High Transconductance Surface Channel In 0.53 Ga 0.47 As MOSFETs Using MBE Source-Drain Regrowth and...

14
IPRM 2013 1 High Transconductance Surface Channel In 0.53 Ga 0.47 As MOSFETs Using MBE Source-Drain Regrowth and Surface Digital Etching Sanghoon Lee 1* , C.-Y. Huang 1 , A. D. Carter 1 , J. J. M. Law 1 , D. C. Elias 1 , V. Chobpattana 2 , B. J. Thibeault 1 , W. Mitchell 1 , S. Stemmer 2 , A. C. Gossard 2 , and M. J. W. Rodwell 1 1 ECE and 2 Materials Departments University of California, Santa Barbara, CA 2013 Conference on Indium Phosphide and Related Materials Kobe, Japan 05/22/2013 *[email protected]

description

High Transconductance Surface Channel In 0.53 Ga 0.47 As MOSFETs Using MBE Source-Drain Regrowth and Surface Digital Etching. - PowerPoint PPT Presentation

Transcript of High Transconductance Surface Channel In 0.53 Ga 0.47 As MOSFETs Using MBE Source-Drain Regrowth and...

Page 1: High Transconductance Surface Channel In 0.53 Ga 0.47 As MOSFETs Using MBE Source-Drain Regrowth and Surface Digital Etching

IPRM 20131

High Transconductance Surface Channel In0.53Ga0.47As MOSFETs Using MBE Source-Drain Regrowth and

Surface Digital Etching

Sanghoon Lee1*, C.-Y. Huang1, A. D. Carter1, J. J. M. Law1, D. C. Elias1, V. Chobpattana2, B. J. Thibeault1, W. Mitchell1, S. Stemmer2, A. C. Gossard2, and

M. J. W. Rodwell1

1ECE and 2Materials DepartmentsUniversity of California, Santa Barbara, CA

2013 Conference on Indium Phosphide and Related MaterialsKobe, Japan05/22/2013

*[email protected]

Page 2: High Transconductance Surface Channel In 0.53 Ga 0.47 As MOSFETs Using MBE Source-Drain Regrowth and Surface Digital Etching

IPRM 20132

Outline Motivation: Why III-V MOSFETs?

Key Design Considerations- Device Structure : Gate-last with S/D regrowth

- Damage during regrowth : surface digital etching

Process Flow Measurement Results

- I-V Characteristics

- TLM measurement

Conclusion

Page 3: High Transconductance Surface Channel In 0.53 Ga 0.47 As MOSFETs Using MBE Source-Drain Regrowth and Surface Digital Etching

IPRM 20133

Why III-V MOSFETs in VLSI ?

more transconductance per gate widthmore current (at a fixed Vdd )→ IC speedor reduced Vdd (at a constant Ion)→ reduced poweror reduced FET widths→ reduced IC size

increased transconductance from:low mass→ high injection velocitieslower density of states→ less scatteringhigher mobility in N+ regions → lower access resistance

Other advantagesheterojunctions→ strong carrier confinementwide range of available materialsepitaxial growth→ atomic layer control

Page 4: High Transconductance Surface Channel In 0.53 Ga 0.47 As MOSFETs Using MBE Source-Drain Regrowth and Surface Digital Etching

IPRM 20134

Key Design Considerations

Gate Dielectric:Thinner EOT : scaled high-k dielectricLow Dit : surface passivation5), minimized process damage6)

Channel Design:Thinner wavefunction depth: Thin channel, less pulse doping.More injection velocity: high In-content channel4)

Device structure: Scalability (sub 20 nm-Lg,<30 nm contact pitch) : self-aligned S/D, very low ρc 2) Carrier supply: heavily doped N+ source region3)

Shallow junction: regrown S/D3) or Trench-gate

1) M. Wistey et al. EMC 2009; 2) A. Baraskar et al. IPRM 2010 ; 3) U. Singisetti et at. EDL 2009 ; 4) S. Lee et al. EDL 2012 (accepted); 5) A. Carter et at. APEX 2011; 6) G. Burek, et al, JVST 2011.

Page 5: High Transconductance Surface Channel In 0.53 Ga 0.47 As MOSFETs Using MBE Source-Drain Regrowth and Surface Digital Etching

IPRM 20135

Device Structure : Gate-Last process

Gate-First Fully self-aligned transistor at nm dimensions

Process damage during gate metal deposition and definition

Large ungated region: High pulse doing Large leakage current and increase in wavefunction depth

Gate-Last (substitutional-gate)Low-damage process: Thermal gate metal, No plasma process after gate dielectric deposition

Rapid turn-around rapid learning.

A. Carter et at., DRC 2011

10 nm InGaAs (Channel)

InAlAs (Barrier)

InP (Substrate)

N+ InAs (Regrown S/D)Capping layer

Ti/Pd/Au

S/D metalNi/Au

Page 6: High Transconductance Surface Channel In 0.53 Ga 0.47 As MOSFETs Using MBE Source-Drain Regrowth and Surface Digital Etching

IPRM 20136

SiO2 Capped, 500 oC anneal

-2 -1 0 1 2Voltage (V)

0

0.2

0.4

0.6

0.8

1

1.2

-2 -1 0 1 2

Control

1 KHz10 KHz100 KHz1 MHz

Cap

acita

nce

(F/

cm2 )

Voltage (V)

Evidence of Surface Damage During RegrowthLong-channel FETs: consistently show >100 mV/dec. subthreshold swing

Indicates high Dit despite good MOSCAP data. Suggests process damage.

Experiment: SiO2 capping + high temp anneal + strip MOSCAP Process

Finding: large degradation in MOSCAP dispersion. Confirms process damage hypothesis.

Large dispersion Large Dit

Page 7: High Transconductance Surface Channel In 0.53 Ga 0.47 As MOSFETs Using MBE Source-Drain Regrowth and Surface Digital Etching

IPRM 20137

Post-Regrowth Surface Digital Etching for Damage Removal

- Surface removed by digital etch process2’ in BOE (dummy gate removal) , # cycles: 15’ UV ozone (surface oxidation)

1’ dilute HCl (native oxide removal) 13 - 15 Ȧ/cycle, ~0.16 nm RMS roughness

- Etch significantly improves subthreshold swing and gm

- Using this technique, we can easily thin the channel thickness.

10 nm InGaAs (Channel)

InAlAs (Barrier)

InP (Substrate)

HSQ

N+ InAs (Regrown S/D)5 nm n+ InGaAs (Capping layer)

10 nm InGaAs (Channel)

InAlAs (Barrier)

InP (Substrate)

N+ InAs (Regrown S/D)Capping layer

Page 8: High Transconductance Surface Channel In 0.53 Ga 0.47 As MOSFETs Using MBE Source-Drain Regrowth and Surface Digital Etching

IPRM 20138

10 nm InGaAs (Channel)

InAlAs (Barrier)

InP (Substrate)

HSQ

5 nm n+ InGaAs (Capping layer)

10 nm InGaAs (Channel)

InAlAs (Barrier)

InP (Substrate)

HSQ

N+ InAs (Regrown S/D)

5 nm n+ InGaAs (Capping layer)

10 nm InGaAs (Channel)

InAlAs (Barrier)

InP (Substrate)

HSQ

N+ InAs (Regrown S/D)

5 nm n+ InGaAs (Capping layer)

10 nm InGaAs (Channel)

InAlAs (Barrier)

InP (Substrate)

N+ InAs (Regrown S/D)Capping layer

Ti/Pd/Au

S/D metalNi/Au

1 nm/ 4 nm Al2O3/HfO2

10 nm InGaAs (Channel)

InAlAs (Barrier)

InP (Substrate)

N+ InAs (Regrown S/D)Capping layer

Ni/Au

10 nm InGaAs (Channel)

InAlAs (Barrier)

InP (Substrate)

N+ InAs (Regrown S/D)Capping layer

3 nm 3.9e12/cm2 Pulse doping

Process Flow

- Epitaxial layer growth- Dummy gate definition

- InAs Source/Drain regrowth - Mesa isolation- InAs debris wet-etching

- Dummy gate removal- Capping layer digital etching

- High-k deposition- Annealing- Gate metal deposition

- S/D metal deposition

Page 9: High Transconductance Surface Channel In 0.53 Ga 0.47 As MOSFETs Using MBE Source-Drain Regrowth and Surface Digital Etching

IPRM 20139

-0.2 0.0 0.2 0.4 0.6 0.80.00.20.40.60.81.01.21.41.61.82.0

VDS = 0.05 V

VDS = 0.5 V

Gm

(mS/m

)Cu

rren

t Den

sity

(mA/

m)

Gate Bias (V)0.00.20.40.60.81.01.21.41.61.82.0

-0.2 0.0 0.2 0.4 0.6 0.810-5

10-4

10-3

10-2

10-1

100

101

VDS = 0.5 V

VDS = 0.05 V

SS ~ 120 mV at VDS=0.05 V

Curr

ent D

ensi

ty (m

A/m

)

Gate Bias (V)

I-V Characteristics for short and long channel devices

-0.2 0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

VDS = 0.1 V to 0.7 V 0.2 V increment G

m (m

S/m)

Curr

ent D

ensi

ty (m

A/m

)

Gate Bias (V)0.0

0.1

0.2

0.3

0.4

0.5

0.6

-0.2 0.0 0.2 0.4 0.6 0.8 1.010-6

10-5

10-4

10-3

10-2

10-1

100

101

VDS = 0.1 V to 0.7 V 0.2 V increment

SS ~ 95 mV at VDS=0.1V

Curr

ent D

ensi

ty (m

A/m

)

Gate Bias (V)

- 1.6 mS/μm at Vds=0.5 V for a 65 nm-Lg device. - 95 mV/dec SS for a 530 nm-Lg device.

Page 10: High Transconductance Surface Channel In 0.53 Ga 0.47 As MOSFETs Using MBE Source-Drain Regrowth and Surface Digital Etching

IPRM 201310

Experimental : with surface digital etching , 75 nm-Lg

Control : without capping layer and surface digital etching, 75 nm-Lg

Comparison with a control sample (short channel)

-0.2 0.0 0.2 0.4 0.6 0.80.00.20.40.60.81.01.21.41.61.8

VDS = 0.1 V to 0.7 V 0.2 V increment G

m (m

S/m)

Curr

ent D

ensi

ty (m

A/m

)

Gate Bias (V)0.00.20.40.60.81.01.21.41.61.8

-0.2 0.0 0.2 0.4 0.6 0.810-5

10-4

10-3

10-2

10-1

100

101

VDS = 0.1 V to 0.7 V 0.2 V increment

SS ~ 124 mV at VDS=0.1V

Curr

ent D

ensi

ty (m

A/m

)

Gate Bias (V)0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4VGS = 0 V to 1.6 V 0.2 V increment

Curr

ent D

ensi

ty (m

A/m

)

Drain Bias (V)

-0.4 -0.2 0.0 0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

1.2

VDS = 0.1 V to 0.7 V 0.2 V increment G

m (m

S/m)

Curr

ent D

ensi

ty (m

A/m

)Gate Bias (V)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-0.4 -0.2 0.0 0.2 0.4 0.6 0.810-5

10-4

10-3

10-2

10-1

100

101

VDS = 0.1 V to 0.7 V 0.2 V increment

SS ~ 258 mV at VDS=0.1 V

Curr

ent D

ensi

ty (m

A/m

)

Gate Bias (V)0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4VGS = -0.4 V to 1.8 V 0.2 V increment

Curr

ent D

ensi

ty (m

A/m

)

Drain Bias (V)

- ~75 % increase in peak transconductance at Vds = 0.5 V - significantly better short channel characteristic with surface digital etching

Page 11: High Transconductance Surface Channel In 0.53 Ga 0.47 As MOSFETs Using MBE Source-Drain Regrowth and Surface Digital Etching

IPRM 201311

Experimental : with surface digital etching, 535 nm-Lg

Control : without surface digital etching, 500 nm-Lg

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.0

0.1

0.2

0.3

0.4

0.5

0.6VGS = 0 V to 1.8 V 0.2 V increment

Curr

ent D

ensi

ty (m

A/m

)

Drain Bias (V)-0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

VDS = 0.1 V to 0.7 V 0.2 V increment G

m (m

S/m)

Curr

ent D

ensi

ty (m

A/m

)

Gate Bias (V)0.0

0.1

0.2

0.3

0.4

0.5

0.6

-0.2 0.0 0.2 0.4 0.6 0.8 1.010-6

10-5

10-4

10-3

10-2

10-1

100

101

VDS = 0.1 V to 0.7 V 0.2 V increment

SS ~ 95 mV at VDS=0.1V

Curr

ent D

ensi

ty (m

A/m

)

Gate Bias (V)

-0.2 0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

VDS = 0.1 V to 0.7 V 0.2 V increment G

m (m

S/m)

Curr

ent D

ensi

ty (m

A/m

)Gate Bias (V)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-0.2 0.0 0.2 0.4 0.6 0.8 1.010-5

10-4

10-3

10-2

10-1

100

101

VDS = 0.1 V to 0.7 V 0.2 V increment

SS ~ 240 mV at VDS=0.1 V

Curr

ent D

ensi

ty (m

A/m

)

Gate Bias (V)0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6VGS = -0.4 V to 1.4 V 0.2 V increment

Curr

ent D

ensi

ty (m

A/m

)

Drain Bias (V)

- Similar on-state characteristics (~0.4 V Vt shift) - Better short channel effect

Comparison with a control sample (long channel)

Page 12: High Transconductance Surface Channel In 0.53 Ga 0.47 As MOSFETs Using MBE Source-Drain Regrowth and Surface Digital Etching

IPRM 201312

TLM Measurement for S/D metal contact

0 5 10 15 20 250

100200300400500600700800

Ti /Pd/Au

5 nm n++ InGaAs (Capping layer)

50 nm n++ InAs(regrown contact layer)

Gap

InGaAs Channel

400 nm In0.52AlAs (UID)

S.I. InP

Gate metal

3 nm 3.9e12/cm2

Pulse doping

Ti/Pd/Au

5 nm n++ InGaAs

50 nm n++ InAs(regrown)

~1.2 μm

- 0.15 ohm-μm2 Contact resistivity and 25 ohm/sq. sheet resistance. - 64 ohm-μm S/D access resistance (~5 % transconductance degradation)

Page 13: High Transconductance Surface Channel In 0.53 Ga 0.47 As MOSFETs Using MBE Source-Drain Regrowth and Surface Digital Etching

IPRM 201313

Conclusion

Using digital etching, damaged surface can be effectively removed in a nanometer precision without etch-stop.

The removal of the damaged surface significantly improves both on- and off-state performance.

gm = 1.6 mS/μm at Vds=0.5 V for a 65 nm-Lg device 95 mV/dec for a 530 nm-Lg device

InAs regrown S/D provides very low contact resistivity of 0.15 ohm-μm2 .

Page 14: High Transconductance Surface Channel In 0.53 Ga 0.47 As MOSFETs Using MBE Source-Drain Regrowth and Surface Digital Etching

IPRM 201314*[email protected]

Thanks for your attention!Questions?

This research was supported by the SRC Non-classical CMOS Research Center (Task 1437.006). A portion of this work was done in the UCSB nanofabrication facility, part of NSF funded NNIN network and MRL Central Facilities supported by the MRSEC Program of the NSF under award No. MR05-20415.