Horizontal Vessel Calculation

24
Sample Vessel #3 96" Horizontal Vessel Pressure Vessel Calculations May 21, 2002 Aquacare Inc. 10 East Airport Road Huntsville, Ontario Laurence Brundrett P. Eng. Charles Liu M. Eng. Pressure Vessel Engineering Ltd. PVE-Sample 3 1 of 24

Transcript of Horizontal Vessel Calculation

Page 1: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 1/24

Sample Vessel #3

96" Horizontal VesselPressure Vessel Calculations

May 21, 2002

Aquacare Inc.10 East Airport Road

Huntsville, Ontario

Laurence Brundrett P. Eng.

Charles Liu M. Eng.

Pressure Vessel Engineering Ltd.

PVE-Sample 3

1 of 24

Page 2: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 2/24

Table of Contents 21-May-02 Page 2 of 24

Contents Page

Cover 1

Table of Contents 2

Summary 3

Material Properties 4

Pipe and Shell 5

Elliptical Head 6

0.75" Coupling In Top Shell 76" Nozzle B 8 - 9

6" Nozzle C 10 - 11

6" Slip On Flange B & C 12

Manway D & E 13

Manway F 14

1.5" Coupling In Bottom Shell 15

Weight and Volume 16

Lifting Lug 17

Zick 18 - 19

Hor. Vessel Forces 20

Flexible Saddle Stress 21

Flexible Saddle 22 - 24

Page 3: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 3/24

Pressure Vessel Design Summary 21-May-02 Page 3 of 24

Customer 

Vessel

Part Number 

Drawing

Job

96 Outside Diameter [inch]

120 straight Shell (not including straight flange on heads)640 Volume [cuft]

Water  Fluid

6393 Weight Empty [lbs.]

46324 Weight Full

46324 Weight Under Test

Maximum Internal pressure, psi Maximum External Pressure, psi At Temperature, ºF

75 0 150Maximum Temperature, ºF Minimum Temperature, ºF At Pressure, psi

150 -20 75Test Pressure, psi  At a Minimum Temperature of: ºF For a Minimum Duration of:

98 60 30 min.

3 Seismic Zone

1.5 Foundation Factor 

SA-516 70 Primary Material of Construction

20,000  Allowable Stress

0.063 Minimum allowed thickness per UG-16(b)

no Material Normalized

no Material Impact Tested (not required per UG-20(f))

none Radiography required

0 Corrosion Allowance

ASME VIII-1 Code2001 Edition

none  Addenda

IID Materials

none Code Cases Required

UG-22 Loadings Considered

 Yes (a) Internal pressure

 - (a) External pressure

 Yes (b) Vessel weight full, empty and at hydro test

 - (c) Weight of attached equipment and piping

 Yes (d)(1) Attachment of internals

 Yes (d)(2) Attachment of vessel supports - (d) Cyclic or dynamic reactions

 - (f) Wind

 - (f) Snow

 Yes (f) Seismic

 - (g) Fluid impact shock reactions

 - (h) Temperature gradients

 - (h) Differential thermal expansion

 - (i) Abnormal pressures like deflagration

Hydrostatic Test

Maximum Allowed Working Pressure

Aquacare Inc.

PVE-Sample 3

PVE-Sample 3

96" Horizontal Vessel

Sample Vessel #3

Maximum Design Metal Temperature

Page 4: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 4/24

1 Material Properties ver 1.28 www.pveng.com 21-May-02 Page 4 of 24

2  ASME VIII, IID 2001 edition no addenda

3 Sample Vessel #3 <- vessel4

5 Design Pressure UG-22(a)

6 75.0 <- P, internal operating pressure at top of vessel (psig)

7 0.0 <- mPa, external operation pressure

8 Water <- Operating Fluid

9 8 <- h, fluid height (ft)

10 1.00 <- rho, fluid density (1.0 for water)

11 Design Pressure = P + 0.4331*rho*h = 75 + 0.4331 * 1 * 8  mDp = 78.5

13 Hydro Test (UG-99(b)) pressure measured at top of vessel

14 Test Press = P * 1.3 * MR = 75 * 1.3 * 1 mTp = 97.5 

16 Material Properties (ASME IID)

17 150 <- mTemp, design temp ºF Test at ambient temp

18

Where Used Ambient

Strength

Design

Strength

Strength

Ratio

Max ºF Ext

Graph

19 Head and Shell 20000 20000 1.000 1000 CS-2

20 Flanges/couplings 20000 20000 1.000 1000 CS-2

21 Nozzles 17100 17100 1.000 1000 CS-2

22 Saddle 17100 17100 1.000 650 CS-2

23

24

25

26

27

28

29

30

31

32

33  

34  

35  

36  

37  

38  

39  

40  

41  

42  

43  

44 Min Ratio (MR) = 1.000 

45

46 Use a Test Pressure of 98 PSI

47

48

SA-106 B Seamless Pipe

SA/CSA-G40.21 44W

SA-105 Forging

Material

SA-516 70 Plate

Page 5: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 5/24

12 Pipe and Shell ver 2.33 21-May-02 Page 5 of 24

13  ASME Code VIII Div I 2001 edition no addenda

14 <- Vessel

15 <- Description

17 Dimensions:

18 96.000 <- Do - Outside Diameter 

19 0.313 <- t - Nominal Wall Thickness

20 120.000 <- Le - Effective Length

21 120.000 <- Length for volume and weight22 0.000 <- Corr, Corrosion Allowance

24 Material and Conditions:

25 SA-516 70 <- Material

26 20,000 <- S, Allowable Stress Level (psi)

27 0.7 <- El - Longitudinal Efficiency (circ. stress)

28 0.7 <- Ec - Circ. Connecting Efficiency (longitudinal stress)

29 0.0% <- UTP, Undertolerance allowance (%) 496.12 <- Volume (cubic ft)

30 0.000 <- UTI, Undertolerance allowance (inch) 3,202.2 <- Material Weight (lbs cs)

32 78.5 <- P, Interior Pressure

33 0.0 <- Pa, Exterior Pressure

37 Variables:

38 UT = t*UTP+UTI = 0.313*0+0 undertollerance UT = 0.000 

39 nt = t-Corr-UT = 0.313-0-0 nominal thick nt = 0.313

40 Ri = Do/2-nt = 96/2-0.313 effective inside radius Ri = 47.687 

41 LDo = Le/Do = 120/96 LDo = 1.250 

43 Interior Pressure   UG-27 (c) (1,2)

44 ta = P*Ri/(S*El-0.6*P) = 78.465*47.687/(20000*0.7-0.6*78.465) ta = 0.268 

45 tb = P*Ri/(2*S*Ec+0.4*P) = 78.465*47.687/(2*20000*0.7+0.4*78.465 tb = 0.133

46 tmin = Max(ta,tb) <= nt Acceptable tmin = 0.268 

47 PMaxA = PMaxA = 91.5 

48 PMaxB = PMaxB = 184.3

49

PMax = Min(PMaxA,PMaxB) Acceptable PMax = 91.5 50 tr1 = P*Ri/(S*1-0.6*P) = 78.465*47.687/(20000*1-0.6*78.465) tr1 = 0.188 

62 Shell stress relief -UCS-79(d), UNF-79(d), UHA-44(d)

63 Rf = (do-t)/2 = (96-0.313)/2 47.8435 

64 % elong = (50*t/Rf)*(1-0) = (50*0.313/47.844)*(1-0) % elongation = 0.3

65 5.0% <- Max Elongation

66  Yes <- Cold formed 0.3% <- Elongation Required no

67 no <- Vessel carries lethal substances (Yes/no) no no

68 no <- Impact testing is required (Yes/no) no no

69 no <- Greater than 10% reduction in thickness no no

70 no <- Formed between 250 and 900 Degrees F no no

71 no <- Shell is greater than 5/8" thick before forming no no

72 Stress Relieve ? no

www.pveng.com

(2*S*Ec*nt)/(Ri-0.4*nt)

(S*El*nt)/(Ri+0.6*nt) = (20000*0.7*0.313)/(47.687+0.6*0.313)

 = (2*20000*0.7*0.313)/(47.687-0.4*0.313)

Sample Vessel #3

3/8" Rolled Plate Shell

t

Do

       L      e       n      g   

       t        h

   L  o  n  g   S  e

  a  m

Page 6: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 6/24

1 Elliptical Head ver 2.16 Page 6 of 24

2  ASME Code VIII Div I 2001 edition no Addenda

3 <- Vessel4 <- Component

6 Dimensions:

7 96.000 <- Do, outside diameter 

8 23.859 <- h 24.14 <- ho

9 0.313 <- tb, thickness before forming

10 0.282 <- tf, thickness after forming11 0.000 <- Corr, corrosion allowance

12 1.500 <- Skirt, straight skirt length

14 Material and Conditions: Calculated Properties:

15 SA-516 70 <- material 116.440  <- Approximate blank diameter 

16 20,000 <- S, allowable stress level (psi) 945.3 <- Approximate weight for steel, (lbs)

17 0.85 <- E, efficiency 72.06  <- Volume (cuft, includes skirt)

19 78.5 <- P, interior pressure 76.35  <- Spherical Limit (0.8 * D)

20 0.0 <- Pa, exterior pressure

24 Variables:

25 D = Do-2*t = 96-2*0.282 D = 95.44

26 ho = h+t = 23.859+0.282 ho = 24.14

27 D/2h = D/(2*h) UG-37 & Ap 1-4(c)  = 95.437/(2*23.859) D/2h = 2.000 

28 Do/2ho = Do/(2*ho) UG-37 & Ap 1-4(c)  = 96/(2*24.141) Do/2ho = 1.988 

29 K = Interpolated value from table 1-4.1 D/2h interior K = 1.000 

30 Kone = Interpolated value from table UG-37 D/2h spherica Kone = 0.900 

31 Kzero = Interpolated value from table UG-33.1 Do/2ho exterior Kzero = 0.895 

32 t = tf-corr = 0.282-0 t = 0.282 

33 Ro = Ko*Do UG-33(d)  = 0.895*96 Ro = 85.896 

35 Interior Pressure  App 1-4(c)(d), UG-37 1(a)

36 TMinI = (P*D*K)/(2*S*E-0.2*P) <= t TMinI (min thickness) = 0.220 

37  = (78.465*95.437*1)/(2*20000*0.85-0.2*78.465) <= 0.282 Okay

38 PMax = (2*S*E*t)/(K*D+0.2*t) >= P PMax = 100.339  = (2*20000*0.85*0.282)/(1*95.437+0.2*0.282) >= 78 Okay

40 TSpI = (P*D*Kone)/(2*S*E-0.2*P) TSpI (required sphere zone thick) = 0.169

41  = (78.465*95.437*0.9)/(2*20000*1-0.2*78.465)

51 Head stress relief UCS-79(d), UNF-79(d), UHA-44(d)

52 % elong = ((75*t)/h)*(1-0) = ((75*0.282)/23.859)*(1-0) % elong = 1.0 

53 5.0% <- Max Elongation

54  Yes <- Cold Formed 1.0% <- Elongation Required no

55 no <- Vessel carries lethal substances(Yes/no) no no

56 no <- Impact testing is required (Yes/no) no no

57 no <- Formed between 250 and 900 Degrees F no no

58 no <- Greater than 10% reduction in thickness no no

59 no <- Head is greater than 5/8" thick before forming no no60 Stress Relieve ? no

www.pveng.com

Sample Vessel #3

3/8" Thick Semi Elliptical Head

21-May-02

ThickSkirt

Do

h

  D

ho

Sperical Limit

Page 7: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 7/24

15 Coupling ver 2.02 UW16.1Z1M 21-May-02 Page 7 of 24

16  ASME Code VIII Div I 2001 edition, no addenda

22 <- Vessel

18 <- Description

20 Shell:

23 0.313 <- t, Shell Wall Thick (inch)

27 1.500 <- D, Shell Opening Diameter (inch)

29 78.5 <- P,design Pressure (psi)

31 Coupling:32 3/4 inch 3000# <- Coupling

33 SA-105 <- Coupling Material

34 20,000 <- Sn, Allowable Stress Level (Sn)

36 0.250 <- F1, Weld Size

38 0.000 <- Corrc, Coupling Corrosion Allowance (inch)

39 1.380  <- COD - Coupling OD

40 1.050  <- POD - Pipe OD

42 14.000  <- n, Treads Per Inch

44 0.219 <- pt, Corresponding sch160 Wall Thickness (inch)

46 12.5% <- UT, Under Tolerence (%)

47

49 Geometry Restrictions Fig. UW-16.1

50 tcp = (COD-POD)/2-CORRC = (1.38-1.05)/2-0 Tcp = 0.165 

51 Tmin = Min(0.75,tcp,t) = Min(0.75,0.165,0.313) Tmin = 0.165 

53 tcmin = Min(0.25,0.7*Tmin) = Min(0.25,0.7*0.165) tcmin = 0.116 

56 t1 = 0.7*F1 = 0.7*0.25 t1 = 0.175 

61 t1 > = tcMin = 0.175 >= 0.116 Okay

78

79 Required Coupling Wall Thickness B16.11 - 2.1.1  and  UG-31 (C) (2)

80 Ro = POD/2-0.8/n = 1.05/2-0.8/14 Ro = 0.468 

81 tp = (1-UT)*pt-Corrc-0.8/n = (1-0.125)*0.219-0-0.8/14 tp = 0.134

82 Min Thick = P*Ro/(Sn*1+0.4*P) = 78*0.468/(20000*1+0.4*78.465 Okay trn = 0.002 83

84 Pressure Weld Stress UW-18(d) - Pressure Load only UW-16(f)(3)(a)(3)(b)

85 Load = COD^2*(PI()/4)*P = 1.38^2*(PI()/4)*78.465 Load = 117 

86 Weld Area = pi()*((COD+F1)^2-COD^2)/4 Weld Area = 0.591

87  = pi()*((1.38+0.25)^2-1.38^2)/4

92 Max Stress = Min(Sn,Sv) * 0.55 = Min(20000,20000) * 0.55 Max Stress = 11000 

93 Weld Stress = Load / Area = 117 / 0.591 Weld Stress = 199

94 Okay

99

100

www.pveng.com

Sample Vessel #3

3/4" Class 3000 Half Coupling A

F1

Inside Vessel

Outside

t

D

COD

POD

UW-16.1 Z-1 (Modified) Coupling

t1

Page 8: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 8/24

Page 9: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 9/24

298 Sample Vessel #3 6" SCH 80 Nozzle B 21-May-02 Page 9 of 24

300 Nozzle

301 Tstd = Standard pipe wall thickness from chart Tstd = 0.280 

302 Swre = tr * Pa / P = 0.22 * 0 / 78.465 Req. Exterior pressure Swre = 0.000 

303 Nact = Nt * (1-UTp) = 0.432 * (1-0.125)  Actual Wall Thick. Nact = 0.378 

304 Tt = 0.8/Nth = 0.8/0 Ug-31(c)(2) threads Tt = 0.000 

308 UG-45

313 UG45 = Max(UG45a, UG45b) <= Nact UG45 = 0.220 

314  = Max(0.014, 0.22) <= 0.378 Acceptable

316 UG-45(a)

321 UG45a = Max(trn,trnE) + Nca + Tt UG45a = 0.014

322 Max(0.014,0) + 0 + 0

324 UG-45(b)

330 UB45b = Min(UG45b1, UG45b2, UG45b3, UG45b4) UB45b = 0.220 

331  = Min(0.22, , 0.22, 0.245)

333 UG-45(b)(1)

337 UG45b1 = Max(tr + Sca, Tmin16b + Sca) UG45b1 = 0.220 

338 Max(0.22 + 0, 0.063 + 0)

340 UG-45(b)(2)

345 UG45b2 = Max(Swre + Sca,Tmin + Sca) UG45b2 =

346 Max(0 + 0,0.063 + 0)

348 UG-45(b)(3)

351 UG45b3 = Max(UG45b1,UG45b2) = Max(0.22,) UG45b3 = 0.220 

353 UG-45(b)(4)

357 UG45b4 = Tstd*0.875 + Nca = 0.28*0.875 + 0 UG45b4 = 0.245 

Page 10: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 10/24

Page 11: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 11/24

156 Sample Vessel #3 6" SCH 80 Nozzle C 0.0135 0.22035 21-May-02 Page 11 of 24

158  Area Replacement: Fig UG-37.1 Pressure From: Internal External

159  A = 1.0*d*tr*F + 2*tn*tr*F*(1-frone) A Required (internal) = 1.354

160  = 1.0*6.02*0.22*1 + 2*0.432*0.22*1*(1-0.855)

163  Ae = 0.5*(d*trE*1 + 2*tn*trE*1*(1-frone)) A Required (external) = 0.000 

164  =

167  A1 = max(d, 2*(t+tn)) * (E1*t-F*tr)-2*tn*(E1*t-F*tr)*(1-fr1) A1 = 0.000 

168  =

172  A1e = max(d, 2*(t+tn)) * (Eone*t-F*trE)-2*tn*(Eone*t-F*trE)*(1-frone) A1e = 1.162 

173  =

177  A2 = min((tn-trn)*fr2*min(5*t,2*L) , (tn-trn)*(Min(2.5*tn+te,L)*fr1*2) A2 = 0.504178  =

182  A2e = min((tn-trnE)*frtwo*Min(5*t,2*L) , 2*(tn-trnE)*Min(2.5*tn+te,L)*frone) A2e = 0.520 

183  =

190  A5 = (Dp - d - 2tn)te*fr4 =(12 - 6.02 - 2*0.432)*0.313*1 A5 = 1.601 1.601

195  A41 = Leg41 2̂*frThree A41 = 0.313^2*0.855 A41 = 0.084 0.084

198  A42 = Leg42^2*frfour A42 = 0.25^2*1 A42 = 0.063 0.063

203  Actual Area = 2.252 3.430  

204 Acceptable  Actual-Required = 0.897 3.430  

210 Internal Weld Load:  (UG-41)

211 WmaxI = (A - A1 + 2*Tn*Fr1*(E1*t-F*tr))*Sv, min0 Max value for weld loads WmaxI = 26,740 

212  = (1.354 - 0 + 2*0.432*0.855*(0.7*0.282-1*0.22))*20000

217 W1-1 = MIN((A2 + A5 + A41 + A42)*Sv,WmaxI) Weld load W1-1 = 26,740 

218 = MIN((0.504 + 1.601 + 0.084 + 0.063)*20000,26740)

219 W2-2 = Min((A2 + A3 + A41 + A43 + 2*Tn*t*frone)*Sv,WmaxI) Weld load W2-2 = 15,917 

220  = Min((0.504 + 0 + 0.084 + 0 + 2*0.432*0.282*0.855)*20000,26740)

224 W3-3 = Min((A2 + A3 + A5 + A41 + A42 + A43 + 2*Tn*t*fr1)*Sv,WmaxI) Weld load W3-3 = 26,740 

225  = Min((0.504 + 0 + 1.601 + 0.084 + 0.063 + 0 + 2*0.432*0.282*0.855)*20000,26740)

230 External Weld Load:  (UG-41)

231 WmaxE = (Ae - A1e + 2*Tn*Fr1*(E1*t-F*tr))*Sv, min0 Max value for weld loads WmaxE = 0 

232  = (0 - 1.162 + 2*0.432*0.855*(0.7*0.282-1*0.22))*20000

237 W1-1 = MIN((A2e + A5 + A41 + A42)*Sv,WmaxE) Weld load W1-1e = 0 

238 = MIN((0.52 + 1.601 + 0.084 + 0.063)*20000,0)

239 W2-2 = Min((A2e + A3 + A41 + A43 + 2*Tn*t*frone)*Sv,WmaxE) Weld load W2-2e = 0 

240  = Min((0.52 + 0 + 0.084 + 0 + 2*0.432*0.282*0.855)*20000,0)

244 W3-3 = Min((A2e + A3 + A5 + A41 + A42 + A43 + 2*Tn*t*fr1)*Sv,WmaxE) Weld load W3-3e = 0 

245  = Min((0.52 + 0 + 1.601 + 0.084 + 0.063 + 0 + 2*0.432*0.282*0.855)*20000,0)

255 Component Strength (UG-45(c), UW-15(c))

256  A2 shear = PI()/2*(Do-tn)*tn*Sn*0.7 A2s = 50,304

257 g tension = PI()/2*Do*LegG*Min(Sv,Sn)*0.74 gt = 43,433

258  A41 shear = PI()/2*Do*Leg41*Min(Sn,Sp)*0.49 A41s = 27,292 

262  A42 shear = PI()/2*DP*Leg42*Min(Sv,Sp)*0.49 A42s = 46,181

270 Failure mode along strength path  (Greater than Weld Load, see App L-7)

273 S1-1 = A42s + A2s >= W1-1 Acceptable S1-1 = 96,485

274  = 46181 + 50304 >= 26740

283 S2-2 = A41s + gt >= W2-2 Acceptable S2-2 = 70,725

284  = 27292 + 43433 >= 15917

287 S3-3 = gt + A42s >= W3-3 Acceptable S3-3 = 89,614

288  = 43433 + 46181 >= 26740

292

293

294

0.5*(6.02*0*1 + 2*0.432*0*1*(1-0.855))

max(6.02, 2*(0.282+0.432)) * (0.7*0.282-1*0.22)-2*0.432*(0.7*0.282-1*0.22)*(1-0.855)

= PI()/2*6.625*0.313*Min(17100,20000)*0.49

= PI()/2*12*0.25*Min(20000,20000)*0.49

max(6.02, 2*(0.282+0.432)) * (0.7*0.282-1*0)-2*0.432*(0.7*0.282-1*0)*(1-0.855)

min((0.432-0.014)*0.855*min(5*0.282,2*2) , (0.432-0.014)*(Min(2.5*0.432+0.313,2*2)*0.855*2)

min((0.432-0)*0.855*Min(5*0.282,2*2) , 2*(0.432-0)*Min(2.5*0.432+0.313,2)*0.855)

= PI()/2*(6.625-0.432)*0.432*17100*0.7

= PI()/2*6.625*0.282*Min(20000,17100)*0.74

Page 12: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 12/24

12 B16.5 Slip On Flange Ver 1.35 www.pveng.com 21-May-02 Page 12 of 24

13  ASME B16.5-1996 ASME VIII A2001 edition no addenda

15 <- Comments

16 <- Description

18 Select Flange

19 SA <- Category

20 Forged <- Material Type

21 SA 105 <- Material

22 150 <- Pressure Class23 6.00 <- Nominal Size

25 Nozzle

26 0.432 <- tn, Nozzle Wall Thickness (inch)

27 0.014 <- tnr, Required Nozzle Wall Thickness (inch)28

29 Operating Conditions

30 150 <- T, temperature ºF Max press @100ºF [p1] 285 

31 78.5 <- P, pressure, psig Max press @150ºF [p2] 273

0.000 <- Corr, corrosion allowance Acceptable

34 Flange Welds:  VIII UW-15 (c)

35 0.250 <- F1, pipe fillet size Nominal - C-Si 

36 0.250 <- Setback

37 0.250 <- F2, flange fillet size F2 Table - 2-1.1

38 17100 <- Sp, allowable stress, pipe Max Temp ºF - 1000 

39 20000 <- Sf, allowable stress, flange Pod, pipe OD - 6.625 

41 Geometry constraint:  VIII UW-21 (b)

42 c = Min(tn,tx) = Min(0.432,0.027) c = 0.027 

43 tx = 2*tnr = 2*0.014 tx = 0.027 

44 wtmin = 0.7*c = 0.7*0.027 wtmin = 0.019

45 wt = 0.7*MIN(F1,F2) weld throat  wt = 0.175 

46 = 0.7*MIN(0.25,0.25) Acceptable4

48 Maxsetback = c+0.25 = 0.027+0.25 Maxsetback = 0.277 

49 Setback = 0.250 Acceptable

51 Weld Strength:

52 Min Sa = MIN(Sp,Sf) = MIN(17100,20000) Min Sa = 17,100 

53 Max Weld Stress = Sa * 0.49 = 17100 * 0.49 Max S = 8,379

54 Weld Load = Pod^2*pi*P/4 = 6.625^2*pi*78.465/4 Load = 2,705 

55 Weld Area = Pod*pi*(F1-corr + F2) Area = 10.407 

56  = 6.625*pi*(0.25-0 + 0.25)

57 Weld Stress = Load/Area = 2704.808/10.407 Stress = 260 

58 Acceptable

60

61

62

Sample Vessel #3

6" Class 150 RFSO Flange B & C

F1

F1F2

F2

F1

F2

Page 13: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 13/24

26 Nozzle Reinforcement ver 3.53 UW16(c)mod 21-May-02 Page 13 of 24

27  ASME Code VIII Div I 2001 edition no addenda Automatic dh - not hillside

22 <- Vessel Manually enter Limit Diameter 

29 <- Desc Curved Shell or Head Section

30 Shell:

31 SA-516 70 <- Shell material

32 20,000 <- Sv, shell allowable stress level, PSI

33 1.00 <- Eone, efficiency of shell at nozzle

35 0.282 <- Vt, shell wall thick, uncorroded, UT removed

36 0.169 <- tr, required shell wall thickness int. press.

37 0.000 <- trE, required shell wall thickness ext. press.

38 0.000 <- sca, shell corrosion allowance

39 0.063 <- tmin16b, Min allowed wall per UG-16(b)

40 Nozzle:

41 SA-106B <- Nozzle material

42 17,100 <- Sn, allowable stress level (Sn)

44 1.00 <- E nozzle

46 78.5 <- P, internal design pressure

47 0.0 <- Pa, external design pressure

49 17.500 <- Do, outside diameter 

51 8.110 <- dLr, Limit radius <= d

52 0.750 <- Nt, wall thick, uncorroded

53 12.5% <- UTp, undertolerance (%)

55 0.000 <- nca, nozzle corrosion allowance

57 1.000 <- L, exterior Projection

58 1.000 <- Ip, interior projection61 Reinforcing:

71 0.313 <- Leg41, size of weld fillet

73 0.313 <- Leg43, size of weld fillet

74 1.000 <- F

77 Variables:

78 UT = Nt*UTp = 0.75 * 0.125 Undertolerance UT = 0.094

79 Rn = Do/2 - (Nt-nca) + UT = 17.5/2 - (0.75-0) + 0.094 Effective Radius Rn = 8.094

84 t = Vt-sca = 0.282 - 0 Effective Shell Thickness t = 0.282 

85 ti = Nt-2*nca = 0.75 - 2 * 0 Nom Thick of Int. Proj. ti = 0.750 

90 tn = Nt-nca = 0.75-0  Avail. Nozzle Thick. No UT  tn = 0.750 

93 d = Do-2*tn = 17.5 - 2*0.75 Opening Dia. d = 16.000 

99 fr1 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr1 = 0.855 

102 fr2 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr2 = 0.855 

112 h = MIN(Ip-sca,2.5*t,2.5*ti) = MIN(1-0,2.5*0.282,2.5*0.75) h = 0.705 

113 tcLeg41 = Min(0.25,0.7*Min(0.75,tn,t)) = Min(0.25,0.7*Min(0.75,0.75,0.282)) tc41 = 0.197 

115 tcLeg43 = Min(0.25,0.7*Min(0.75,t,tn)) = Min(0.25,0.7*Min(0.75,0.282,0.75)) tc43 = 0.197 

117 F = Min(Fenterered, 1) F = 1.000 

126 Pipe Required Wall Thickness - trn from internal, trnE from external pressure

127 LDo = L/Do LDo = 0.057  Dot = Do/trnE Dot = 0.000 

128 trn = (P*Rn)/(Sn*E - 0.6*P) <= tn-UT trn = 0.037  Acceptable

129 trnE = (3*Do*Pa)/(4*B) <= tn-ut trnE = 0.000  Acceptable

131 Geometry Constraints:

133 0.7*Leg41 >= tc41 0.7*0.313 >= 0.197 0.219 >= 0.197  Acceptable

142 0.7*Leg43 >= tc43 0.7*0.313 >= 0.197 0.219 >= 0.197  Acceptable

151 UG45 = Long form calculations are not shown in this view UG45 = 0.169 Acceptable

158  Area Replacement: Fig UG-37.1 Pressure From: Internal External

159  A = 1.0*d*tr*F + 2*tn*tr*F*(1-frone) A Required (internal) = 2.734

160  = 1.0*16*0.169*1 + 2*0.75*0.169*1*(1-0.855)

163  Ae = 0.5*(d*trE*1 + 2*tn*trE*1*(1-frone)) A Required (external) = 0.000 

164  =167  A1 = max(dLr, 2*(t+tn)) * (E1*t-F*tr)-2*tn*(E1*t-F*tr)*(1-fr1) A1 = 0.895 

168  =

172  A1e = max(dLr, 2*(t+tn)) * (Eone*t-F*trE)-2*tn*(Eone*t-F*trE)*(1-frone) A1e = 2.226 

173  =

179  A2 = min((tn-trn)*fr2*Min(5*t,2*L) , (tn-trn)*fr2*Min(5*tn,2*L)) A2 = 0.859

180  =

184  A2e = min((tn-trnE)*frtwo*Min(5*t,2*L) , (tn-trnE)*frtwo*Min(5*tn,2*L)) A2e = 0.904

185  =

187  A3 = Min(5*t*ti*frtwo, 5*ti*ti*frtwo, 2*h*ti*frtwo) A3 = 0.904 0.904

188  = Min(5*0.282*0.75*0.855, 5*0.75*0.75*0.855, 2*0.705*0.75*0.855)

194  A41 = Leg41^2*frTwo A41 = 0.313^2*0.855 A41 = 0.084 0.084

201  A43 = (Leg43-nca)̂ 2*frtwo A43 = (0.313-0)^2*0.855 A43 = 0.084 0.084

203  Actual Area = 2.826 4.202  

204 Acceptable  Actual-Required = 0.093 4.202  

Sample Vessel #3

12" Manway D & E With 3/4"x4" Ring

0.5*(16*0*1 + 2*0.75*0*1*(1-0.855))

min((0.75-0)*0.855*Min(5*0.282,2*1) , (0.75-0)*0.855*Min(5*0.75,2*1))

max(8.11, 2*(0.282+0.75)) * (1*0.282-1*0.169)-2*0.75*(1*0.282-1*0.169)*(1-0.855)

www.pveng.com

= (78.5*8.094)/(17100*1 - 0.6*78.5)

= (3*17.5*0)/(4*1)

max(8.11, 2*(0.282+0.75)) * (1*0.282-1*0)-2*0.75*(1*0.282-1*0)*(1-0.855)

min((0.75-0.037)*0.855*Min(5*0.282,2*1) , (0.75-0.037)*0.855*Min(5*0.75,2*1))

UW-16.1 (c) modified

Leg41

OD Nozzle

Nt

Leg41

Leg43

Leg43

Proj

Vt   N  o  z  z   l  e

Shell

FullPenn.t

Page 14: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 14/24

26 Nozzle Reinforcement ver 3.53 UW16(c)mod 21-May-02 Page 14 of 24

27  ASME Code VIII Div I 2001 edition no addenda Automatic dh - not hillside

22 <- Vessel Automatic Limit Diameter 

29 <- Desc Curved Shell or Head Section

30 Shell:

31 SA-516 70 <- Shell material

32 20,000 <- Sv, shell allowable stress level, PSI

33 1.00 <- Eone, efficiency of shell at nozzle

35 0.313 <- Vt, shell wall thick, uncorroded, UT removed

36 0.188 <- tr, required shell wall thickness int. press.

37 0.000 <- trE, required shell wall thickness ext. press.

38 0.000 <- sca, shell corrosion allowance

39 0.063 <- tmin16b, Min allowed wall per UG-16(b)

40 Nozzle:

41 SA-106B <- Nozzle material

42 17,100 <- Sn, allowable stress level (Sn)

44 1.00 <- E nozzle

46 78.5 <- P, internal design pressure

47 0.0 <- Pa, external design pressure

49 17.500 <- Do, outside diameter 

52 0.750 <- Nt, wall thick, uncorroded

53 12.5% <- UTp, undertolerance (%)

55 0.000 <- nca, nozzle corrosion allowance

57 1.000 <- L, exterior Projection

58 1.000 <- Ip, interior projection

61 Reinforcing:71 0.375 <- Leg41, size of weld fillet

73 0.375 <- Leg43, size of weld fillet

74 1.000 <- F

77 Variables:

78 UT = Nt*UTp = 0.75 * 0.125 Undertolerance UT = 0.094

79 Rn = Do/2 - (Nt-nca) + UT = 17.5/2 - (0.75-0) + 0.094 Effective Radius Rn = 8.094

84 t = Vt-sca = 0.313 - 0 Effective Shell Thickness t = 0.313

85 ti = Nt-2*nca = 0.75 - 2 * 0 Nom Thick of Int. Proj. ti = 0.750 

90 tn = Nt-nca = 0.75-0  Avail. Nozzle Thick. No UT  tn = 0.750 

93 d = Do-2*tn = 17.5 - 2*0.75 Opening Dia. d = 16.000 

99 fr1 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr1 = 0.855 

102 fr2 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr2 = 0.855 

112 h = MIN(Ip-sca,2.5*t,2.5*ti) = MIN(1-0,2.5*0.313,2.5*0.75) h = 0.783

113 tcLeg41 = Min(0.25,0.7*Min(0.75,tn,t)) = Min(0.25,0.7*Min(0.75,0.75,0.313)) tc41 = 0.219

115 tcLeg43 = Min(0.25,0.7*Min(0.75,t,tn)) = Min(0.25,0.7*Min(0.75,0.313,0.75)) tc43 = 0.219

117 F = Min(Fenterered, 1) F = 1.000 

126 Pipe Required Wall Thickness - trn from internal, trnE from external pressure

127 LDo = L/Do LDo = 0.057  Dot = Do/trnE Dot = 0.000 

128 trn = (P*Rn)/(Sn*E - 0.6*P) <= tn-UT trn = 0.037  Acceptable

129 trnE = (3*Do*Pa)/(4*B) <= tn-ut trnE = 0.000  Acceptable

131 Geometry Constraints:

133 0.7*Leg41 >= tc41 0.7*0.375 >= 0.219 0.263 >= 0.219 Acceptable

142 0.7*Leg43 >= tc43 0.7*0.375 >= 0.219 0.263 >= 0.219 Acceptable

151 UG45 = Long form calculations are not shown in this view UG45 = 0.188  Acceptable

158  Area Replacement: Fig UG-37.1 Pressure From: Internal External

159  A = 1.0*d*tr*F + 2*tn*tr*F*(1-frone) A Required (internal) = 3.041

160  = 1.0*16*0.188*1 + 2*0.75*0.188*1*(1-0.855)

163  Ae = 0.5*(d*trE*1 + 2*tn*trE*1*(1-frone)) A Required (external) = 0.000 

164  =

167  A1 = max(d, 2*(t+tn)) * (E1*t-F*tr)-2*tn*(E1*t-F*tr)*(1-fr1) A1 = 1.980 168  =

172  A1e = max(d, 2*(t+tn)) * (Eone*t-F*trE)-2*tn*(Eone*t-F*trE)*(1-frone) A1e = 4.940 

173  =

179  A2 = min((tn-trn)*fr2*Min(5*t,2*L) , (tn-trn)*fr2*Min(5*tn,2*L)) A2 = 0.954

180  =

184  A2e = min((tn-trnE)*frtwo*Min(5*t,2*L) , (tn-trnE)*frtwo*Min(5*tn,2*L)) A2e = 1.004

185  =

187  A3 = Min(5*t*ti*frtwo, 5*ti*ti*frtwo, 2*h*ti*frtwo) A3 = 1.004 1.004

188  = Min(5*0.313*0.75*0.855, 5*0.75*0.75*0.855, 2*0.783*0.75*0.855)

194  A41 = Leg41^2*frTwo A41 = 0.375^2*0.855 A41 = 0.120 0.120  

201  A43 = (Leg43-nca)̂ 2*frtwo A43 = (0.375-0)^2*0.855 A43 = 0.120 0.120  

203  Actual Area = 4.178 7.188  

204 Acceptable  Actual-Required = 1.137 7.188  

max(16, 2*(0.313+0.75)) * (1*0.313-1*0)-2*0.75*(1*0.313-1*0)*(1-0.855)

min((0.75-0.037)*0.855*Min(5*0.313,2*1) , (0.75-0.037)*0.855*Min(5*0.75,2*1))

min((0.75-0)*0.855*Min(5*0.313,2*1) , (0.75-0)*0.855*Min(5*0.75,2*1))

max(16, 2*(0.313+0.75)) * (1*0.313-1*0.188)-2*0.75*(1*0.313-1*0.188)*(1-0.855)

www.pveng.com

= (78.5*8.094)/(17100*1 - 0.6*78.5)

= (3*17.5*0)/(4*1)

Sample Vessel #3

12" Manway F With 3/4"x4" Ring

0.5*(16*0*1 + 2*0.75*0*1*(1-0.855))

UW-16.1 (c) modified

Leg41

OD Nozzle

Nt

Leg41

Leg43

Leg43

Proj

Vt   N  o  z  z   l  e

Shell

FullPenn.t

Page 15: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 15/24

Page 16: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 16/24

Vessel Weight and Volume 21-May-02 Page 16 of 24

<- Vessel

Volume:

1.00 <- Fluid Specific Gravity

72.06 <- Head each (cuft) 144.11 2 heads496.12 <- Shell (cuft) 496.12

 ======

640.24 <- cuft

3988.03 <- Imp Gallons

4789.29 <- US Gallons

39,931  <- fluid wt 39,931 

Construction:

945.29 <- Head (ea, lbs) 1890.58 2 heads

3202.22 <- Shell 3202.22

1300 <- Misc 1300

 =======6,393  <- lbs 6,393 

======

Total 46,324  lbs

Sample Vessel #3

Page 17: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 17/24

Page 18: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 18/24

1 Zick Analysis - Unstiffened Vessel ver 1.02 21-May-02 Page 18 of 24

2 L.P. Zick - 1951

4 <- vessel

5 <- Item

7 123.000 <- L - Length (inch)

8 48.000 <- R - Radius of Shell (inch)

9 24.000 <- H - depth of Head

10 120.000 <- Theta - Saddle Contact Angleº11 12.000 <- b - Saddle Width (inch)

12 12.000 <- A - Overhang (inch)

13 0.313 <- ts - Nominal Shell Thickness (inch)

14 0.313 <- th - Nominal Head Thickness (inch)

16 23,162 <- Q, Load on one saddle (lbs)

17 78.5 <- P, Design Pressure, (psi)

18 SA-516 70 <- Shell Material

19 20,000 <- Sa, Allowable Shell Stress (psi)

20 38,000 <- Sy, Yield Point (psi)

21 11,500 <- Comp Limit for Shell, psi

22 0.70 <- E, Circ Joint Efficiency

24 K Factors - From Charts25 K1 = 0.335  K4 = 0.880  K5 = 0.401 K7 = 0.760 

26 K2 = 1.171 K3 = 0.319 K6 = 0.013 K8 = 0.603

28 Stress - Longitudinal Bending - Tension29 S1a top saddle = ((Q*A)(K1*Rvar^2*ts))*(*(1-(1-A/L+(Rvar^2-H^2)/(2*A*L))/(1+(4*H)/(3*L)))) S1a = -208 

30  = (23162.1340737743*12/(0.335*48^2*0.313))*(1-(1-12/123+(48^2-24^2)/(2*12*123)/(1+(4*24)/(3*123)

31 1b bot. saddle = ((Q*A)(K8*Rvar^2*ts))*(*(1-(1-A/L+(Rvar^2-H^2)/(2*A*L))/(1+(4*H)/(3*L)))) S1b = -115 

32  = (23162.1340737743*12/(0.603*48^2*0.313))*(1-(1-12/123+(48^2-24^2)/(2*12*123)/(1+(4*24)/(3*123)

33 S1c midspan = ((Q*L/4)/(Pi()*Rvar^2*ts))*(1+(2*(Rvar̂ 2-H^2)/L^2/(1+(4*H)/(3*L))-(4*A/L)) S1c = 249

34  = ((23162.1340737743*123/4)/(3.14*48^2*0.313))*(1+(2*(48^2-24^2)/123^2/(1+(4*24)/(3*123))-(4*12/123))

35 S1max = Max(S1a, S1b, S1c) = Max(-208, -115, 249) S1max = 249

36 S1from Press. = P*R/(2*ts) = 78.4648*48/(2*0.313) S1p = 6,016 37 S1total = S1max + S1p = 249 + 6016 S1total = 6,265 

38 S1Limit = Sa * E = 20000 * 0.7 S1Limit = 14,000 

39 Acceptable

40 Stress - Longitudinal Bending - Compression41  A = 0.125/(R/t) = 0.125/(48/0.313) A = 0.00082 

42 Max Comp = max(S1b, S1c) = Max(-115, 249) Max Comp = 249

43 Comp Limit = 11,500 

44 Acceptable

45 Stress - Tangential Shear - Shell 46 S2a in Shell = ((K2*Q)/(R*ts))*((L-2*A)/(L+4/3*H) S2a = 1,153

47  = ((1.171*23162.1340737743)/(48*0.313))*((123-2*12/(123+4/3*24)

48 S2b in Shell = ((K3*Q)/(R*ts))*((L-2*A)/(L+4/3*H) S2b = 314

49  = ((0.319*23162.1340737743)/(48*0.313))*((123-2*12/(123+4/3*24)

50 S2c in Shell = (K4*Q)/(R*ts) = (0.88*23162.1340737743)/(48*0.3 S2c = 1,357 

51 S2d in Head = (K4*Q)/(R*th) = (0.88*23162.1340737743)/(48*0.3 S2d = 1,357 

52 S2e (A>R/2) = max(S2a, S2b) = max(1153, 314) S2e = 1,153

53 S2f (A<=R/2) = max(S2c, S2d) = max(1357, 1357) S2f = 1,357 

54 S2 = Use S2f S2 = 1,357 

55 S2 limit = 0.8*Sa = 0.8*20000 S2 limit = 16,000 

56 Acceptable

www.pveng.com

Sample Vessel #3

Saddle Support Calculations

Q Q

 L

R

Page 19: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 19/24

60 Sample Vessel #3 Saddle Support Calculations 21-May-02 Page 19 of 24

61

67 Stress - Circumferential Bending - Saddle Horn68 S4a (L >= 8R) = (Q/(4*ts*(b+1.56*sqrt(R*ts))))-((3*K6*Q)/(2*ts^2)) S4a = 3,611

69  = (23162.1340737743/(4*0.313*(12+1.56*sqrt(48*0.313))))-((3*0.013*23162.1340737743)/(2*

70 S4b (L < 8R) = (Q/(4*ts*(b+1.56*sqrt(R*ts))))-((12*K6*Q*Rvar)/(2*L*ts^2)) S4b = 6,212 

71  = (23162.1340737743/(4*0.313*(12+1.56*sqrt(48*0.313))))-((12*0.013*23162.1340737743*4

72 S4 = Use S4b S4 = 6,212 

73 S4 limit = 1.5*Sa = 1.5*20000 S4 limit = 30,000 

74 Acceptable

75 Stress - Circumferential Bending - Bottom of Shell 76 S5 = Q*K7/(ts*(b+1.56*sqrt(R*ts))) S5 = 3116 

77  = (23162.1340737743*0.76)/(0.313*(12+1.56*SQRT(48*0.313)))

78 S5 limit = 0.5*Sy = 0.5*Sy S5 limit = 19,000 

79 Acceptable

80

81

Page 20: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 20/24

1 Horizontal Vessel Loads ver1.0 21-May-02 Page 20 of 24

2 Moss - Pressure Vessel Design Manual

4 <- Vessel

5 <- Item

7 Vessel:8 48.0 <- R, Radius (inch) 96.0 <- D

9 123.0 <- L, Length (inch)

10 46,324 <- W, Largest Weight (lbs)

12 Environment:13 0 <- Exposure Factor (E)

14 0 <- Wind velocity (mph)

15 1.0 <- Wind Importance factor (I)

16 10 <- Highest height above ground, ft (Hmax)

17 3 <- Seismic Zone 0.116  <- Coefficient

18 1.00 <- Slide Pad Coeficient of Friction (Cf)

20 Gravity 

21 Q = W/2 = 46324.2681475486 / 2 Q = 23,162 

23 Wind 

24 Kz = 0.00  ANSI A58.1 1982

25 Gh = 0.00  ANSI A58.1 1982

26  Area L = pi*R^2/144 = 3.14 * 48 ^ 2 / 144 Area L = 50 

27  Area T = AreaL + D*L/144 = 50 + 96 * 123 / 144 Area T = 132 

28 Qz = 0.00256*Kz*(I*V)^2 = 0.00256 * 0 * (1 * 0)^2 Qz = 0.0 

29 WL = AreaL*0.6*Gh*Qz = 50 * 0.6 * 0 * 0 WL = 0 

30 WT = AreaT*0.6*Gh*Qz = 132 * 0.6 * pi*R^2/144 * 0 WT = 0 

32 Seismic 

33 SL = C*W = 0.116 * 46324.2681475486 SL = 5,374

34 ST = C*Q = 0.116 * 23162.1340737743 ST = 2,687 

36 Thermal Expansion

37 ET = 038 EL = Cf*Q = 0.116 * 23162.1340737743 EL = 23,162 

40 Combined Forces

41 Q = Fg Q = 23,162 

42 Ft = Max(WT,ST) = Max(0 , 2687) Ft = 2,687 

43 Fl = Max(WL+EL,SL) = Max(0 + 23162 , 5374) Fl = 23,162 

44

45 No slide pads used - both ends bolted

46

www.xlpv.com On line help

Sample Vessel #3

Support Loads

Q

Fl

Q

FixedHmax

Moving

Weight

 L

Ft

R

Page 21: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 21/24

Page 22: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 22/24

Page 23: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 23/24

59 Sample Vessel #3 Saddle Design- 44w cs 21-May-02 Page 23 of 24

61 Foundation Load 62 Ba = A * Bp = 67 * 12 Base Area - Ba = 804

63 Bs = Fg / Ba = 23162 / 804 Foundation Stress - Bs = 29

64 Okay Max 500 psi for concret

65 Moment of Inertia - Saddle Splitting 

67 Width = Bp + 1.56*SQRT(VarR*Ts) Shell Effective Width = 18.6 

68  = 12 + 1.56*SQRT(48*0.375)70 Width Height Area Y A*Y A*Y2 Io

71 Shell 18.62 0.31 5.83 18.16 106 1921 0.0

72 Wear Plate 12.00 0.38 4.50 17.81 80 1428 0.1

73 Saddle 0.38 16.88 6.33 9.19 58 534 150.2

74 Base 12.00 0.75 9.00 0.38 3 1 0.4

75 Sum 18.3 25.66 247 3884 150.7  

77 C1 = Sum(Ay)/Sum(A) = 247.5 / 25.7 Centroid C1 = 9.6 

78 I = SumAY2 + SumIo - Ci*SumAy

79   = 3884.3 + 150.7 - 9.6 * 247.5 I = 1647.8 

80  A5 = SumA-AShell = 25.7 - 5.8 A5 = 19.8 

81

82 Tension Stress - Saddle Splitting 83 Fh = K1*Fg = 0.206 * 23162.1 Saddle Splitting force Fh = 4771.4

84 Tension = 2*Fh/A5 = 2 * 4771 / 20 Tension = 481

85

86 en ng ress - a e p ng  87 d = Hc - 0.827*R = 66 - 0.827 * 48 d = 26.3

88 M = 2*fh*d = 2 * 4771 * 26.3 M = 251014

89 fb = MC1/I = 251014 * 10 / 1648 fb = 1469

90

91 Base plate thickness92 M2 = Q*Bp/8 = 23162*12/8 M2 = 34743.2 

93 Z = A*tb^2/6 = 67*0.75^2/6 Z = 6.28194 fb2 = M/Z = 34743 / 6.2813 fb2 = 5531

95

96 Moment of Inertia - Longitudinal Direction97 Width Thick Area Y A*Y A*Y2 Io

98 Saddle 66.3 0.4 24.8 5.3 130.4 684.8 0.3

99 Half Ribs 0.4 5.1 9.5 2.5 24.0 60.8 4.1

100 Half Ribs 0.4 5.1 9.5 8.0 75.6 602.8 4.1

101 Sum 10.5 43.8 230.1 1348.3 8.4

103 C3 = Sum(Ay)/Sum(A) = 230.1 / 43.8 Centroid C3 = 5.3

104 I = SumAY2 + SumIo - C2*SumAy

105   = 1348.3 + 8.4 - 5.3 * 230.1 I3 = 148.7 

106

107 Support Shear - Longitudinal Load 108 Shear L = FL / area = 23162 / 44 Shear L = 528 

109

110 Bending Stress - Longitudinal Load 111 Lr = h+0.29*R-tb-ts = 18.313 + 0.29 * 48 - 0.375 - 0.75Longest Rib - Lr = 31.1

112 Ls = Hc-R-tb-ts-tp = 66 - 48 - 0.75 - 0.375 - 0.375 Shortest Rib - Ls = 16.5 

113 Lave = (Lr + Ls)/2 = (31.1 + 16.5)/2 Lave = 23.8 

114 M3 = fl*Lave = 23162 * 23.8 M3 = 551351

115 fb3 = MC2/I2 = 551351 * 5 / 149 fb3 = 19463

116

Page 24: Horizontal Vessel Calculation

8/10/2019 Horizontal Vessel Calculation

http://slidepdf.com/reader/full/horizontal-vessel-calculation 24/24