seiliez, O. Seleverstov, C. Sell, J. B. Seo, D. Separovic, V. Setaluri, T. Setoguchi, C. Settembre, J. J. Shacka, M. Shanmugam, I. M. Shapiro, E. Shaulian, R. J. Shaw, J. H. Shelhamer, H. M. Shen, W. C. Shen, Z. H. Sheng, Y. Shi, K. Shibuya, Y. Shidoji, J. J. Shieh, C. M. Shih, Y. Shimada, S. Shimizu, T. Shintani, O. S. Shirihai, G. C. Shore, A. A. Sibirny, S. B. Sidhu, B. Sikorska, E. C. Silva-Zacarin, A. Simmons, A. K. Simon, H. U. Simon, C. Simone, A. Simonsen, D. A. Sinclair, R. Singh, D. Sinha, F. A. Sinicrope, A. Sirko, P. M. Siu, E. Sivridis, V. Skop, V. P. Skulachev, R. S. Slack, S. S. Smaili, D. R. Smith, M. S. Soengas, T. Soldati, X. Song, A. K. Sood, T. W. Soong, F. Sotgia, S. A. Spector, C. D. Spies, W. Springer, S. M. Srinivasula, L. Stefanis, J. S. Steffan, R. Stendel, H. Stenmark, A. Stephanou, S. T. Stern, C. Sternberg, B. Stork, P. Stralfors, C. S. Subauste, X. Sui, D. Sulzer, J. Sun, S. Y. Sun, Z. J. Sun, J. J. Sung, K. Suzuki, T. Suzuki, M. S. Swanson, C. Swanton, S. T. Sweeney, L. K. Sy, G. Szabadkai, I. Tabas, H. Taegtmeyer, M. Tafani, K. Takacs-Vellai, Y. Takano, K. Takegawa, G. Takemura, F. Takeshita, N. J. Talbot, K. S. Tan, K. Tanaka, K. Tanaka, D. Tang, D. Tang, I. Tanida, B. A. Tannous, N. Tavernarakis, G. S. Taylor, G. A. Taylor, J. P. Taylor, L. S. Terada, A. Terman, G. Tettamanti, K. Thevissen, C. B. Thompson, A. Thorburn, M. Thumm, F. Tian, Y. Tian, G. Tocchini-Valentini, A. M. Tolkovsky, Y. Tomino, L. Tonges, S. A. Tooze, C. Tournier, J. Tower, R. Towns, V. Trajkovic, L. H. Travassos, T. F. Tsai, M. P. Tschan, T. Tsubata, A. Tsung, B. Turk, L. S. Turner, S. C. Tyagi, Y. Uchiyama, T. Ueno, M. Umekawa,

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 24: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  24

R. Umemiya-Shirafuji, V. K. Unni, M. I. Vaccaro, E. M. Valente, G. Van den Berghe, I. J. van der Klei, W. van Doorn, L. F. van Dyk, M. van Egmond, L. A. van Grunsven, P. Vandenabeele, W. P. Vandenberghe, I. Vanhorebeek, E. C. Vaquero, G. Velasco, T. Vellai, J. M. Vicencio, R. D. Vierstra, M. Vila, C. Vindis, G. Viola, M. T. Viscomi, O. V. Voitsekhovskaja, C. von Haefen, M. Votruba, K. Wada, R. Wade-Martins, C. L. Walker, C. M. Walsh, J. Walter, X. B. Wan, A. Wang, C. Wang, D. Wang, F. Wang, F. Wang, G. Wang, H. Wang, H. G. Wang, H. D. Wang, J. Wang, K. Wang, M. Wang, R. C. Wang, X. Wang, X. Wang, Y. J. Wang, Y. Wang, Z. Wang, Z. C. Wang, Z. Wang, D. G. Wansink, D. M. Ward, H. Watada, S. L. Waters, P. Webster, L. Wei, C. C. Weihl, W. A. Weiss, S. M. Welford, L. P. Wen, C. A. Whitehouse, J. L. Whitton, A. J. Whitworth, T. Wileman, J. W. Wiley, S. Wilkinson, D. Willbold, R. L. Williams, P. R. Williamson, B. G. Wouters, C. Wu, D. C. Wu, W. K. Wu, A. Wyttenbach, R. J. Xavier, Z. Xi, P. Xia, G. Xiao, Z. Xie, Z. Xie, D. Z. Xu, J. Xu, L. Xu, X. Xu, A. Yamamoto, A. Yamamoto, S. Yamashina, M. Yamashita, X. Yan, M. Yanagida, D. S. Yang, E. Yang, J. M. Yang, S. Y. Yang, W. Yang, W. Y. Yang, Z. Yang, M. C. Yao, T. P. Yao, B. Yeganeh, W. L. Yen, J. J. Yin, X. M. Yin, O. J. Yoo, G. Yoon, S. Y. Yoon, T. Yorimitsu, Y. Yoshikawa, T. Yoshimori, K. Yoshimoto, H. J. You, R. J. Youle, A. Younes, L. Yu, L. Yu, S. W. Yu, W. H. Yu, Z. M. Yuan, Z. Yue, C. H. Yun, M. Yuzaki, O. Zabirnyk, E. Silva-Zacarin, D. Zacks, E. Zacksenhaus, N. Zaffaroni, Z. Zakeri, H. J. Zeh 3rd, S. O. Zeitlin, H. Zhang, H. L. Zhang, J. Zhang, J. P. Zhang, L. Zhang, L. Zhang, M. Y. Zhang, X. D. Zhang, M. Zhao, Y. F. Zhao, Y. Zhao, Z. J. Zhao, X. Zheng, B. Zhivotovsky, Q. Zhong, C. Z. Zhou, C. Zhu, W. G. Zhu, X. F. Zhu, X. Zhu, Y. Zhu, T. Zoladek, W. X. Zong, A. Zorzano, J. Zschocke, and B. Zuckerbraun. 2012. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 8:445-544.

54. Lee, Y. R., H. Y. Lei, M. T. Liu, J. R. Wang, S. H. Chen, Y. F. Jiang-Shieh, Y. S. Lin, T. M. Yeh, C. C. Liu, and H. S. Liu. 2008. Autophagic machinery activated by dengue virus enhances virus replication. Virology. 374:240-248. doi: 10.1016/j.virol.2008.02.016.

55. Halstead, S. B. 1988. Pathogenesis of dengue: challenges to molecular biology. Science. 239:476-481.

56. Holmes, E. C., and S. S. Twiddy. 2003. The origin, emergence and evolutionary genetics of dengue virus. Infect. Genet. Evol. 3:19-28.

57. Panyasrivanit, M., A. Khakpoor, N. Wikan, and D. R. Smith. 2009. Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes. J. Gen. Virol. 90:448-456. doi: 10.1099/vir.0.005355-0.

58. Singh, R., and A. M. Cuervo. 2012. Lipophagy: connecting autophagy and lipid metabolism. Int. J. Cell. Biol. 2012:282041. doi: 10.1155/2012/282041; 10.1155/2012/282041.

59. Hoofnagle, J. H. 2002. Course and outcome of hepatitis C. Hepatology. 36:S21-9. doi: 10.1053/jhep.2002.36227.

60. Guevin, C., D. Manna, C. Belanger, K. V. Konan, P. Mak, and P. Labonte. 2010. Autophagy protein ATG5 interacts transiently with the hepatitis C virus RNA polymerase (NS5B) early during infection. Virology. 405:1-7. doi: 10.1016/j.virol.2010.05.032.

61. Ferraris, P., E. Blanchard, and P. Roingeard. 2010. Ultrastructural and biochemical analyses of hepatitis C virus-associated host cell membranes. J. Gen. Virol. 91:2230-2237. doi: 10.1099/vir.0.022186-0.

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 25: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  25

62. Su, W. C., T. C. Chao, Y. L. Huang, S. C. Weng, K. S. Jeng, and M. M. Lai. 2011. Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J. Virol. 85:10561-10571. doi: 10.1128/JVI.00173-11; 10.1128/JVI.00173-11.

63. Shrivastava, S., A. Raychoudhuri, R. Steele, R. Ray, and R. B. Ray. 2011. Knockdown of autophagy enhances the innate immune response in hepatitis C virus-infected hepatocytes. Hepatology. 53:406-414. doi: 10.1002/hep.24073; 10.1002/hep.24073.

64. Kimura, S., T. Noda, and T. Yoshimori. 2007. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy. 3:452-460.

65. Ke, P. Y., and S. S. Chen. 2011. Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. J. Clin. Invest. 121:37-56. doi: 10.1172/JCI41474; 10.1172/JCI41474.

66. Sir, D., W. L. Chen, J. Choi, T. Wakita, T. S. Yen, and J. H. Ou. 2008. Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology. 48:1054-1061. doi: 10.1002/hep.22464.

67. Taguwa, S., H. Kambara, N. Fujita, T. Noda, T. Yoshimori, K. Koike, K. Moriishi, and Y. Matsuura. 2011. Dysfunction of autophagy participates in vacuole formation and cell death in cells replicating hepatitis C virus. J. Virol. 85:13185-13194. doi: 10.1128/JVI.06099-11.

68. Mizui, T., S. Yamashina, I. Tanida, Y. Takei, T. Ueno, N. Sakamoto, K. Ikejima, T. Kitamura, N. Enomoto, T. Sakai, E. Kominami, and S. Watanabe. 2010. Inhibition of hepatitis C virus replication by chloroquine targeting virus-associated autophagy. J. Gastroenterol. 45:195-203. doi: 10.1007/s00535-009-0132-9.

69. Chase, A. J., and B. L. Semler. 2012. Viral subversion of host functions for picornavirus translation and RNA replication. Future Virol. 7:179-191.

70. Dales, S., H. J. Eggers, I. Tamm, and G. E. Palade. 1965. Electron Microscopic Study of the Formation of Poliovirus. Virology. 26:379-389.

71. Suhy, D. A., T. H. Giddings Jr, and K. Kirkegaard. 2000. Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles J. Virol. 74:8953-8965.

72. Niemann, A., J. Baltes, and H.-. Elsasser. 2001. Fluorescence Properties and Staining Behavior of Monodansylpentane, a Structural Homologue of the Lysosomotropic Agent Monodansylcadaverine Journal of Histochemistry & Cytochemistry. 49:177 <last_page> 185. doi: 10.1177/002215540104900205.

73. Richards, A. L., and W. T. Jackson. 2012. Intracellular vesicle acidification promotes maturation of infectious poliovirus particles. PLoS Pathog. 8:e1003046. doi: 10.1371/journal.ppat.1003046; 10.1371/journal.ppat.1003046.

74. Jin, R., W. Zhu, S. Cao, R. Chen, H. Jin, Y. Liu, S. Wang, W. Wang, and G. Xiao. 2013. Japanese encephalitis virus activates autophagy as a viral immune evasion strategy. PLoS One. 8:e52909. doi: 10.1371/journal.pone.0052909; 10.1371/journal.pone.0052909.

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 26: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  26

75. Vescovo, T., A. Romagnoli, A. B. Perdomo, M. Corazzari, F. Ciccosanti, T. Alonzi, R. Nardacci, G. Ippolito, M. Tripodi, C. Garcia-Monzon, O. Lo Iacono, M. Piacentini, and G. M. Fimia. 2012. Autophagy protects cells from HCV-induced defects in lipid metabolism. Gastroenterology. 142:644-653.e3. doi: 10.1053/j.gastro.2011.11.033.

76. Miyanari, Y., K. Atsuzawa, N. Usuda, K. Watashi, T. Hishiki, M. Zayas, R. Bartenschlager, T. Wakita, M. Hijikata, and K. Shimotohno. 2007. The lipid droplet is an important organelle for hepatitis C virus production. Nat. Cell Biol. 9:1089-1097. doi: 10.1038/ncb1631.

77. Mateo, R., C. M. Nagamine, J. Spagnolo, E. Mendez, M. Rahe, M. Gale Jr, J. Yuan, and K. Kirkegaard. 2013. Inhibition of cellular autophagy deranges dengue virion maturation. J. Virol. 87:1312-1321. doi: 10.1128/JVI.02177-12; 10.1128/JVI.02177-12.

78. Zhang, Y., Z. Li, X. Ge, X. Guo, and H. Yang. 2011. Autophagy promotes the replication of encephalomyocarditis virus in host cells. Autophagy. 7:613-628.

79. Chen, Q., L. Fang, D. Wang, S. Wang, P. Li, M. Li, R. Luo, H. Chen, and S. Xiao. 2012. Induction of autophagy enhances porcine reproductive and respiratory syndrome virus replication. Virus Res. 163:650-655. doi: 10.1016/j.virusres.2011.11.008.

80. Liu, Q., Y. Qin, L. Zhou, Q. Kou, X. Guo, X. Ge, H. Yang, and H. Hu. 2012. Autophagy sustains the replication of porcine reproductive and respiratory virus in host cells. Virology. 429:136-147. doi: 10.1016/j.virol.2012.03.022.

81. Inglot, A. D. 1969. Comparison of the antiviral activity in vitro of some non-steroidal anti-inflammatory drugs. J. Gen. Virol. 4:203-214.

82. Matarrese, P., L. Nencioni, P. Checconi, L. Ciarlo, L. Gambardella, B. Ascione, R. Sgarbanti, E. Garaci, W. Malorni, and A. T. Palamara. 2011. Pepstatin A alters host cell autophagic machinery and leads to a decrease in influenza A virus production. J. Cell. Physiol. 226:3368-3377. doi: 10.1002/jcp.22696; 10.1002/jcp.22696.

83. Lamkanfi, M., and V. M. Dixit. 2010. Manipulation of host cell death pathways during microbial infections. Cell. Host Microbe. 8:44-54. doi: 10.1016/j.chom.2010.06.007; 10.1016/j.chom.2010.06.007.

84. Gordy, C., and Y. W. He. 2012. The crosstalk between autophagy and apoptosis: where does this lead? Protein Cell. 3:17-27. doi: 10.1007/s13238-011-1127-x; 10.1007/s13238-011-1127-x.

85. Yorimitsu, T., U. Nair, Z. Yang, and D. J. Klionsky. 2006. Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem. 281:30299-30304. doi: 10.1074/jbc.M607007200.

86. Hoyer-Hansen, M., and M. Jaattela. 2007. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ. 14:1576-1582. doi: 10.1038/sj.cdd.4402200.

87. Fujita, E., Y. Kouroku, A. Isoai, H. Kumagai, A. Misutani, C. Matsuda, Y. K. Hayashi, and T. Momoi. 2007. Two endoplasmic reticulum-associated degradation (ERAD) systems for

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 27: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  27

the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Hum. Mol. Genet. 16:618-629. doi: 10.1093/hmg/ddm002.

88. Bernales, S., K. L. McDonald, and P. Walter. 2006. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4:e423. doi: 10.1371/journal.pbio.0040423.

89. Ogata, M., S. Hino, A. Saito, K. Morikawa, S. Kondo, S. Kanemoto, T. Murakami, M. Taniguchi, I. Tanii, K. Yoshinaga, S. Shiosaka, J. A. Hammarback, F. Urano, and K. Imaizumi. 2006. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26:9220-9231. doi: 10.1128/MCB.01453-06.

90. Ciccaglione, A. R., A. Costantino, E. Tritarelli, C. Marcantonio, M. Equestre, N. Marziliano, and M. Rapicetta. 2005. Activation of endoplasmic reticulum stress response by hepatitis C virus proteins. Arch. Virol. 150:1339-1356. doi: 10.1007/s00705-004-0487-4.

91. Joyce, M. A., K. A. Walters, S. E. Lamb, M. M. Yeh, L. F. Zhu, N. Kneteman, J. S. Doyle, M. G. Katze, and D. L. Tyrrell. 2009. HCV induces oxidative and ER stress, and sensitizes infected cells to apoptosis in SCID/Alb-uPA mice. PLoS Pathog. 5:e1000291. doi: 10.1371/journal.ppat.1000291; 10.1371/journal.ppat.1000291.

92. Rosebeck, S., K. Sudini, T. Chen, and D. W. Leaman. 2011. Involvement of Noxa in mediating cellular ER stress responses to lytic virus infection. Virology. 417:293-303. doi: 10.1016/j.virol.2011.06.010; 10.1016/j.virol.2011.06.010.

93. Tanida, I., N. Minematsu-Ikeguchi, T. Ueno, and E. Kominami. 2005. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy Autophagy. 1:84-91.

94. Pankiv, S., T. H. Clausen, T. Lamark, A. Brech, J. A. Bruun, H. Outzen, A. Overvatn, G. Bjorkoy, and T. Johansen. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282:24131-24145. doi: 10.1074/jbc.M702824200.

95. Bjorkoy, G., T. Lamark, A. Brech, H. Outzen, M. Perander, A. Overvatn, H. Stenmark, and T. Johansen. 2005. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171:603-614. doi: 10.1083/jcb.200507002.  

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 28: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

  28

Figure Legend.

Figure 1. How viruses utilize autophagosome formation and maturation during

infection. As the immature autophagosome forms it captures portions of the cytoplasm.

The lumen of the autophagosome acidifies likely through fusion with late endosomes

carrying vacuolar ATPases, to form the amphisome. The amphisome then fuses with

the lysosome to form the autolysosome. The replication of viruses that subvert the

autophagic pathway is attenuated when autophagosome formation is inhibited. Vesicle

acidification is required for efficient PV virion maturation, while inhibition of degradation

has no effect on the virus. Degradation of cellular triglycerides by autophagy benefits

Dengue virus replication. Autolysosome degradation decreases IFN activation following

HCV infection. Both PPRSV and EMCV require autophagosome maturation; however, it

is not clear if this is due to a requirement for vesicle acidification or autolysosome

degradation.

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 29: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

Assay Description Read out

Protease sensitivity of LC3-II  

LC3-II is degraded by lysosomal proteases following fusion of the autophagosome with the lysosome (93). Lysosomal protease inhibitors, which inhibit LC3-II degradation by the autolysosome, increase the steady-state level of LC3 II (93,53).  

Protein degradation by the autophagic pathway  

p62 degradation  

The p62/SQSTM1 protein directly binds LC3-II on the autophagosome membrane (94). p62 is degraded within the autolysosomes (95). A decrease in the steady state level of p62 following induction of autophagy indicates successful protein degradation through the pathway (95, 53).  

Autolysosome formation  

LC3-II-lysosome co-localization  

The cellular locale of autophagosome-associated GFP-tagged LC3-II can be monitored by fluorescence microscopy (64). During the initial stages of the autophagic pathway co-localization of LC3-II with lysosomal markers is low. As autophagosomes mature and fuse with lysosomes, co-localization with lysosomal markers increases. Cellular lysosomes can be visualized by staining for protein markers such as LAMP-2, LAMP-1 or Cathepsin D (31).

Autolysosome formation  

Tandem-tagged GFP-RFP LC3  

Tandem tagged RFP-GFP-LC3 localizes to the autophagosome membrane following induction of autophagy (55). Only the signal generated by the GFP protein is sensitive to the acidic and/or proteolytic conditions in the lumen mature autophagosome and lysosomes. Co-localization of GFP and RFP signals is observed on early or immature autophagosomes. As autophagosomes mature the GFP signal is lost leading to only RFP fluorescence.

Autophagosome maturation  

Transmission Electron Microscopy

(TEM)

Autophagosomes can by identified by TEM as membrane-bound structures containing cytoplasmic material. Immature autophagosomes (AVi) show a double-membraned visible as two membrane bilayers separated by an electron-lucent cleft. These vacuoles contain cytosol and/or organelles that appear morphologically intact (53). Mature or degradative vesicles (AVd) typically show partial degradation of the enclosed cytoplasmic material, as well as increased electron density in the lumen of the vesicle.

Autophagosome maturation

Table 1. Assays for autophagosome maturation and autophagic degradation. An extensive discussion of known assays for analysis of autophagic signaling, autophagosome formation, and all other aspects of the pathway can be found in reference 53.

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from

Page 30: How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation A Minireview for the

on Novem

ber 18, 2018 by guesthttp://jvi.asm

.org/D

ownloaded from